metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido{N,N-di­methyl-N′-[1-(2-pyrid­yl)ethyl­­idene]ethane-1,2-di­amine-κ3N,N′,N′′}copper(II)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and bDepartment of Physics, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@perdana.um.edu.my

(Received 13 March 2010; accepted 29 March 2010; online 10 April 2010)

In the title compound, [CuCl2(C11H17N3)], the CuII ion is five-coordinated with a distorted square-pyramidal configuration. The three N atoms of the Schiff base ligand and one Cl atom are located in the basal plane, whereas the other Cl atom is apically positioned.

Related literature

For the crystal structures of similar copper (II) complexes, see: Wang et al. (2009[Wang, Q., Bi, C.-F., Wang, D.-Q. & Fan, Y.-H. (2009). Acta Cryst. E65, m439.]); Yuan & Zhang (2005[Yuan, W.-B. & Zhang, Q. (2005). Acta Cryst. E61, m1883-m1884.]); Zhang et al. (2009[Zhang, X.-Q., Li, C.-Y., Bian, H.-D., Yu, Q. & Liang, H. (2009). Acta Cryst. E65, m1610.]). For a description of the geometry of five-coordinated metal complexes, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., Rijn, V. J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl2(C11H17N3)]

  • Mr = 325.72

  • Orthorhombic, P 21 21 21

  • a = 9.81448 (12) Å

  • b = 9.90297 (13) Å

  • c = 14.21414 (18) Å

  • V = 1381.51 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.95 mm−1

  • T = 100 K

  • 0.30 × 0.23 × 0.07 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.592, Tmax = 0.876

  • 10998 measured reflections

  • 2439 independent reflections

  • 2378 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.043

  • S = 1.03

  • 2439 reflections

  • 157 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1022 Friedel pairs

  • Flack parameter: 0.010 (9)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

The title compound was obtained by the reaction of N,N-dimethyl-N'-[methyl(2-pyridyl)methylene]ethane-1,2-diamine with copper(II) chloride. In the molecule of the complex, the metal ion is penta-coordinated by the tridentate Schiff base ligand and two chloride atoms (Fig. 1). The geometry of the complex can be determined by using the index τ = (β-α)/60, where β is the largest angle and α is the second one around the metal center. For an ideal square-pyramidal geometry τ is 0, while it is 1 in a perfect trigonal-bipyramid (Addison et al.,1984). The two largest angels in the title compound are 158.45 (6)° (N1—Cu—N3) and 154.98 (5)° (N2—Cu—Cl2) which give a τ value of 0.058. This value indicates a slightly distorted square pyramidal geometry in which the three N atoms of the Schiff base ligand and one chloride atom occupy the basal positions and the other chloride atom is placed in the apical position.

Related literature top

For the crystal structures of similar copper (II) complexes see: Wang et al. (2009); Yuan & Zhang (2005); Zhang et al. (2009). For a description of the geometry of five-coordinated metal complexes, see: Addison et al. (1984).

Experimental top

The Schiff base ligand was prepared via condensation reaction of N,N-dimethylethyldiamine (0.44 g, 5 mmol) and 2-acetylpyridine (0.61 g, 5 mmol) by refluxing in ethanol (50 ml) for 2 h. For synthesis of the title complex a mixture of the Schiff base ligand (0.57 g, 3 mmol) and copper (II) chloride dihydrate (0.51 g, 3 mmol) in ethanol (50 ml) was stirred at room temperature for half an hour. The solvent was then evaporated partially to yield the title complex as a green solid. Suitable crystals for X-ray crystallography were obtained upon slow evaporation of an ethanolic solution at room temperature.

Refinement top

Hydrogen atoms were placed at calculated positions (C—H 0.95-0.98 Å), and were treated as riding on their parent atoms, with Uiso(H) set to 1.2-1.5 times Ueq(C). An absolute structure was established using anomalous dispersion effects; 1021 Friedel pairs were not merged.

Structure description top

The title compound was obtained by the reaction of N,N-dimethyl-N'-[methyl(2-pyridyl)methylene]ethane-1,2-diamine with copper(II) chloride. In the molecule of the complex, the metal ion is penta-coordinated by the tridentate Schiff base ligand and two chloride atoms (Fig. 1). The geometry of the complex can be determined by using the index τ = (β-α)/60, where β is the largest angle and α is the second one around the metal center. For an ideal square-pyramidal geometry τ is 0, while it is 1 in a perfect trigonal-bipyramid (Addison et al.,1984). The two largest angels in the title compound are 158.45 (6)° (N1—Cu—N3) and 154.98 (5)° (N2—Cu—Cl2) which give a τ value of 0.058. This value indicates a slightly distorted square pyramidal geometry in which the three N atoms of the Schiff base ligand and one chloride atom occupy the basal positions and the other chloride atom is placed in the apical position.

For the crystal structures of similar copper (II) complexes see: Wang et al. (2009); Yuan & Zhang (2005); Zhang et al. (2009). For a description of the geometry of five-coordinated metal complexes, see: Addison et al. (1984).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound at the 50% probability level.
Dichlorido{N,N-dimethyl-N'-[1-(2- pyridyl)ethylidene]ethane-1,2-diamine- κ3N,N',N''}copper(II) top
Crystal data top
[CuCl2(C11H17N3)]F(000) = 668
Mr = 325.72Dx = 1.566 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7155 reflections
a = 9.81448 (12) Åθ = 2.5–30.4°
b = 9.90297 (13) ŵ = 1.95 mm1
c = 14.21414 (18) ÅT = 100 K
V = 1381.51 (2) Å3Block, green
Z = 40.30 × 0.23 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
2439 independent reflections
Radiation source: fine-focus sealed tube2378 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.592, Tmax = 0.876k = 1111
10998 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.017H-atom parameters constrained
wR(F2) = 0.043 w = 1/[σ2(Fo2) + (0.0245P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2439 reflectionsΔρmax = 0.21 e Å3
157 parametersΔρmin = 0.20 e Å3
0 restraintsAbsolute structure: Flack (1983), 1022 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.010 (9)
Crystal data top
[CuCl2(C11H17N3)]V = 1381.51 (2) Å3
Mr = 325.72Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.81448 (12) ŵ = 1.95 mm1
b = 9.90297 (13) ÅT = 100 K
c = 14.21414 (18) Å0.30 × 0.23 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
2439 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2378 reflections with I > 2σ(I)
Tmin = 0.592, Tmax = 0.876Rint = 0.026
10998 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.017H-atom parameters constrained
wR(F2) = 0.043Δρmax = 0.21 e Å3
S = 1.03Δρmin = 0.20 e Å3
2439 reflectionsAbsolute structure: Flack (1983), 1022 Friedel pairs
157 parametersAbsolute structure parameter: 0.010 (9)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.80028 (2)0.16329 (2)0.099598 (15)0.01175 (7)
Cl10.56577 (5)0.08033 (5)0.13120 (3)0.01619 (11)
Cl20.92633 (5)0.14346 (5)0.23208 (3)0.01790 (12)
N10.86920 (16)0.00757 (17)0.03434 (12)0.0139 (4)
N20.76828 (16)0.20963 (16)0.03353 (11)0.0124 (4)
N30.75938 (15)0.36500 (16)0.11931 (11)0.0132 (4)
C10.9300 (2)0.11396 (19)0.07379 (15)0.0169 (4)
H10.94480.11360.13980.020*
C20.9722 (2)0.2245 (2)0.02225 (15)0.0185 (5)
H21.01740.29760.05220.022*
C30.9479 (2)0.2274 (2)0.07327 (15)0.0200 (5)
H30.97370.30360.10980.024*
C40.8846 (2)0.1161 (2)0.11553 (15)0.0175 (4)
H40.86660.11550.18120.021*
C50.84897 (19)0.0075 (2)0.06026 (13)0.0131 (4)
C60.79321 (18)0.12257 (18)0.09696 (13)0.0129 (4)
C70.7771 (2)0.1485 (2)0.20048 (13)0.0200 (5)
H7A0.68430.18050.21320.030*
H7B0.79350.06480.23540.030*
H7C0.84280.21730.22040.030*
C80.71958 (19)0.3470 (2)0.05216 (13)0.0139 (4)
H8A0.64640.34600.10010.017*
H8B0.79490.40470.07510.017*
C90.6657 (2)0.3992 (2)0.04119 (14)0.0158 (4)
H9A0.65480.49850.03770.019*
H9B0.57510.35920.05360.019*
C100.6923 (2)0.3973 (2)0.20995 (13)0.0195 (4)
H10A0.75330.37370.26200.029*
H10B0.60760.34560.21540.029*
H10C0.67180.49410.21240.029*
C110.8874 (2)0.4429 (2)0.11176 (15)0.0200 (5)
H11A0.93140.42300.05140.030*
H11B0.94860.41760.16330.030*
H11C0.86710.53960.11550.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.01269 (12)0.01237 (12)0.01020 (12)0.00077 (10)0.00026 (10)0.00045 (10)
Cl10.0134 (2)0.0185 (3)0.0166 (2)0.0024 (2)0.00053 (18)0.0027 (2)
Cl20.0177 (2)0.0229 (3)0.0130 (2)0.0021 (2)0.00368 (19)0.0008 (2)
N10.0115 (8)0.0159 (9)0.0143 (8)0.0012 (7)0.0026 (7)0.0014 (7)
N20.0107 (9)0.0133 (8)0.0131 (8)0.0003 (6)0.0012 (7)0.0033 (7)
N30.0137 (8)0.0146 (8)0.0114 (8)0.0001 (6)0.0009 (6)0.0000 (7)
C10.0181 (10)0.0146 (10)0.0180 (11)0.0018 (8)0.0028 (9)0.0036 (8)
C20.0203 (11)0.0136 (11)0.0217 (12)0.0004 (8)0.0034 (9)0.0057 (9)
C30.0229 (11)0.0144 (10)0.0227 (11)0.0009 (9)0.0024 (9)0.0051 (9)
C40.0170 (10)0.0184 (11)0.0171 (11)0.0034 (8)0.0009 (9)0.0014 (9)
C50.0101 (10)0.0148 (10)0.0143 (10)0.0034 (8)0.0011 (8)0.0012 (8)
C60.0093 (9)0.0160 (9)0.0134 (9)0.0037 (7)0.0012 (9)0.0009 (8)
C70.0223 (11)0.0237 (11)0.0139 (10)0.0061 (10)0.0012 (8)0.0014 (9)
C80.0145 (10)0.0136 (10)0.0137 (10)0.0008 (9)0.0019 (7)0.0020 (8)
C90.0146 (10)0.0144 (10)0.0185 (10)0.0017 (8)0.0009 (8)0.0019 (9)
C100.0272 (11)0.0176 (10)0.0136 (10)0.0018 (10)0.0029 (10)0.0021 (8)
C110.0213 (11)0.0183 (11)0.0204 (12)0.0064 (8)0.0018 (9)0.0015 (10)
Geometric parameters (Å, º) top
Cu—N21.9723 (16)C4—C51.377 (3)
Cu—N12.0447 (17)C4—H40.9500
Cu—N32.0567 (16)C5—C61.494 (3)
Cu—Cl22.2617 (5)C6—C71.502 (3)
Cu—Cl12.4848 (5)C7—H7A0.9800
N1—C11.334 (3)C7—H7B0.9800
N1—C51.359 (2)C7—H7C0.9800
N2—C61.271 (2)C8—C91.519 (3)
N2—C81.466 (3)C8—H8A0.9900
N3—C111.478 (2)C8—H8B0.9900
N3—C101.482 (2)C9—H9A0.9900
N3—C91.481 (2)C9—H9B0.9900
C1—C21.381 (3)C10—H10A0.9800
C1—H10.9500C10—H10B0.9800
C2—C31.379 (3)C10—H10C0.9800
C2—H20.9500C11—H11A0.9800
C3—C41.401 (3)C11—H11B0.9800
C3—H30.9500C11—H11C0.9800
N2—Cu—N179.04 (7)N1—C5—C6113.54 (17)
N2—Cu—N382.74 (6)C4—C5—C6124.56 (17)
N1—Cu—N3158.45 (6)N2—C6—C5114.06 (16)
N2—Cu—Cl2154.98 (5)N2—C6—C7123.94 (18)
N1—Cu—Cl297.17 (5)C5—C6—C7121.90 (16)
N3—Cu—Cl294.45 (4)C6—C7—H7A109.5
N2—Cu—Cl195.91 (5)C6—C7—H7B109.5
N1—Cu—Cl196.59 (5)H7A—C7—H7B109.5
N3—Cu—Cl196.65 (4)C6—C7—H7C109.5
Cl2—Cu—Cl1109.113 (18)H7A—C7—H7C109.5
C1—N1—C5118.77 (18)H7B—C7—H7C109.5
C1—N1—Cu127.64 (14)N2—C8—C9105.76 (15)
C5—N1—Cu113.59 (13)N2—C8—H8A110.6
C6—N2—C8124.33 (16)C9—C8—H8A110.6
C6—N2—Cu119.47 (13)N2—C8—H8B110.6
C8—N2—Cu116.17 (12)C9—C8—H8B110.6
C11—N3—C10109.14 (15)H8A—C8—H8B108.7
C11—N3—C9110.72 (15)N3—C9—C8111.17 (16)
C10—N3—C9109.07 (15)N3—C9—H9A109.4
C11—N3—Cu109.33 (12)C8—C9—H9A109.4
C10—N3—Cu114.53 (12)N3—C9—H9B109.4
C9—N3—Cu103.96 (12)C8—C9—H9B109.4
N1—C1—C2122.50 (19)H9A—C9—H9B108.0
N1—C1—H1118.8N3—C10—H10A109.5
C2—C1—H1118.8N3—C10—H10B109.5
C3—C2—C1119.1 (2)H10A—C10—H10B109.5
C3—C2—H2120.4N3—C10—H10C109.5
C1—C2—H2120.4H10A—C10—H10C109.5
C2—C3—C4118.9 (2)H10B—C10—H10C109.5
C2—C3—H3120.6N3—C11—H11A109.5
C4—C3—H3120.6N3—C11—H11B109.5
C5—C4—C3118.86 (19)H11A—C11—H11B109.5
C5—C4—H4120.6N3—C11—H11C109.5
C3—C4—H4120.6H11A—C11—H11C109.5
N1—C5—C4121.81 (19)H11B—C11—H11C109.5

Experimental details

Crystal data
Chemical formula[CuCl2(C11H17N3)]
Mr325.72
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)9.81448 (12), 9.90297 (13), 14.21414 (18)
V3)1381.51 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.95
Crystal size (mm)0.30 × 0.23 × 0.07
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.592, 0.876
No. of measured, independent and
observed [I > 2σ(I)] reflections
10998, 2439, 2378
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.043, 1.03
No. of reflections2439
No. of parameters157
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.20
Absolute structureFlack (1983), 1022 Friedel pairs
Absolute structure parameter0.010 (9)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank the University of Malaya for funding this study (FRGS grant No. FP009/2008 C).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., Rijn, V. J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Q., Bi, C.-F., Wang, D.-Q. & Fan, Y.-H. (2009). Acta Cryst. E65, m439.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar
First citationYuan, W.-B. & Zhang, Q. (2005). Acta Cryst. E61, m1883–m1884.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, X.-Q., Li, C.-Y., Bian, H.-D., Yu, Q. & Liang, H. (2009). Acta Cryst. E65, m1610.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds