organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(5-Phenyl-1,2,4-triazolo[3,4-a]isoquinolin-3-yl)benzo­nitrile

aOrganic and Medicinal Chemistry Research Laboratory, Organic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and cDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 3 April 2010; accepted 7 April 2010; online 14 April 2010)

In the title mol­ecule, C23H14N4, the triazoloisoquinoline ring system is nearly planar, with an r.m.s. deviation of 0.038 (2) Å and a maximum deviation of −0.030 (2) Å from the mean plane of the triazole ring C atom which is bonded to the benzene ring. The benzene and phenyl rings are twisted by 57.65 (8) and 53.60 (9)°, respectively, with respect to the mean plane of the triazoloisoquinoline ring system. In the crystal structure, mol­ecules are linked by weak aromatic ππ inter­actions [centroid–centroid distance = 3.8074 (12) Å]. In addition, the crystal structure exhibits a nonclassical inter­molecular C—H⋯N hydrogen bond.

Related literature

For a related crystal structure, see: Khan et al. (2010[Khan, F. N., Manivel, P., Prabakaran, K., Hathwar, V. R. & Ng, S. W. (2010). Acta Cryst. E66, o488.]).

[Scheme 1]

Experimental

Crystal data
  • C23H14N4

  • Mr = 346.38

  • Orthorhombic, P b c a

  • a = 7.1614 (3) Å

  • b = 18.0957 (7) Å

  • c = 26.4021 (9) Å

  • V = 3421.5 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 290 K

  • 0.25 × 0.21 × 0.17 mm

Data collection
  • Oxford Xcalibur Eos (Nova) CCD detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.959, Tmax = 0.986

  • 14977 measured reflections

  • 3164 independent reflections

  • 1490 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.100

  • S = 0.81

  • 3164 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯N3i 0.93 2.50 3.418 (3) 170
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of our search for new isoquinoline analogues (Khan et al., 2010), we focused on synthesis of titled compounds and the crystal structure is reported.

In the title molecule, Fig. 1, the triazoloisoquinoline ring system (N1-N3/C1-C9/C16) is nearly planar, with an r.m.s. deviation of 0.038 (2)Å and a maximum deviation of -0.030 (2)Å from the mean plane for the triazole ring C16 atom which is bonded to the benzene ring (C17-C22). The benzene (C17-C22) and phenyl (C10-C15) rings are twisted by 57.65 (8)° and 53.60 (9)°, respectively, with respect to the mean plane of the triazoloisoquinoline ring system. The benzene (C17-C22) and phenyl (C10-C15) rings make a dihedral angle of 29.10 (11)° with each other.

Molecular conformation is stabilized by a weak ππ interaction [Cg4···Cg5 = 3.8229 (14)Å, where are Cg4 and Cg5 are centroids of the C10-C15 and C17-C22 rings, respectively]. In the crystal structure, the molecules are linked by weak aromatic ππ interactions [Cg1···Cg1ii = 3.8074 (12)Å, symmetry code: (ii) x-1/2, 1/2-y, -z. Cg1 is the centroid of the N1-N3/C1/C16 ring]. In addition, the crystal structure exhibits an intermolecular non-classical C–H···N hydrogen bond (Table 1, Fig. 2).

Related literature top

For a related crystal structure, see: Khan et al. (2010).

Experimental top

2-(3-Phenylisoquinolin-1-yl)hydrazine (1 mmol) was condensed with 4-formylbenzonitrile (1.1 mmol) under refluxing conditions isopropanol (10 ml) solvent to give the corresponding hydrazone in high yield. After removal of solvent the compound was then oxidatively cyclized in nitrobenzene (10 ml) at 473 K. The product was recrystallized from dichlomethane to give block-shaped crystals.

Refinement top

All H atoms were placed in calculated positions with C–H = 0.93Å and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C).

Pure diffraction experiment (ratio observed/unique reflections 47%) we explain by weak diffraction of the crystal.

Structure description top

As part of our search for new isoquinoline analogues (Khan et al., 2010), we focused on synthesis of titled compounds and the crystal structure is reported.

In the title molecule, Fig. 1, the triazoloisoquinoline ring system (N1-N3/C1-C9/C16) is nearly planar, with an r.m.s. deviation of 0.038 (2)Å and a maximum deviation of -0.030 (2)Å from the mean plane for the triazole ring C16 atom which is bonded to the benzene ring (C17-C22). The benzene (C17-C22) and phenyl (C10-C15) rings are twisted by 57.65 (8)° and 53.60 (9)°, respectively, with respect to the mean plane of the triazoloisoquinoline ring system. The benzene (C17-C22) and phenyl (C10-C15) rings make a dihedral angle of 29.10 (11)° with each other.

Molecular conformation is stabilized by a weak ππ interaction [Cg4···Cg5 = 3.8229 (14)Å, where are Cg4 and Cg5 are centroids of the C10-C15 and C17-C22 rings, respectively]. In the crystal structure, the molecules are linked by weak aromatic ππ interactions [Cg1···Cg1ii = 3.8074 (12)Å, symmetry code: (ii) x-1/2, 1/2-y, -z. Cg1 is the centroid of the N1-N3/C1/C16 ring]. In addition, the crystal structure exhibits an intermolecular non-classical C–H···N hydrogen bond (Table 1, Fig. 2).

For a related crystal structure, see: Khan et al. (2010).

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2009); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The view of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing diagram and the hydrogen bonding in the title crystal structure viewed down the [1 0 0] direction. H atoms not involved in the motif shown have been omitted for clarity.
(I) top
Crystal data top
C23H14N4F(000) = 1440
Mr = 346.38Dx = 1.345 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1235 reflections
a = 7.1614 (3) Åθ = 1.6–20.4°
b = 18.0957 (7) ŵ = 0.08 mm1
c = 26.4021 (9) ÅT = 290 K
V = 3421.5 (2) Å3Block, colourless
Z = 80.25 × 0.21 × 0.17 mm
Data collection top
Oxford Xcalibur Eos (Nova) CCD detector
diffractometer
3164 independent reflections
Radiation source: Enhance (Mo) X-ray Source1490 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
ω scansθmax = 25.5°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
h = 87
Tmin = 0.959, Tmax = 0.986k = 2121
14977 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 0.81 w = 1/[σ2(Fo2) + (0.0413P)2]
where P = (Fo2 + 2Fc2)/3
3164 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C23H14N4V = 3421.5 (2) Å3
Mr = 346.38Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.1614 (3) ŵ = 0.08 mm1
b = 18.0957 (7) ÅT = 290 K
c = 26.4021 (9) Å0.25 × 0.21 × 0.17 mm
Data collection top
Oxford Xcalibur Eos (Nova) CCD detector
diffractometer
3164 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
1490 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.986Rint = 0.070
14977 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 0.81Δρmax = 0.15 e Å3
3164 reflectionsΔρmin = 0.20 e Å3
244 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6627 (2)0.33099 (9)0.03366 (6)0.0370 (4)
N20.5820 (3)0.22467 (10)0.00072 (7)0.0510 (5)
N30.6063 (2)0.27481 (11)0.03950 (7)0.0495 (5)
N40.5390 (3)0.08980 (15)0.27259 (9)0.0927 (9)
C10.6539 (3)0.33812 (13)0.01851 (8)0.0395 (5)
C20.6915 (3)0.40722 (12)0.04237 (8)0.0407 (6)
C30.6888 (3)0.41638 (14)0.09495 (8)0.0490 (6)
H30.65860.37660.11570.059*
C40.7302 (3)0.48368 (15)0.11611 (9)0.0570 (7)
H40.72970.48940.15110.068*
C50.7728 (3)0.54308 (14)0.08507 (9)0.0581 (7)
H50.80020.58870.09960.070*
C60.7754 (3)0.53585 (13)0.03328 (9)0.0526 (6)
H60.80300.57640.01300.063*
C70.7364 (3)0.46741 (12)0.01110 (8)0.0416 (6)
C80.7527 (3)0.45523 (12)0.04249 (8)0.0454 (6)
H80.78530.49520.06280.054*
C90.7238 (3)0.38972 (12)0.06498 (8)0.0387 (6)
C100.7671 (3)0.37673 (11)0.11909 (8)0.0374 (5)
C110.8907 (3)0.32192 (12)0.13406 (8)0.0456 (6)
H110.94260.29030.11010.055*
C120.9365 (3)0.31454 (14)0.18466 (9)0.0562 (7)
H121.01800.27740.19480.067*
C130.8625 (4)0.36161 (15)0.22007 (9)0.0645 (8)
H130.89350.35610.25410.077*
C140.7438 (4)0.41647 (15)0.20553 (9)0.0595 (7)
H140.69600.44900.22950.071*
C150.6944 (3)0.42380 (13)0.15537 (9)0.0478 (6)
H150.61140.46080.14580.057*
C160.6137 (3)0.25837 (12)0.04252 (8)0.0406 (6)
C170.5906 (3)0.22246 (12)0.09194 (8)0.0403 (5)
C180.6918 (3)0.15870 (13)0.10218 (8)0.0480 (6)
H180.77010.13910.07750.058*
C190.6771 (3)0.12414 (12)0.14857 (9)0.0523 (6)
H190.74740.08210.15540.063*
C200.5575 (3)0.15217 (13)0.18497 (8)0.0480 (6)
C210.4514 (3)0.21414 (13)0.17476 (8)0.0524 (6)
H210.36930.23240.19900.063*
C220.4678 (3)0.24882 (13)0.12834 (8)0.0503 (6)
H220.39570.29030.12140.060*
C230.5459 (3)0.11720 (15)0.23405 (10)0.0629 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0393 (10)0.0337 (11)0.0381 (11)0.0026 (8)0.0031 (8)0.0012 (9)
N20.0631 (13)0.0439 (12)0.0459 (12)0.0068 (10)0.0062 (10)0.0041 (11)
N30.0614 (13)0.0457 (13)0.0414 (11)0.0057 (10)0.0054 (9)0.0003 (10)
N40.0964 (19)0.124 (2)0.0576 (16)0.0151 (16)0.0099 (14)0.0261 (16)
C10.0394 (14)0.0404 (15)0.0387 (13)0.0003 (11)0.0054 (10)0.0027 (12)
C20.0357 (13)0.0443 (15)0.0421 (14)0.0023 (11)0.0010 (10)0.0016 (12)
C30.0463 (15)0.0544 (17)0.0463 (15)0.0062 (13)0.0002 (11)0.0032 (13)
C40.0515 (17)0.0687 (19)0.0507 (15)0.0085 (14)0.0028 (12)0.0160 (15)
C50.0464 (16)0.0584 (19)0.0695 (19)0.0011 (13)0.0002 (13)0.0241 (15)
C60.0500 (15)0.0465 (16)0.0613 (17)0.0003 (12)0.0016 (13)0.0076 (13)
C70.0344 (14)0.0413 (15)0.0490 (14)0.0004 (11)0.0046 (11)0.0072 (12)
C80.0461 (14)0.0387 (15)0.0513 (15)0.0011 (11)0.0052 (12)0.0054 (12)
C90.0347 (14)0.0368 (15)0.0445 (13)0.0002 (10)0.0019 (11)0.0060 (11)
C100.0399 (14)0.0336 (13)0.0386 (13)0.0029 (11)0.0012 (10)0.0018 (11)
C110.0441 (14)0.0436 (15)0.0492 (15)0.0011 (12)0.0005 (11)0.0047 (12)
C120.0519 (16)0.0604 (18)0.0563 (17)0.0036 (13)0.0129 (13)0.0072 (15)
C130.075 (2)0.077 (2)0.0416 (15)0.0091 (16)0.0111 (14)0.0000 (15)
C140.0721 (18)0.0580 (18)0.0483 (16)0.0068 (15)0.0073 (14)0.0115 (14)
C150.0507 (15)0.0429 (15)0.0497 (15)0.0013 (12)0.0008 (12)0.0051 (13)
C160.0436 (14)0.0361 (14)0.0423 (13)0.0039 (11)0.0025 (11)0.0031 (12)
C170.0400 (13)0.0351 (14)0.0458 (14)0.0048 (11)0.0039 (11)0.0015 (11)
C180.0586 (15)0.0392 (15)0.0463 (15)0.0034 (13)0.0039 (12)0.0031 (12)
C190.0637 (17)0.0400 (15)0.0532 (16)0.0085 (12)0.0004 (13)0.0023 (13)
C200.0498 (15)0.0497 (16)0.0446 (14)0.0053 (13)0.0014 (12)0.0051 (13)
C210.0516 (16)0.0559 (17)0.0497 (16)0.0024 (14)0.0067 (12)0.0002 (13)
C220.0516 (16)0.0417 (15)0.0575 (16)0.0052 (12)0.0014 (13)0.0000 (13)
C230.0591 (18)0.075 (2)0.0546 (18)0.0052 (14)0.0030 (14)0.0043 (16)
Geometric parameters (Å, º) top
N1—C161.380 (2)C10—C111.387 (3)
N1—C11.385 (2)C11—C121.382 (3)
N1—C91.416 (2)C11—H110.9300
N2—C161.314 (2)C12—C131.371 (3)
N2—N31.379 (2)C12—H120.9300
N3—C11.318 (3)C13—C141.362 (3)
N4—C231.133 (3)C13—H130.9300
C1—C21.426 (3)C14—C151.377 (3)
C2—C31.398 (3)C14—H140.9300
C2—C71.404 (3)C15—H150.9300
C3—C41.372 (3)C16—C171.467 (3)
C3—H30.9300C17—C221.387 (3)
C4—C51.386 (3)C17—C181.389 (3)
C4—H40.9300C18—C191.379 (3)
C5—C61.374 (3)C18—H180.9300
C5—H50.9300C19—C201.384 (3)
C6—C71.398 (3)C19—H190.9300
C6—H60.9300C20—C211.381 (3)
C7—C81.437 (3)C20—C231.445 (3)
C8—C91.342 (3)C21—C221.382 (3)
C8—H80.9300C21—H210.9300
C9—C101.481 (3)C22—H220.9300
C10—C151.384 (3)
C16—N1—C1104.23 (17)C12—C11—H11120.1
C16—N1—C9133.97 (18)C10—C11—H11120.1
C1—N1—C9121.67 (19)C13—C12—C11120.5 (2)
C16—N2—N3108.54 (17)C13—C12—H12119.7
C1—N3—N2107.01 (17)C11—C12—H12119.7
N3—C1—N1110.4 (2)C14—C13—C12120.1 (2)
N3—C1—C2128.7 (2)C14—C13—H13119.9
N1—C1—C2120.8 (2)C12—C13—H13119.9
C3—C2—C7119.7 (2)C13—C14—C15120.1 (2)
C3—C2—C1122.7 (2)C13—C14—H14120.0
C7—C2—C1117.6 (2)C15—C14—H14120.0
C4—C3—C2120.4 (2)C14—C15—C10120.7 (2)
C4—C3—H3119.8C14—C15—H15119.7
C2—C3—H3119.8C10—C15—H15119.7
C3—C4—C5119.7 (2)N2—C16—N1109.78 (18)
C3—C4—H4120.2N2—C16—C17123.23 (19)
C5—C4—H4120.2N1—C16—C17126.94 (19)
C6—C5—C4121.2 (2)C22—C17—C18118.8 (2)
C6—C5—H5119.4C22—C17—C16122.4 (2)
C4—C5—H5119.4C18—C17—C16118.8 (2)
C5—C6—C7119.9 (2)C19—C18—C17120.6 (2)
C5—C6—H6120.0C19—C18—H18119.7
C7—C6—H6120.0C17—C18—H18119.7
C6—C7—C2119.1 (2)C18—C19—C20119.9 (2)
C6—C7—C8122.1 (2)C18—C19—H19120.1
C2—C7—C8118.6 (2)C20—C19—H19120.1
C9—C8—C7124.0 (2)C21—C20—C19120.2 (2)
C9—C8—H8118.0C21—C20—C23119.9 (2)
C7—C8—H8118.0C19—C20—C23119.9 (2)
C8—C9—N1116.90 (19)C20—C21—C22119.7 (2)
C8—C9—C10122.32 (19)C20—C21—H21120.2
N1—C9—C10120.61 (19)C22—C21—H21120.2
C15—C10—C11118.9 (2)C21—C22—C17120.8 (2)
C15—C10—C9119.4 (2)C21—C22—H22119.6
C11—C10—C9121.49 (19)C17—C22—H22119.6
C12—C11—C10119.7 (2)N4—C23—C20179.2 (3)
C16—N2—N3—C10.5 (2)N1—C9—C10—C15131.8 (2)
N2—N3—C1—N10.3 (2)C8—C9—C10—C11121.8 (2)
N2—N3—C1—C2178.9 (2)N1—C9—C10—C1153.2 (3)
C16—N1—C1—N30.9 (2)C15—C10—C11—C121.0 (3)
C9—N1—C1—N3175.46 (16)C9—C10—C11—C12176.0 (2)
C16—N1—C1—C2178.40 (18)C10—C11—C12—C130.9 (3)
C9—N1—C1—C25.2 (3)C11—C12—C13—C140.4 (4)
N3—C1—C2—C32.5 (3)C12—C13—C14—C151.4 (4)
N1—C1—C2—C3178.35 (17)C13—C14—C15—C101.3 (4)
N3—C1—C2—C7178.8 (2)C11—C10—C15—C140.0 (3)
N1—C1—C2—C70.4 (3)C9—C10—C15—C14175.0 (2)
C7—C2—C3—C40.2 (3)N3—N2—C16—N11.0 (2)
C1—C2—C3—C4178.5 (2)N3—N2—C16—C17176.63 (18)
C2—C3—C4—C50.8 (3)C1—N1—C16—N21.2 (2)
C3—C4—C5—C60.4 (3)C9—N1—C16—N2174.51 (19)
C4—C5—C6—C70.7 (3)C1—N1—C16—C17176.38 (19)
C5—C6—C7—C21.2 (3)C9—N1—C16—C177.9 (4)
C5—C6—C7—C8174.57 (19)N2—C16—C17—C22120.5 (2)
C3—C2—C7—C60.8 (3)N1—C16—C17—C2256.7 (3)
C1—C2—C7—C6179.55 (19)N2—C16—C17—C1857.8 (3)
C3—C2—C7—C8175.16 (18)N1—C16—C17—C18125.0 (2)
C1—C2—C7—C83.6 (3)C22—C17—C18—C193.0 (3)
C6—C7—C8—C9177.2 (2)C16—C17—C18—C19178.6 (2)
C2—C7—C8—C91.5 (3)C17—C18—C19—C201.4 (3)
C7—C8—C9—N13.9 (3)C18—C19—C20—C210.7 (3)
C7—C8—C9—C10171.32 (18)C18—C19—C20—C23178.3 (2)
C16—N1—C9—C8177.6 (2)C19—C20—C21—C221.2 (3)
C1—N1—C9—C87.3 (3)C23—C20—C21—C22177.8 (2)
C16—N1—C9—C107.0 (3)C20—C21—C22—C170.4 (3)
C1—N1—C9—C10168.06 (17)C18—C17—C22—C212.5 (3)
C8—C9—C10—C1553.1 (3)C16—C17—C22—C21179.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···N3i0.932.503.418 (3)170
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC23H14N4
Mr346.38
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)290
a, b, c (Å)7.1614 (3), 18.0957 (7), 26.4021 (9)
V3)3421.5 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.21 × 0.17
Data collection
DiffractometerOxford Xcalibur Eos (Nova) CCD detector
Absorption correctionMulti-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
Tmin, Tmax0.959, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
14977, 3164, 1490
Rint0.070
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.100, 0.81
No. of reflections3164
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.20

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2009), CrysAlis PRO RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···N3i0.932.503.418 (3)170
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

The authors thank the FIST program for data collection on the Oxford single-crystal diffractometer at SSCU, IISc, Bangalore. The authors also thank Professor T. N. Guru Row, IISc, Bangalore, for his help with the data collection. FNK thanks the DST for Fast Track Proposal funding.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKhan, F. N., Manivel, P., Prabakaran, K., Hathwar, V. R. & Ng, S. W. (2010). Acta Cryst. E66, o488.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds