organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-(5,5,7,12,12,14-Hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane-1,8-diyl)di­propano­nitrile methanol disolvate

aCollege of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, People's Republic of China, and bDepartment of Chemistry and Chemical Engineering, Henan University of Urban Construction, Pingdingshan 467044, People's Republic of China
*Correspondence e-mail: haochengjun2008@163.com

(Received 25 March 2010; accepted 8 April 2010; online 17 April 2010)

The asymmetric unit of the title compound, C22H42N6·2CH4O, comprises one half of a 14-membered tetra­azacyclo­tetra­decane macrocycle with cyano­ethyl substituents on one of the N atoms and a methanol solvent mol­ecule. The macrocycle lies about an inversion centre. The cyano­ethyl substituents are oriented so that the cyano groups lie over opposite faces of the central cavity of the macrocycle. The methanol solvate mol­ecules lie away from the cavity of the macrocycle and are linked to the macrocycles via O—H⋯N hydrogen bonds.

Related literature

For background to macrocycles with pendant coordinating groups, see: Madeyski et al. (1984[Madeyski, C. M., Michael, J. P. & Hancock, R. D. (1984). Inorg. Chem. 23, 1487-1489.]); Hay et al. (1987[Hay, R. W., Pujari, M. P., Moodie, W. T., Craig, S., Richens, D. T., Perotti, A. & Ungaretti, L. (1987). J. Chem. Soc. Dalton Trans. pp. 2605-2613.]); Melson (1979[Melson, G. (1979). In Coordination Chemistry of Macrocyclic Compounds. New York: Plenum.]). For a related structure, see: Roy et al. (2001[Roy, T. G., Hazari, S. K. S., Dey, B. K., Miah, H. A. & Tiekink, E. R. T. (2001). Acta Cryst. E57, o524-o525.]).

[Scheme 1]

Experimental

Crystal data
  • C22H42N6·2CH4O

  • Mr = 454.70

  • Monoclinic, P 21 /n

  • a = 11.8705 (16) Å

  • b = 8.4448 (11) Å

  • c = 13.4942 (18) Å

  • β = 94.097 (2)°

  • V = 1349.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 173 K

  • 0.34 × 0.30 × 0.27 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.976, Tmax = 0.981

  • 10793 measured reflections

  • 2940 independent reflections

  • 2562 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.113

  • S = 1.05

  • 2940 reflections

  • 154 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.84 2.02 2.8343 (12) 162
Symmetry code: (i) x, y+1, z.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In past decades, macrocycles with pendant coordinating groups (Madeyski et al., 1984; Hay et al., 1987) have attracted a great deal of attention and have been studied extensively (Melson, 1979) due to the fact that their structures and properties differ markedly from those of the unsubstituted parent molecules. Recently, we have synthesized the title complex, 1,8-bis(2-Cyanoethyl)-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetra- azacyclotetradecane and its structure is reported here.

The title compound, C22H42N6.2CH3OH, Fig. 1, comprises a centrosymmetric 14-membered tetra-azacyclotetradecane macrocycle with C9···C11, N3 cyanoethyl substituents on the N2 atoms and two methanol solvate molecules. These substituents are both oriented so the cyano groups lie over opposite faces of the central cavity of the macrocycle. This contrasts sharply with the situation in the structure of trans-(3S,5S,10R,12R)-1,8- bis(2-cyanoethyl)-C-meso-3,5,7,7,10,12,14,14-octamethyl-1,4,8,11-tetraaza- cyclotetradecane (Roy et al., 2001), in which the cyanoethyl arms are directed away from the central cavity of the macrocycle. The methanol solvate molecules lie away from the cavity of the macrocycle and are linked to the macrocycles via O1—H1···N1 hydrogen bonds.

Related literature top

For background to macrocycles with pendant coordinating groups, see: Madeyski et al. (1984); Hay et al. (1987); Melson (1979). For a related structure, see: Roy et al. (2001).

Experimental top

An acrylonitrile solution of C-meso-5,5,7,12,12,14-hexamethyl- 1,4,8,11-tetraazacyclotetradecane was heated to reflux for 6 h-10 h, The reaction mixture was cooled to room temperature and colorless crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

Refinement top

The H atom bound to N1 was located in a difference Fourier map and its coordinates and isotropic temperature factor was refined. Carbon and O bound H atoms were placed at calculated positions and were treated as riding on the parent C or O atoms with C—H = 0.98 – 1.00 Å, O—H = 0.84 Å, and with Uiso(H) = 1.2 - 1.5 Ueq(C, O).

Structure description top

In past decades, macrocycles with pendant coordinating groups (Madeyski et al., 1984; Hay et al., 1987) have attracted a great deal of attention and have been studied extensively (Melson, 1979) due to the fact that their structures and properties differ markedly from those of the unsubstituted parent molecules. Recently, we have synthesized the title complex, 1,8-bis(2-Cyanoethyl)-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetra- azacyclotetradecane and its structure is reported here.

The title compound, C22H42N6.2CH3OH, Fig. 1, comprises a centrosymmetric 14-membered tetra-azacyclotetradecane macrocycle with C9···C11, N3 cyanoethyl substituents on the N2 atoms and two methanol solvate molecules. These substituents are both oriented so the cyano groups lie over opposite faces of the central cavity of the macrocycle. This contrasts sharply with the situation in the structure of trans-(3S,5S,10R,12R)-1,8- bis(2-cyanoethyl)-C-meso-3,5,7,7,10,12,14,14-octamethyl-1,4,8,11-tetraaza- cyclotetradecane (Roy et al., 2001), in which the cyanoethyl arms are directed away from the central cavity of the macrocycle. The methanol solvate molecules lie away from the cavity of the macrocycle and are linked to the macrocycles via O1—H1···N1 hydrogen bonds.

For background to macrocycles with pendant coordinating groups, see: Madeyski et al. (1984); Hay et al. (1987); Melson (1979). For a related structure, see: Roy et al. (2001).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atom-numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids (H atoms are omitted for clarity). [Symmetry code: (i) 1-x, -y, 2-z.]
3,3'-(5,5,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane- 1,8-diyl)dipropanonitrile methanol disolvate top
Crystal data top
C22H42N6·2CH4OF(000) = 504
Mr = 454.70Dx = 1.119 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7044 reflections
a = 11.8705 (16) Åθ = 2.2–27.0°
b = 8.4448 (11) ŵ = 0.07 mm1
c = 13.4942 (18) ÅT = 173 K
β = 94.097 (2)°Block, colourless
V = 1349.3 (3) Å30.34 × 0.30 × 0.27 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2940 independent reflections
Radiation source: fine-focus sealed tube2562 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
φ and ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1515
Tmin = 0.976, Tmax = 0.981k = 1010
10793 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0618P)2 + 0.3251P]
where P = (Fo2 + 2Fc2)/3
2940 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.33 e Å3
1 restraintΔρmin = 0.16 e Å3
Crystal data top
C22H42N6·2CH4OV = 1349.3 (3) Å3
Mr = 454.70Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.8705 (16) ŵ = 0.07 mm1
b = 8.4448 (11) ÅT = 173 K
c = 13.4942 (18) Å0.34 × 0.30 × 0.27 mm
β = 94.097 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2940 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2562 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.981Rint = 0.019
10793 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0381 restraint
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.33 e Å3
2940 reflectionsΔρmin = 0.16 e Å3
154 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.37856 (9)0.07773 (12)0.85259 (8)0.0257 (2)
H1A0.34280.15920.80790.031*
H1B0.40730.13030.91490.031*
C20.56583 (9)0.10757 (12)0.77704 (7)0.0245 (2)
C30.64934 (10)0.00010 (15)0.72852 (9)0.0338 (3)
H3A0.67630.08210.77580.051*
H3B0.71350.06280.70900.051*
H3C0.61180.05010.66950.051*
C40.51883 (10)0.22792 (14)0.69961 (8)0.0314 (3)
H4A0.47560.17220.64570.047*
H4B0.58150.28550.67260.047*
H4C0.46940.30290.73100.047*
C50.62179 (8)0.20068 (12)0.86592 (7)0.0239 (2)
H5A0.67240.28130.83970.029*
H5B0.56180.25800.89850.029*
C60.69062 (8)0.10371 (12)0.94599 (7)0.0233 (2)
H60.66580.00910.93880.028*
C70.81748 (9)0.10933 (15)0.92898 (9)0.0332 (3)
H7A0.84480.21840.93660.050*
H7B0.82920.07190.86180.050*
H7C0.85910.04130.97770.050*
C80.70816 (8)0.04726 (12)1.12482 (8)0.0251 (2)
H8A0.72950.10801.18600.030*
H8B0.77690.00561.10360.030*
C90.69768 (9)0.32159 (12)1.06682 (8)0.0262 (2)
H9A0.69170.38261.00400.031*
H9B0.77750.32491.09370.031*
C100.62306 (10)0.39889 (13)1.14129 (8)0.0315 (3)
H10A0.63900.34971.20740.038*
H10B0.64180.51291.14720.038*
C110.50273 (10)0.38124 (13)1.11086 (9)0.0319 (3)
C120.38124 (11)0.83164 (16)0.55435 (9)0.0392 (3)
H12A0.40930.93490.53390.059*
H12B0.31830.79850.50810.059*
H12C0.44210.75330.55400.059*
N10.47262 (7)0.00296 (10)0.80496 (6)0.0234 (2)
N20.66485 (7)0.15706 (10)1.04640 (6)0.0220 (2)
N30.40915 (9)0.36369 (13)1.08811 (9)0.0448 (3)
O10.34397 (8)0.84346 (12)0.65056 (6)0.0406 (2)
H10.39370.88860.68790.061*
H1C0.5001 (11)0.0715 (17)0.8475 (10)0.031 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0268 (5)0.0226 (5)0.0283 (5)0.0009 (4)0.0057 (4)0.0009 (4)
C20.0254 (5)0.0252 (5)0.0231 (5)0.0026 (4)0.0042 (4)0.0005 (4)
C30.0313 (6)0.0390 (6)0.0322 (6)0.0007 (5)0.0093 (4)0.0079 (5)
C40.0346 (6)0.0346 (6)0.0248 (5)0.0056 (5)0.0010 (4)0.0050 (4)
C50.0241 (5)0.0223 (5)0.0253 (5)0.0023 (4)0.0023 (4)0.0009 (4)
C60.0216 (5)0.0227 (5)0.0259 (5)0.0008 (4)0.0037 (4)0.0002 (4)
C70.0230 (5)0.0410 (6)0.0361 (6)0.0027 (5)0.0066 (4)0.0052 (5)
C80.0218 (5)0.0265 (5)0.0268 (5)0.0002 (4)0.0011 (4)0.0034 (4)
C90.0249 (5)0.0229 (5)0.0303 (5)0.0041 (4)0.0013 (4)0.0010 (4)
C100.0362 (6)0.0258 (5)0.0320 (6)0.0002 (4)0.0014 (4)0.0054 (4)
C110.0360 (6)0.0233 (5)0.0368 (6)0.0056 (4)0.0052 (5)0.0005 (4)
C120.0402 (7)0.0443 (7)0.0336 (6)0.0018 (5)0.0048 (5)0.0082 (5)
N10.0236 (4)0.0212 (4)0.0258 (4)0.0011 (3)0.0035 (3)0.0004 (3)
N20.0217 (4)0.0205 (4)0.0236 (4)0.0014 (3)0.0008 (3)0.0003 (3)
N30.0354 (6)0.0390 (6)0.0600 (7)0.0072 (5)0.0042 (5)0.0027 (5)
O10.0404 (5)0.0522 (6)0.0294 (4)0.0142 (4)0.0035 (4)0.0044 (4)
Geometric parameters (Å, º) top
C1—N11.4701 (13)C7—H7B0.9800
C1—C8i1.5204 (14)C7—H7C0.9800
C1—H1A0.9900C8—N21.4717 (13)
C1—H1B0.9900C8—C1i1.5204 (14)
C2—N11.4853 (13)C8—H8A0.9900
C2—C31.5267 (15)C8—H8B0.9900
C2—C41.5338 (15)C9—N21.4639 (13)
C2—C51.5441 (14)C9—C101.5322 (16)
C3—H3A0.9800C9—H9A0.9900
C3—H3B0.9800C9—H9B0.9900
C3—H3C0.9800C10—C111.4655 (16)
C4—H4A0.9800C10—H10A0.9900
C4—H4B0.9800C10—H10B0.9900
C4—H4C0.9800C11—N31.1408 (16)
C5—C61.5426 (14)C12—O11.4048 (15)
C5—H5A0.9900C12—H12A0.9800
C5—H5B0.9900C12—H12B0.9800
C6—N21.4804 (13)C12—H12C0.9800
C6—C71.5401 (14)N1—H1C0.897 (14)
C6—H61.0000O1—H10.8400
C7—H7A0.9800
N1—C1—C8i109.62 (8)C6—C7—H7B109.5
N1—C1—H1A109.7H7A—C7—H7B109.5
C8i—C1—H1A109.7C6—C7—H7C109.5
N1—C1—H1B109.7H7A—C7—H7C109.5
C8i—C1—H1B109.7H7B—C7—H7C109.5
H1A—C1—H1B108.2N2—C8—C1i112.02 (8)
N1—C2—C3105.83 (9)N2—C8—H8A109.2
N1—C2—C4109.01 (8)C1i—C8—H8A109.2
C3—C2—C4108.56 (9)N2—C8—H8B109.2
N1—C2—C5113.12 (8)C1i—C8—H8B109.2
C3—C2—C5112.33 (9)H8A—C8—H8B107.9
C4—C2—C5107.88 (8)N2—C9—C10111.67 (9)
C2—C3—H3A109.5N2—C9—H9A109.3
C2—C3—H3B109.5C10—C9—H9A109.3
H3A—C3—H3B109.5N2—C9—H9B109.3
C2—C3—H3C109.5C10—C9—H9B109.3
H3A—C3—H3C109.5H9A—C9—H9B107.9
H3B—C3—H3C109.5C11—C10—C9111.75 (9)
C2—C4—H4A109.5C11—C10—H10A109.3
C2—C4—H4B109.5C9—C10—H10A109.3
H4A—C4—H4B109.5C11—C10—H10B109.3
C2—C4—H4C109.5C9—C10—H10B109.3
H4A—C4—H4C109.5H10A—C10—H10B107.9
H4B—C4—H4C109.5N3—C11—C10178.26 (13)
C6—C5—C2116.79 (8)O1—C12—H12A109.5
C6—C5—H5A108.1O1—C12—H12B109.5
C2—C5—H5A108.1H12A—C12—H12B109.5
C6—C5—H5B108.1O1—C12—H12C109.5
C2—C5—H5B108.1H12A—C12—H12C109.5
H5A—C5—H5B107.3H12B—C12—H12C109.5
N2—C6—C7113.28 (8)C1—N1—C2117.27 (8)
N2—C6—C5110.23 (8)C1—N1—H1C105.9 (9)
C7—C6—C5110.72 (8)C2—N1—H1C109.6 (9)
N2—C6—H6107.4C9—N2—C8112.83 (8)
C7—C6—H6107.4C9—N2—C6113.05 (8)
C5—C6—H6107.4C8—N2—C6112.45 (8)
C6—C7—H7A109.5C12—O1—H1109.5
N1—C2—C5—C668.30 (11)C5—C2—N1—C157.41 (12)
C3—C2—C5—C651.44 (12)C10—C9—N2—C879.38 (11)
C4—C2—C5—C6171.05 (8)C10—C9—N2—C6151.61 (9)
C2—C5—C6—N2136.19 (9)C1i—C8—N2—C9139.60 (9)
C2—C5—C6—C797.66 (11)C1i—C8—N2—C691.08 (10)
N2—C9—C10—C1152.36 (12)C7—C6—N2—C961.30 (11)
C9—C10—C11—N380 (4)C5—C6—N2—C963.39 (10)
C8i—C1—N1—C2179.81 (8)C7—C6—N2—C867.90 (11)
C3—C2—N1—C1179.19 (9)C5—C6—N2—C8167.41 (8)
C4—C2—N1—C162.60 (11)
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1ii0.842.022.8343 (12)162
Symmetry code: (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC22H42N6·2CH4O
Mr454.70
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)11.8705 (16), 8.4448 (11), 13.4942 (18)
β (°) 94.097 (2)
V3)1349.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.34 × 0.30 × 0.27
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.976, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
10793, 2940, 2562
Rint0.019
(sin θ/λ)max1)0.640
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.113, 1.05
No. of reflections2940
No. of parameters154
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.16

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.842.022.8343 (12)162.2
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors acknowledge Pingdingshan University for supporting this work.

References

First citationBruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHay, R. W., Pujari, M. P., Moodie, W. T., Craig, S., Richens, D. T., Perotti, A. & Ungaretti, L. (1987). J. Chem. Soc. Dalton Trans. pp. 2605–2613.  CSD CrossRef Web of Science Google Scholar
First citationMadeyski, C. M., Michael, J. P. & Hancock, R. D. (1984). Inorg. Chem. 23, 1487–1489.  CrossRef CAS Web of Science Google Scholar
First citationMelson, G. (1979). In Coordination Chemistry of Macrocyclic Compounds. New York: Plenum.  Google Scholar
First citationRoy, T. G., Hazari, S. K. S., Dey, B. K., Miah, H. A. & Tiekink, E. R. T. (2001). Acta Cryst. E57, o524–o525.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds