organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Methyl-2-[(E)-2-(2-thien­yl)ethen­yl]quinolinium 4-bromo­benzene­sulfonate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 24 February 2010; accepted 26 February 2010; online 10 April 2010)

In the title compound, C16H14NS+·C6H4BrO3S, the cation exists in an E configuration and is essentially planar, the dihedral angle between the quinolinium and thio­phene rings being 3.45 (9)°. The anion is inclined to the cation with dihedral angles of 75.43 (8) and 72.03 (11)°, respectively between the benzene ring and the quinolinium and thio­phene rings. In the crystal, the cations and anions are arranged individually into separate chains along the c axis. The cation chains are stacked in an anti­parallel manner along the a axis by ππ inter­actions with centroid–centroid distances of 3.7257 (13) and 3.7262 (14) Å. Weak C—H⋯O and C—H⋯π inter­actions link the cations and anions into a three-dimensional network. Short Br⋯S [3.7224 (5) Å] and Br⋯O [3.4267 (16) Å] contacts are also observed.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to non-linear optical materials research, see: Chantrapromma et al. (2009a[Chantrapromma, S., Chanawanno, K. & Fun, H.-K. (2009a). Acta Cryst. E65, o1144-o1145.],b[Chantrapromma, S., Chanawanno, K. & Fun, H.-K. (2009b). Acta Cryst. E65, o3115-o3116.]), Fun et al. (2009[Fun, H.-K., Surasit, C., Chanawanno, K. & Chantrapromma, S. (2009). Acta Cryst. E65, o2633-o2634.]); Raimundo et al. (2002[Raimundo, J.-M., Blanchard, P., Planas, N. G., Mercier, N., Rak, I. L., Hierle, R. & Roncali, J. (2002). J. Org. Chem. 67, 205-218.]). For related structures, see: Chantrapromma et al. (2006[Chantrapromma, S., Ruanwas, P., Fun, H.-K. & Patil, P. S. (2006). Acta Cryst. E62, o5494-o5496.]); Ruanwas et al. (2008[Ruanwas, P., Kobkeatthawin, T., Chantrapromma, S., Fun, H.-K. & Karalai, C. (2008). Acta Cryst. E64, o1453-o1454.]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14NS+·C6H4BrO3S

  • Mr = 488.41

  • Monoclinic, P 21 /c

  • a = 7.9026 (1) Å

  • b = 18.8211 (2) Å

  • c = 13.4816 (1) Å

  • β = 93.292 (1)°

  • V = 2001.89 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.29 mm−1

  • T = 100 K

  • 0.34 × 0.32 × 0.24 mm

Data collection
  • Bruker APEXII CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.511, Tmax = 0.612

  • 51446 measured reflections

  • 5827 independent reflections

  • 5163 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.089

  • S = 1.12

  • 5827 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 1.18 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C17–C22 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O3i 0.93 2.51 3.409 (3) 162
C7—H7A⋯O1ii 0.93 2.47 3.241 (3) 140
C8—H8A⋯O2iii 0.93 2.29 3.218 (3) 175
C10—H10A⋯S1 0.93 2.77 3.185 (2) 108
C11—H11A⋯O2iii 0.93 2.31 3.238 (3) 176
C15—H15A⋯O3iv 0.93 2.40 3.265 (3) 154
C16—H16B⋯O1v 0.96 2.43 3.321 (3) 155
C17—H17A⋯O1 0.93 2.54 2.915 (3) 105
C20—H20A⋯O1vi 0.93 2.32 3.242 (3) 172
C13—H13ACg4iii 0.93 2.57 3.434 (2) 155
Symmetry codes: (i) x, y, z+1; (ii) -x+1, -y, -z+1; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x-1, y, z; (v) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) x+1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

During the course of our NLO (non-linear optical) materials research, we have previously reported the crystal structures of the NLO-active compounds (Chantrapromma et al., 2009a, b; Fun et al., 2009). With the knowledge that the organic dipolar compounds with extended π systems and having terminal donor and acceptor groups are likely to exhibit large hyperpolarizability (β) (Raimundo et al., 2002), the title compound (I) was designed and synthesized in order to study its NLO properties. Unfortunately (I) crystallizes out in a centrosymmetric P21/c space group which precluded the second-order nonlinear optical properties.

The asymmetric unit of the title compound (Fig. 1) consists of the C16H14NS+ cation and C6H4BrO3S- anion. The cation exists in the E configuration with respect to the C10C11 double bond [1.348 (3) Å] and is essentially planar with the dihedral angle between the quinolinium and the thiophene rings being 3.45 (9)° and the torsion angles C9–C10–C11–C12 = -179.8 (2)°. The ten non-H atoms of quinolinium unit lie on the same plane with an r.m.s. deviation of 0.0184 (2) Å. The relative arrangement of cation and anion is shown by the angles between the mean plane of the 4-bromophenyl ring and those of the quinolinium and thiophene rings which are 75.43 (8)° and 72.03 (11)°, respectively. The bond lengths are normal (Allen et al., 1987) and are comparable with those in related structures (Chantrapromma et al., 2006; Ruanwas et al., 2008).

In the crystal, all O atoms of sulfonate group are involved in weak C—H···O interactions (Table 1). The cations and anions are arranged individually into chains along the c axis (Fig. 2) . The cation chains are stacked in an antiparallel manner along the a axis by ππ interactions with Cg1···Cg2 = 3.7257 (13) Å (symmetry code: -x,-y, 1-z) and Cg1···Cg3 = 3.7262 (14) Å (symmetry code: 1-x, -y, 1-z); Cg1, Cg2 and Cg3 are the centroids of the S1/C12–C15, N1/C1/C6–C9 and C1–C6 rings, respectively. Weak C—H···O and C—H···π interactions (Table 1) link the cations and anions into a three-dimensional network; Cg4 is the centroid of the C17–C22 benzene ring. Short Br···S [3.7224 (5) Å] and Br···O [3.4267 (16) Å] contacts (symmetry code for both: 1+x, 1/2-y, 1/2+z) are also observed.

Related literature top

For bond-length data, see: Allen et al. (1987). For background to non-linear optical materials research, see: Chantrapromma et al. (2009a,b), Fun et al. (2009); Raimundo et al. (2002). For related structures, see: Chantrapromma et al. (2006); Ruanwas et al. (2008). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986).

Experimental top

2-(2-Thiophenestyryl)-1-methylquinolinium iodide (compound A) was synthesized by mixing a solution (1:1:1 molar ratio) of 1,2-dimethylquinolinium iodide (2.00 g, 7.0 mmol), 2-thiophenecarboxaldehyde (0.64 ml, 7.0 mmol) and piperidine (0.69 ml, 7.0 mmol) in hot methanol (40 ml). The resulting solution was refluxed for 5 h under nitrogen atmosphere. The resultant solid was filtered off and washed with diethyl ether. Silver(I)4-bromobenzenesulfonate (compound B) was synthesized according to our previously reported procedure. (Chantrapromma et al., 2006). The title compound was synthesized by mixing compound A (0.10 g, 0.26 mmol) in hot methanol (50 ml) and compound B (0.09 g, 0.26 mmol) in hot methanol (20 ml). The mixture immediately yielded a grey precipitate of silver iodide. After stirring the mixture for ca. 45 min, the precipitate was removed and the resulting solution was evaporated yielding a brown solid. Brown block-shaped single crystals of the title compound suitable for x-ray diffraction analysis were recrystallized from methanol solvent by slow evaporation at room temperature over a few weeks. (Mp. 538–539 K).

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C-H) = 0.93 Å for aromatic and CH and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.75 Å from Br1 and the deepest hole is located at 0.55 Å from S1.

Structure description top

During the course of our NLO (non-linear optical) materials research, we have previously reported the crystal structures of the NLO-active compounds (Chantrapromma et al., 2009a, b; Fun et al., 2009). With the knowledge that the organic dipolar compounds with extended π systems and having terminal donor and acceptor groups are likely to exhibit large hyperpolarizability (β) (Raimundo et al., 2002), the title compound (I) was designed and synthesized in order to study its NLO properties. Unfortunately (I) crystallizes out in a centrosymmetric P21/c space group which precluded the second-order nonlinear optical properties.

The asymmetric unit of the title compound (Fig. 1) consists of the C16H14NS+ cation and C6H4BrO3S- anion. The cation exists in the E configuration with respect to the C10C11 double bond [1.348 (3) Å] and is essentially planar with the dihedral angle between the quinolinium and the thiophene rings being 3.45 (9)° and the torsion angles C9–C10–C11–C12 = -179.8 (2)°. The ten non-H atoms of quinolinium unit lie on the same plane with an r.m.s. deviation of 0.0184 (2) Å. The relative arrangement of cation and anion is shown by the angles between the mean plane of the 4-bromophenyl ring and those of the quinolinium and thiophene rings which are 75.43 (8)° and 72.03 (11)°, respectively. The bond lengths are normal (Allen et al., 1987) and are comparable with those in related structures (Chantrapromma et al., 2006; Ruanwas et al., 2008).

In the crystal, all O atoms of sulfonate group are involved in weak C—H···O interactions (Table 1). The cations and anions are arranged individually into chains along the c axis (Fig. 2) . The cation chains are stacked in an antiparallel manner along the a axis by ππ interactions with Cg1···Cg2 = 3.7257 (13) Å (symmetry code: -x,-y, 1-z) and Cg1···Cg3 = 3.7262 (14) Å (symmetry code: 1-x, -y, 1-z); Cg1, Cg2 and Cg3 are the centroids of the S1/C12–C15, N1/C1/C6–C9 and C1–C6 rings, respectively. Weak C—H···O and C—H···π interactions (Table 1) link the cations and anions into a three-dimensional network; Cg4 is the centroid of the C17–C22 benzene ring. Short Br···S [3.7224 (5) Å] and Br···O [3.4267 (16) Å] contacts (symmetry code for both: 1+x, 1/2-y, 1/2+z) are also observed.

For bond-length data, see: Allen et al. (1987). For background to non-linear optical materials research, see: Chantrapromma et al. (2009a,b), Fun et al. (2009); Raimundo et al. (2002). For related structures, see: Chantrapromma et al. (2006); Ruanwas et al. (2008). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the a axis. Hydrogen bonds and weak C—H···O interactions are shown as dashed lines.
1-Methyl-2-[(E)-2-(2-thienyl)ethenyl]quinolinium 4-bromobenzenesulfonate top
Crystal data top
C16H14NS+·C6H4BrO3SF(000) = 992
Mr = 488.41Dx = 1.620 Mg m3
Monoclinic, P21/cMelting point = 538–539 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.9026 (1) ÅCell parameters from 5827 reflections
b = 18.8211 (2) Åθ = 2.2–30.0°
c = 13.4816 (1) ŵ = 2.29 mm1
β = 93.292 (1)°T = 100 K
V = 2001.89 (4) Å3Block, brown
Z = 40.34 × 0.32 × 0.24 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
5827 independent reflections
Radiation source: sealed tube5163 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 30.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1111
Tmin = 0.511, Tmax = 0.612k = 2626
51446 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0325P)2 + 3.2344P]
where P = (Fo2 + 2Fc2)/3
5827 reflections(Δ/σ)max = 0.001
263 parametersΔρmax = 1.18 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C16H14NS+·C6H4BrO3SV = 2001.89 (4) Å3
Mr = 488.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.9026 (1) ŵ = 2.29 mm1
b = 18.8211 (2) ÅT = 100 K
c = 13.4816 (1) Å0.34 × 0.32 × 0.24 mm
β = 93.292 (1)°
Data collection top
Bruker APEXII CCD area detector
diffractometer
5827 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5163 reflections with I > 2σ(I)
Tmin = 0.511, Tmax = 0.612Rint = 0.030
51446 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.12Δρmax = 1.18 e Å3
5827 reflectionsΔρmin = 0.46 e Å3
263 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.00270 (7)0.06224 (3)0.28565 (4)0.02261 (11)
N10.3667 (2)0.04462 (9)0.63104 (13)0.0179 (3)
C10.4567 (3)0.03115 (11)0.72171 (15)0.0178 (4)
C20.4926 (3)0.08556 (12)0.79170 (16)0.0219 (4)
H2A0.45840.13200.77800.026*
C30.5783 (3)0.06935 (13)0.87999 (17)0.0246 (4)
H3A0.60200.10530.92600.030*
C40.6314 (3)0.00053 (14)0.90275 (17)0.0257 (5)
H4A0.68960.01040.96310.031*
C50.5967 (3)0.05415 (12)0.83528 (16)0.0220 (4)
H5A0.63080.10040.85010.026*
C60.5094 (3)0.03885 (11)0.74348 (15)0.0185 (4)
C70.4708 (3)0.09311 (11)0.67292 (16)0.0198 (4)
H7A0.50810.13930.68560.024*
C80.3799 (3)0.07819 (11)0.58700 (16)0.0204 (4)
H8A0.35420.11430.54150.025*
C90.3237 (3)0.00778 (11)0.56601 (15)0.0179 (4)
C100.2217 (3)0.00785 (12)0.47635 (16)0.0217 (4)
H10A0.17870.05370.46920.026*
C110.1837 (3)0.03853 (11)0.40215 (16)0.0197 (4)
H11A0.22590.08450.40890.024*
C120.0821 (3)0.02164 (11)0.31320 (16)0.0197 (4)
C130.0397 (3)0.06890 (11)0.23773 (17)0.0210 (4)
H13A0.07090.11660.23870.025*
C140.0574 (3)0.03622 (13)0.15811 (18)0.0261 (5)
H14A0.09650.06030.10100.031*
C150.0870 (3)0.03424 (13)0.17442 (18)0.0258 (5)
H15A0.14890.06350.13010.031*
C160.3192 (3)0.11898 (12)0.60670 (18)0.0254 (5)
H16A0.31700.12560.53600.038*
H16B0.40090.15070.63830.038*
H16C0.20910.12880.63000.038*
Br11.28408 (3)0.278131 (13)0.464999 (17)0.02491 (7)
S20.66919 (6)0.23502 (2)0.13641 (3)0.01276 (9)
O10.51250 (19)0.23380 (8)0.18823 (12)0.0197 (3)
O20.6865 (2)0.29873 (8)0.07625 (11)0.0202 (3)
O30.7004 (2)0.16993 (8)0.08184 (11)0.0211 (3)
C170.8027 (3)0.25412 (11)0.32873 (15)0.0177 (4)
H17A0.69130.25600.34740.021*
C180.9364 (3)0.26436 (12)0.39958 (15)0.0203 (4)
H18A0.91530.27310.46560.024*
C191.1011 (3)0.26130 (11)0.36972 (15)0.0174 (4)
C201.1376 (3)0.24670 (11)0.27242 (16)0.0173 (4)
H20A1.24920.24360.25440.021*
C211.0033 (3)0.23684 (10)0.20250 (15)0.0161 (4)
H21A1.02510.22740.13670.019*
C220.8362 (2)0.24106 (10)0.23020 (14)0.0141 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0243 (3)0.0173 (2)0.0262 (3)0.00428 (19)0.0006 (2)0.00228 (19)
N10.0176 (8)0.0160 (8)0.0201 (8)0.0014 (6)0.0019 (6)0.0001 (6)
C10.0151 (9)0.0204 (9)0.0182 (9)0.0018 (7)0.0033 (7)0.0004 (7)
C20.0207 (10)0.0209 (10)0.0243 (10)0.0012 (8)0.0026 (8)0.0038 (8)
C30.0239 (11)0.0281 (11)0.0220 (10)0.0047 (9)0.0020 (8)0.0083 (8)
C40.0229 (11)0.0358 (12)0.0183 (10)0.0039 (9)0.0000 (8)0.0013 (9)
C50.0206 (10)0.0230 (10)0.0226 (10)0.0011 (8)0.0026 (8)0.0053 (8)
C60.0170 (9)0.0211 (10)0.0177 (9)0.0025 (7)0.0035 (7)0.0001 (7)
C70.0218 (10)0.0154 (9)0.0222 (10)0.0007 (7)0.0026 (8)0.0016 (7)
C80.0235 (10)0.0160 (9)0.0217 (10)0.0026 (8)0.0013 (8)0.0030 (7)
C90.0176 (9)0.0173 (9)0.0189 (9)0.0023 (7)0.0027 (7)0.0001 (7)
C100.0237 (10)0.0192 (9)0.0221 (10)0.0007 (8)0.0007 (8)0.0001 (8)
C110.0191 (10)0.0179 (9)0.0222 (10)0.0000 (7)0.0021 (8)0.0020 (7)
C120.0178 (9)0.0180 (9)0.0232 (10)0.0002 (7)0.0002 (8)0.0040 (8)
C130.0195 (10)0.0158 (9)0.0279 (11)0.0001 (7)0.0024 (8)0.0010 (8)
C140.0260 (11)0.0250 (11)0.0266 (11)0.0017 (9)0.0039 (9)0.0001 (9)
C150.0219 (10)0.0273 (11)0.0274 (11)0.0046 (9)0.0056 (8)0.0065 (9)
C160.0293 (11)0.0152 (9)0.0310 (11)0.0001 (8)0.0046 (9)0.0004 (8)
Br10.02009 (11)0.03105 (12)0.02239 (11)0.00586 (8)0.00934 (8)0.00605 (8)
S20.0121 (2)0.0129 (2)0.01296 (19)0.00040 (15)0.00194 (15)0.00143 (15)
O10.0130 (7)0.0228 (7)0.0230 (7)0.0007 (5)0.0006 (5)0.0033 (6)
O20.0221 (7)0.0189 (7)0.0193 (7)0.0012 (6)0.0031 (6)0.0072 (6)
O30.0228 (7)0.0187 (7)0.0211 (7)0.0018 (6)0.0048 (6)0.0048 (6)
C170.0147 (9)0.0231 (10)0.0156 (9)0.0020 (7)0.0022 (7)0.0008 (7)
C180.0206 (10)0.0269 (10)0.0132 (8)0.0032 (8)0.0004 (7)0.0011 (7)
C190.0141 (9)0.0196 (9)0.0178 (9)0.0032 (7)0.0058 (7)0.0041 (7)
C200.0118 (8)0.0178 (9)0.0221 (9)0.0002 (7)0.0001 (7)0.0030 (7)
C210.0153 (9)0.0168 (9)0.0164 (8)0.0001 (7)0.0016 (7)0.0003 (7)
C220.0138 (8)0.0123 (8)0.0160 (8)0.0005 (6)0.0014 (7)0.0008 (6)
Geometric parameters (Å, º) top
S1—C151.705 (2)C12—C131.378 (3)
S1—C121.731 (2)C13—C141.423 (3)
N1—C91.350 (3)C13—H13A0.9300
N1—C11.402 (3)C14—C151.367 (3)
N1—C161.481 (3)C14—H14A0.9300
C1—C61.407 (3)C15—H15A0.9300
C1—C21.410 (3)C16—H16A0.9600
C2—C31.370 (3)C16—H16B0.9600
C2—H2A0.9300C16—H16C0.9600
C3—C41.409 (4)Br1—C191.9050 (19)
C3—H3A0.9300S2—O11.4565 (16)
C4—C51.376 (3)S2—O31.4572 (15)
C4—H4A0.9300S2—O21.4585 (15)
C5—C61.412 (3)S2—C221.778 (2)
C5—H5A0.9300C17—C221.391 (3)
C6—C71.417 (3)C17—C181.396 (3)
C7—C81.357 (3)C17—H17A0.9300
C7—H7A0.9300C18—C191.385 (3)
C8—C91.421 (3)C18—H18A0.9300
C8—H8A0.9300C19—C201.387 (3)
C9—C101.444 (3)C20—C211.391 (3)
C10—C111.348 (3)C20—H20A0.9300
C10—H10A0.9300C21—C221.395 (3)
C11—C121.440 (3)C21—H21A0.9300
C11—H11A0.9300
C15—S1—C1291.95 (11)C12—C13—C14112.1 (2)
C9—N1—C1122.04 (18)C12—C13—H13A124.0
C9—N1—C16119.69 (18)C14—C13—H13A124.0
C1—N1—C16118.27 (18)C15—C14—C13112.8 (2)
N1—C1—C6118.71 (18)C15—C14—H14A123.6
N1—C1—C2121.65 (19)C13—C14—H14A123.6
C6—C1—C2119.6 (2)C14—C15—S1112.02 (17)
C3—C2—C1119.4 (2)C14—C15—H15A124.0
C3—C2—H2A120.3S1—C15—H15A124.0
C1—C2—H2A120.3N1—C16—H16A109.5
C2—C3—C4121.6 (2)N1—C16—H16B109.5
C2—C3—H3A119.2H16A—C16—H16B109.5
C4—C3—H3A119.2N1—C16—H16C109.5
C5—C4—C3119.7 (2)H16A—C16—H16C109.5
C5—C4—H4A120.2H16B—C16—H16C109.5
C3—C4—H4A120.2O1—S2—O3113.71 (9)
C4—C5—C6119.9 (2)O1—S2—O2112.89 (9)
C4—C5—H5A120.0O3—S2—O2112.74 (9)
C6—C5—H5A120.0O1—S2—C22106.05 (9)
C1—C6—C5119.8 (2)O3—S2—C22105.82 (9)
C1—C6—C7119.02 (19)O2—S2—C22104.69 (9)
C5—C6—C7121.1 (2)C22—C17—C18119.99 (19)
C8—C7—C6120.5 (2)C22—C17—H17A120.0
C8—C7—H7A119.8C18—C17—H17A120.0
C6—C7—H7A119.8C19—C18—C17118.81 (19)
C7—C8—C9120.48 (19)C19—C18—H18A120.6
C7—C8—H8A119.8C17—C18—H18A120.6
C9—C8—H8A119.8C18—C19—C20122.23 (18)
N1—C9—C8119.19 (19)C18—C19—Br1119.13 (16)
N1—C9—C10120.16 (19)C20—C19—Br1118.64 (15)
C8—C9—C10120.65 (19)C19—C20—C21118.37 (18)
C11—C10—C9125.4 (2)C19—C20—H20A120.8
C11—C10—H10A117.3C21—C20—H20A120.8
C9—C10—H10A117.3C20—C21—C22120.55 (18)
C10—C11—C12124.4 (2)C20—C21—H21A119.7
C10—C11—H11A117.8C22—C21—H21A119.7
C12—C11—H11A117.8C17—C22—C21120.02 (18)
C13—C12—C11124.9 (2)C17—C22—S2121.09 (15)
C13—C12—S1111.13 (16)C21—C22—S2118.77 (15)
C11—C12—S1123.91 (17)
C9—N1—C1—C62.6 (3)C9—C10—C11—C12179.8 (2)
C16—N1—C1—C6177.04 (19)C10—C11—C12—C13178.7 (2)
C9—N1—C1—C2176.27 (19)C10—C11—C12—S13.4 (3)
C16—N1—C1—C24.1 (3)C15—S1—C12—C130.22 (18)
N1—C1—C2—C3178.8 (2)C15—S1—C12—C11178.3 (2)
C6—C1—C2—C30.0 (3)C11—C12—C13—C14178.2 (2)
C1—C2—C3—C40.1 (3)S1—C12—C13—C140.1 (2)
C2—C3—C4—C50.1 (4)C12—C13—C14—C150.2 (3)
C3—C4—C5—C60.5 (3)C13—C14—C15—S10.3 (3)
N1—C1—C6—C5178.50 (18)C12—S1—C15—C140.3 (2)
C2—C1—C6—C50.4 (3)C22—C17—C18—C190.1 (3)
N1—C1—C6—C70.4 (3)C17—C18—C19—C201.6 (3)
C2—C1—C6—C7179.31 (19)C17—C18—C19—Br1178.06 (16)
C4—C5—C6—C10.6 (3)C18—C19—C20—C211.8 (3)
C4—C5—C6—C7179.5 (2)Br1—C19—C20—C21177.86 (15)
C1—C6—C7—C82.0 (3)C19—C20—C21—C220.5 (3)
C5—C6—C7—C8176.9 (2)C18—C17—C22—C211.2 (3)
C6—C7—C8—C90.7 (3)C18—C17—C22—S2174.80 (16)
C1—N1—C9—C83.9 (3)C20—C21—C22—C171.0 (3)
C16—N1—C9—C8175.7 (2)C20—C21—C22—S2175.11 (15)
C1—N1—C9—C10176.08 (19)O1—S2—C22—C179.57 (19)
C16—N1—C9—C104.3 (3)O3—S2—C22—C17130.66 (17)
C7—C8—C9—N12.2 (3)O2—S2—C22—C17110.03 (17)
C7—C8—C9—C10177.8 (2)O1—S2—C22—C21174.37 (15)
N1—C9—C10—C11173.8 (2)O3—S2—C22—C2153.28 (18)
C8—C9—C10—C116.2 (3)O2—S2—C22—C2166.04 (17)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C17–C22 benzene ring.
D—H···AD—HH···AD···AD—H···A
C3—H3A···O3i0.932.513.409 (3)162
C7—H7A···O1ii0.932.473.241 (3)140
C8—H8A···O2iii0.932.293.218 (3)175
C10—H10A···S10.932.773.185 (2)108
C11—H11A···O2iii0.932.313.238 (3)176
C15—H15A···O3iv0.932.403.265 (3)154
C16—H16B···O1v0.962.433.321 (3)155
C17—H17A···O10.932.542.915 (3)105
C20—H20A···O1vi0.932.323.242 (3)172
C13—H13A···Cg4iii0.932.573.434 (2)155
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x+1, y1/2, z+1/2; (iv) x1, y, z; (v) x, y+1/2, z+1/2; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H14NS+·C6H4BrO3S
Mr488.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.9026 (1), 18.8211 (2), 13.4816 (1)
β (°) 93.292 (1)
V3)2001.89 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.29
Crystal size (mm)0.34 × 0.32 × 0.24
Data collection
DiffractometerBruker APEXII CCD area detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.511, 0.612
No. of measured, independent and
observed [I > 2σ(I)] reflections
51446, 5827, 5163
Rint0.030
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.089, 1.12
No. of reflections5827
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.18, 0.46

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C17–C22 benzene ring.
D—H···AD—HH···AD···AD—H···A
C3—H3A···O3i0.932.513.409 (3)162
C7—H7A···O1ii0.932.473.241 (3)140
C8—H8A···O2iii0.932.293.218 (3)175
C10—H10A···S10.932.773.185 (2)108
C11—H11A···O2iii0.932.313.238 (3)176
C15—H15A···O3iv0.932.403.265 (3)154
C16—H16B···O1v0.962.433.321 (3)155
C17—H17A···O10.932.542.915 (3)105
C20—H20A···O1vi0.932.323.242 (3)172
C13—H13A···Cg4iii0.932.573.434 (2)155
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x+1, y1/2, z+1/2; (iv) x1, y, z; (v) x, y+1/2, z+1/2; (vi) x+1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

The authors thank the Prince of Songkla University for a research grant and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Chanawanno, K. & Fun, H.-K. (2009a). Acta Cryst. E65, o1144–o1145.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Chanawanno, K. & Fun, H.-K. (2009b). Acta Cryst. E65, o3115–o3116.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Ruanwas, P., Fun, H.-K. & Patil, P. S. (2006). Acta Cryst. E62, o5494–o5496.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Surasit, C., Chanawanno, K. & Chantrapromma, S. (2009). Acta Cryst. E65, o2633–o2634.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRaimundo, J.-M., Blanchard, P., Planas, N. G., Mercier, N., Rak, I. L., Hierle, R. & Roncali, J. (2002). J. Org. Chem. 67, 205–218.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRuanwas, P., Kobkeatthawin, T., Chantrapromma, S., Fun, H.-K. & Karalai, C. (2008). Acta Cryst. E64, o1453–o1454.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds