supplementary materials


rk2199 scheme

Acta Cryst. (2010). E66, o1081    [ doi:10.1107/S1600536810013012 ]

4-(5-Phenyl-1,2,4-triazolo[3,4-a]isoquinolin-3-yl)benzonitrile

F. N. Khan, P. Manivel, K. Prabakaran, V. R. Hathwar and M. Akkurt

Abstract top

In the title molecule, C23H14N4, the triazoloisoquinoline ring system is nearly planar, with an r.m.s. deviation of 0.038 (2) Å and a maximum deviation of -0.030 (2) Å from the mean plane of the triazole ring C atom which is bonded to the benzene ring. The benzene and phenyl rings are twisted by 57.65 (8) and 53.60 (9)°, respectively, with respect to the mean plane of the triazoloisoquinoline ring system. In the crystal structure, molecules are linked by weak aromatic [pi]-[pi] interactions [centroid-centroid distance = 3.8074 (12) Å]. In addition, the crystal structure exhibits a nonclassical intermolecular C-H...N hydrogen bond.

Comment top

As part of our search for new isoquinoline analogues (Khan et al., 2010), we focused on synthesis of titled compounds and the crystal structure is reported.

In the title molecule, Fig. 1, the triazoloisoquinoline ring system (N1-N3/C1-C9/C16) is nearly planar, with an r.m.s. deviation of 0.038 (2)Å and a maximum deviation of -0.030 (2)Å from the mean plane for the triazole ring C16 atom which is bonded to the benzene ring (C17-C22). The benzene (C17-C22) and phenyl (C10-C15) rings are twisted by 57.65 (8)° and 53.60 (9)°, respectively, with respect to the mean plane of the triazoloisoquinoline ring system. The benzene (C17-C22) and phenyl (C10-C15) rings make a dihedral angle of 29.10 (11)° with each other.

Molecular conformation is stabilized by a weak ππ interaction [Cg4···Cg5 = 3.8229 (14)Å, where are Cg4 and Cg5 are centroids of the C10-C15 and C17-C22 rings, respectively]. In the crystal structure, the molecules are linked by weak aromatic ππ interactions [Cg1···Cg1ii = 3.8074 (12)Å, symmetry code: (ii) x-1/2, 1/2-y, -z. Cg1 is the centroid of the N1-N3/C1/C16 ring]. In addition, the crystal structure exhibits an intermolecular non-classical C–H···N hydrogen bond (Table 1, Fig. 2).

Related literature top

For a related crystal structure, see: Khan et al. (2010).

Experimental top

2-(3-Phenylisoquinolin-1-yl)hydrazine (1 mmol) was condensed with 4-formylbenzonitrile (1.1 mmol) under refluxing conditions isopropanol (10 ml) solvent to give the corresponding hydrazone in high yield. After removal of solvent the compound was then oxidatively cyclized in nitrobenzene (10 ml) at 473 K. The product was recrystallized from dichlomethane to give block-shaped crystals.

Refinement top

All H atoms were placed in calculated positions with C–H = 0.93Å and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C).

Pure diffraction experiment (ratio observed/unique reflections 47%) we explain by weak diffraction of the crystal.

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2009); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The view of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing diagram and the hydrogen bonding in the title crystal structure viewed down the [1 0 0] direction. H atoms not involved in the motif shown have been omitted for clarity.
(I) top
Crystal data top
C23H14N4F(000) = 1440
Mr = 346.38Dx = 1.345 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1235 reflections
a = 7.1614 (3) Åθ = 1.6–20.4°
b = 18.0957 (7) ŵ = 0.08 mm1
c = 26.4021 (9) ÅT = 290 K
V = 3421.5 (2) Å3Block, colourless
Z = 80.25 × 0.21 × 0.17 mm
Data collection top
Oxford Xcalibur Eos (Nova) CCD detector
diffractometer
3164 independent reflections
Radiation source: Enhance (Mo) X-ray Source1490 reflections with I > 2σ(I)
graphiteRint = 0.070
ω scansθmax = 25.5°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
h = 87
Tmin = 0.959, Tmax = 0.986k = 2121
14977 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 0.81 w = 1/[σ2(Fo2) + (0.0413P)2]
where P = (Fo2 + 2Fc2)/3
3164 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C23H14N4V = 3421.5 (2) Å3
Mr = 346.38Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.1614 (3) ŵ = 0.08 mm1
b = 18.0957 (7) ÅT = 290 K
c = 26.4021 (9) Å0.25 × 0.21 × 0.17 mm
Data collection top
Oxford Xcalibur Eos (Nova) CCD detector
diffractometer
3164 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
1490 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.986Rint = 0.070
14977 measured reflectionsθmax = 25.5°
Refinement top
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.100Δρmax = 0.15 e Å3
S = 0.81Δρmin = 0.20 e Å3
3164 reflectionsAbsolute structure: ?
244 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6627 (2)0.33099 (9)0.03366 (6)0.0370 (4)
N20.5820 (3)0.22467 (10)0.00072 (7)0.0510 (5)
N30.6063 (2)0.27481 (11)0.03950 (7)0.0495 (5)
N40.5390 (3)0.08980 (15)0.27259 (9)0.0927 (9)
C10.6539 (3)0.33812 (13)0.01851 (8)0.0395 (5)
C20.6915 (3)0.40722 (12)0.04237 (8)0.0407 (6)
C30.6888 (3)0.41638 (14)0.09495 (8)0.0490 (6)
H30.65860.37660.11570.059*
C40.7302 (3)0.48368 (15)0.11611 (9)0.0570 (7)
H40.72970.48940.15110.068*
C50.7728 (3)0.54308 (14)0.08507 (9)0.0581 (7)
H50.80020.58870.09960.070*
C60.7754 (3)0.53585 (13)0.03328 (9)0.0526 (6)
H60.80300.57640.01300.063*
C70.7364 (3)0.46741 (12)0.01110 (8)0.0416 (6)
C80.7527 (3)0.45523 (12)0.04249 (8)0.0454 (6)
H80.78530.49520.06280.054*
C90.7238 (3)0.38972 (12)0.06498 (8)0.0387 (6)
C100.7671 (3)0.37673 (11)0.11909 (8)0.0374 (5)
C110.8907 (3)0.32192 (12)0.13406 (8)0.0456 (6)
H110.94260.29030.11010.055*
C120.9365 (3)0.31454 (14)0.18466 (9)0.0562 (7)
H121.01800.27740.19480.067*
C130.8625 (4)0.36161 (15)0.22007 (9)0.0645 (8)
H130.89350.35610.25410.077*
C140.7438 (4)0.41647 (15)0.20553 (9)0.0595 (7)
H140.69600.44900.22950.071*
C150.6944 (3)0.42380 (13)0.15537 (9)0.0478 (6)
H150.61140.46080.14580.057*
C160.6137 (3)0.25837 (12)0.04252 (8)0.0406 (6)
C170.5906 (3)0.22246 (12)0.09194 (8)0.0403 (5)
C180.6918 (3)0.15870 (13)0.10218 (8)0.0480 (6)
H180.77010.13910.07750.058*
C190.6771 (3)0.12414 (12)0.14857 (9)0.0523 (6)
H190.74740.08210.15540.063*
C200.5575 (3)0.15217 (13)0.18497 (8)0.0480 (6)
C210.4514 (3)0.21414 (13)0.17476 (8)0.0524 (6)
H210.36930.23240.19900.063*
C220.4678 (3)0.24882 (13)0.12834 (8)0.0503 (6)
H220.39570.29030.12140.060*
C230.5459 (3)0.11720 (15)0.23405 (10)0.0629 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0393 (10)0.0337 (11)0.0381 (11)0.0026 (8)0.0031 (8)0.0012 (9)
N20.0631 (13)0.0439 (12)0.0459 (12)0.0068 (10)0.0062 (10)0.0041 (11)
N30.0614 (13)0.0457 (13)0.0414 (11)0.0057 (10)0.0054 (9)0.0003 (10)
N40.0964 (19)0.124 (2)0.0576 (16)0.0151 (16)0.0099 (14)0.0261 (16)
C10.0394 (14)0.0404 (15)0.0387 (13)0.0003 (11)0.0054 (10)0.0027 (12)
C20.0357 (13)0.0443 (15)0.0421 (14)0.0023 (11)0.0010 (10)0.0016 (12)
C30.0463 (15)0.0544 (17)0.0463 (15)0.0062 (13)0.0002 (11)0.0032 (13)
C40.0515 (17)0.0687 (19)0.0507 (15)0.0085 (14)0.0028 (12)0.0160 (15)
C50.0464 (16)0.0584 (19)0.0695 (19)0.0011 (13)0.0002 (13)0.0241 (15)
C60.0500 (15)0.0465 (16)0.0613 (17)0.0003 (12)0.0016 (13)0.0076 (13)
C70.0344 (14)0.0413 (15)0.0490 (14)0.0004 (11)0.0046 (11)0.0072 (12)
C80.0461 (14)0.0387 (15)0.0513 (15)0.0011 (11)0.0052 (12)0.0054 (12)
C90.0347 (14)0.0368 (15)0.0445 (13)0.0002 (10)0.0019 (11)0.0060 (11)
C100.0399 (14)0.0336 (13)0.0386 (13)0.0029 (11)0.0012 (10)0.0018 (11)
C110.0441 (14)0.0436 (15)0.0492 (15)0.0011 (12)0.0005 (11)0.0047 (12)
C120.0519 (16)0.0604 (18)0.0563 (17)0.0036 (13)0.0129 (13)0.0072 (15)
C130.075 (2)0.077 (2)0.0416 (15)0.0091 (16)0.0111 (14)0.0000 (15)
C140.0721 (18)0.0580 (18)0.0483 (16)0.0068 (15)0.0073 (14)0.0115 (14)
C150.0507 (15)0.0429 (15)0.0497 (15)0.0013 (12)0.0008 (12)0.0051 (13)
C160.0436 (14)0.0361 (14)0.0423 (13)0.0039 (11)0.0025 (11)0.0031 (12)
C170.0400 (13)0.0351 (14)0.0458 (14)0.0048 (11)0.0039 (11)0.0015 (11)
C180.0586 (15)0.0392 (15)0.0463 (15)0.0034 (13)0.0039 (12)0.0031 (12)
C190.0637 (17)0.0400 (15)0.0532 (16)0.0085 (12)0.0004 (13)0.0023 (13)
C200.0498 (15)0.0497 (16)0.0446 (14)0.0053 (13)0.0014 (12)0.0051 (13)
C210.0516 (16)0.0559 (17)0.0497 (16)0.0024 (14)0.0067 (12)0.0002 (13)
C220.0516 (16)0.0417 (15)0.0575 (16)0.0052 (12)0.0014 (13)0.0000 (13)
C230.0591 (18)0.075 (2)0.0546 (18)0.0052 (14)0.0030 (14)0.0043 (16)
Geometric parameters (Å, °) top
N1—C161.380 (2)C10—C111.387 (3)
N1—C11.385 (2)C11—C121.382 (3)
N1—C91.416 (2)C11—H110.9300
N2—C161.314 (2)C12—C131.371 (3)
N2—N31.379 (2)C12—H120.9300
N3—C11.318 (3)C13—C141.362 (3)
N4—C231.133 (3)C13—H130.9300
C1—C21.426 (3)C14—C151.377 (3)
C2—C31.398 (3)C14—H140.9300
C2—C71.404 (3)C15—H150.9300
C3—C41.372 (3)C16—C171.467 (3)
C3—H30.9300C17—C221.387 (3)
C4—C51.386 (3)C17—C181.389 (3)
C4—H40.9300C18—C191.379 (3)
C5—C61.374 (3)C18—H180.9300
C5—H50.9300C19—C201.384 (3)
C6—C71.398 (3)C19—H190.9300
C6—H60.9300C20—C211.381 (3)
C7—C81.437 (3)C20—C231.445 (3)
C8—C91.342 (3)C21—C221.382 (3)
C8—H80.9300C21—H210.9300
C9—C101.481 (3)C22—H220.9300
C10—C151.384 (3)
C16—N1—C1104.23 (17)C12—C11—H11120.1
C16—N1—C9133.97 (18)C10—C11—H11120.1
C1—N1—C9121.67 (19)C13—C12—C11120.5 (2)
C16—N2—N3108.54 (17)C13—C12—H12119.7
C1—N3—N2107.01 (17)C11—C12—H12119.7
N3—C1—N1110.4 (2)C14—C13—C12120.1 (2)
N3—C1—C2128.7 (2)C14—C13—H13119.9
N1—C1—C2120.8 (2)C12—C13—H13119.9
C3—C2—C7119.7 (2)C13—C14—C15120.1 (2)
C3—C2—C1122.7 (2)C13—C14—H14120.0
C7—C2—C1117.6 (2)C15—C14—H14120.0
C4—C3—C2120.4 (2)C14—C15—C10120.7 (2)
C4—C3—H3119.8C14—C15—H15119.7
C2—C3—H3119.8C10—C15—H15119.7
C3—C4—C5119.7 (2)N2—C16—N1109.78 (18)
C3—C4—H4120.2N2—C16—C17123.23 (19)
C5—C4—H4120.2N1—C16—C17126.94 (19)
C6—C5—C4121.2 (2)C22—C17—C18118.8 (2)
C6—C5—H5119.4C22—C17—C16122.4 (2)
C4—C5—H5119.4C18—C17—C16118.8 (2)
C5—C6—C7119.9 (2)C19—C18—C17120.6 (2)
C5—C6—H6120.0C19—C18—H18119.7
C7—C6—H6120.0C17—C18—H18119.7
C6—C7—C2119.1 (2)C18—C19—C20119.9 (2)
C6—C7—C8122.1 (2)C18—C19—H19120.1
C2—C7—C8118.6 (2)C20—C19—H19120.1
C9—C8—C7124.0 (2)C21—C20—C19120.2 (2)
C9—C8—H8118.0C21—C20—C23119.9 (2)
C7—C8—H8118.0C19—C20—C23119.9 (2)
C8—C9—N1116.90 (19)C20—C21—C22119.7 (2)
C8—C9—C10122.32 (19)C20—C21—H21120.2
N1—C9—C10120.61 (19)C22—C21—H21120.2
C15—C10—C11118.9 (2)C21—C22—C17120.8 (2)
C15—C10—C9119.4 (2)C21—C22—H22119.6
C11—C10—C9121.49 (19)C17—C22—H22119.6
C12—C11—C10119.7 (2)N4—C23—C20179.2 (3)
C16—N2—N3—C10.5 (2)N1—C9—C10—C15131.8 (2)
N2—N3—C1—N10.3 (2)C8—C9—C10—C11121.8 (2)
N2—N3—C1—C2178.9 (2)N1—C9—C10—C1153.2 (3)
C16—N1—C1—N30.9 (2)C15—C10—C11—C121.0 (3)
C9—N1—C1—N3175.46 (16)C9—C10—C11—C12176.0 (2)
C16—N1—C1—C2178.40 (18)C10—C11—C12—C130.9 (3)
C9—N1—C1—C25.2 (3)C11—C12—C13—C140.4 (4)
N3—C1—C2—C32.5 (3)C12—C13—C14—C151.4 (4)
N1—C1—C2—C3178.35 (17)C13—C14—C15—C101.3 (4)
N3—C1—C2—C7178.8 (2)C11—C10—C15—C140.0 (3)
N1—C1—C2—C70.4 (3)C9—C10—C15—C14175.0 (2)
C7—C2—C3—C40.2 (3)N3—N2—C16—N11.0 (2)
C1—C2—C3—C4178.5 (2)N3—N2—C16—C17176.63 (18)
C2—C3—C4—C50.8 (3)C1—N1—C16—N21.2 (2)
C3—C4—C5—C60.4 (3)C9—N1—C16—N2174.51 (19)
C4—C5—C6—C70.7 (3)C1—N1—C16—C17176.38 (19)
C5—C6—C7—C21.2 (3)C9—N1—C16—C177.9 (4)
C5—C6—C7—C8174.57 (19)N2—C16—C17—C22120.5 (2)
C3—C2—C7—C60.8 (3)N1—C16—C17—C2256.7 (3)
C1—C2—C7—C6179.55 (19)N2—C16—C17—C1857.8 (3)
C3—C2—C7—C8175.16 (18)N1—C16—C17—C18125.0 (2)
C1—C2—C7—C83.6 (3)C22—C17—C18—C193.0 (3)
C6—C7—C8—C9177.2 (2)C16—C17—C18—C19178.6 (2)
C2—C7—C8—C91.5 (3)C17—C18—C19—C201.4 (3)
C7—C8—C9—N13.9 (3)C18—C19—C20—C210.7 (3)
C7—C8—C9—C10171.32 (18)C18—C19—C20—C23178.3 (2)
C16—N1—C9—C8177.6 (2)C19—C20—C21—C221.2 (3)
C1—N1—C9—C87.3 (3)C23—C20—C21—C22177.8 (2)
C16—N1—C9—C107.0 (3)C20—C21—C22—C170.4 (3)
C1—N1—C9—C10168.06 (17)C18—C17—C22—C212.5 (3)
C8—C9—C10—C1553.1 (3)C16—C17—C22—C21179.2 (2)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
C11—H11···N3i0.932.503.418 (3)170
Symmetry codes: (i) x+1/2, −y+1/2, −z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
C11—H11···N3i0.932.503.418 (3)170
Symmetry codes: (i) x+1/2, −y+1/2, −z.
Acknowledgements top

The authors thank the FIST program for data collection on the Oxford single-crystal diffractometer at SSCU, IISc, Bangalore. The authors thank Professor T. N. Guru Row, IISc, Bangalore, for his help with the data collection. FNK thanks the DST for Fast Track Proposal funding.

references
References top

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Khan, F. N., Manivel, P., Prabakaran, K., Hathwar, V. R. & Ng, S. W. (2010). Acta Cryst. E66, o488.

Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.