organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Methyl­pyridine-2(1H)-thione

aSchool of Public Health of Wenzhou Medical College, Wenzhou 325035, People's Republic of China, and bState Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China
*Correspondence e-mail: lianghongze@nbu.edu.cn

(Received 9 April 2010; accepted 19 April 2010; online 24 April 2010)

There are two unique mol­ecules in the asymmetric unit of the title pyridine­thione derivative, C6H7NS, each of which adopts the thione rather than the mercaptan form. The rings in both mol­ecules are essentially planar, with maximum deviations from the least-squares planes through all non-H atoms of 0.021 (2) and 0.017 (2) Å. In the crystal structure, the mol­ecules form centrosymmetric cyclic dimers through inter­molecular N—H⋯S hydrogen bonds. Additional C—H(meth­yl)⋯S inter­actions generate a three-dimensional network.

Related literature

For the synthesis of 2-mercaptopyridines, see: Thirtle (1946[Thirtle, J. R. (1946). J. Am. Chem. Soc. 68, 342-343.]). For background to the applications of organic sulfur-containing compounds, see: Cui et al. (2009[Cui, H., Turn, S. Q. & Reese, M. A. (2009). Catal. Today, 139, 274-279.]); Saadat et al. (2004[Saadat, M., Bahaoddini, A. & Nazemi, S. (2004). Biochem. Biophys. Res. Commun. 313, 568-569.]); Qian et al. (2007[Qian, X., Li, Z. & Yang, Q. (2007). Bioorg. Med. Chem. 15, 6846-6851.]). For metal complexes of 2-mercapto pyridine N-oxide and 6-methyl substituted derivatives, see: Hamaguchi et al. (2007[Hamaguchi, T., Ujimoto, K. & Ando, I. (2007). Inorg. Chem. 46, 10455-10457.]); Chunchuryukin et al. (2006[Chunchuryukin, A. V., Chase, P. A., Mills, A. M., Lutz, M., Spek, A. L., van Klink, G. P. M. & van Koten, G. (2006). Inorg. Chem. 45, 2045-2054.]); Cotton et al. (1978[Cotton, F. A., Fanwick, P. E. & Fitch, J. W. III (1978). Inorg. Chem. 17, 3254-3257.]); West et al. (1998[West, D. X., Brown, C. A., Jasinski, J. P., Jasinski, J. M., Heathwaite, R. M., Fortier, D. G., Staples, R. J. & Bucher, J. (1998). J. Chem. Crystallogr. 28, 853-860.]); Fielding et al. (1997[Fielding, C., Parsons, S. & Winpenny, R. E. P. (1997). Acta Cryst. C53, 174-176.]); Berardini et al. (1997[Berardini, M., Lee, J., Freedman, D., Lee, J., Emge, T. J. & Brennan, J. G. (1997). Inorg. Chem. 36, 5772-5776.]); Tylicki et al. (1995[Tylicki, R. M., Wu, W., Fanwick, P. E. & Walton, R. A. (1995). Inorg. Chem. 34, 988-991.]); Hong et al. (1999[Hong, M., Su, W., Cao, R., Zhang, W. & Lu, J. (1999). Inorg. Chem. 38, 600-602.]); Cabeza et al. (2007[Cabeza, J. A., del Río, I., Garcia-Álvarez, P. & Miguel, D. (2007). J. Organomet. Chem. 692, 3583-3587.]).

[Scheme 1]

Experimental

Crystal data
  • C6H7NS

  • Mr = 125.19

  • Monoclinic, P 21 /c

  • a = 7.4608 (15) Å

  • b = 14.902 (3) Å

  • c = 11.665 (2) Å

  • β = 94.85 (3)°

  • V = 1292.3 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 295 K

  • 0.33 × 0.33 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.880, Tmax = 0.926

  • 12472 measured reflections

  • 2944 independent reflections

  • 2088 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.148

  • S = 1.12

  • 2944 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯S1i 0.86 2.50 3.3376 (19) 165
N2—H2A⋯S2ii 0.86 2.50 3.340 (2) 166
C1—H1B⋯S1i 0.96 2.79 3.678 (3) 154
C7—H7A⋯S2ii 0.96 2.74 3.639 (3) 156
Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x+2, -y, -z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Organic sulfur-containing compounds have been frequently encountered or used in chemical industry (Cui et al., 2009), life science (Saadat et al., 2004) and pharmacy (Qian et al., 2007). Some of them have found their applications in crystal engineering. 2-mercaptopyridine, its 6-methyl substituted and N-oxide derivatives have exhibited rich coordination motifs. They can serve as monodentate (Hamaguchi et al., 2007; Chunchuryukin et al., 2006), bidentate (Cotton et al., 1978; West et al., 1998; Fielding et al., 1997; Berardini et al., 1997), and bridging (Tylicki et al., 1995; Hong, et al., 1999; Cabeza, et al., 2007) ligands to coordinate metals. Though syntheses and crystal structures of these metal complexes have been reported, the crystal structure of 2-mercapto-6-methylpyridine itself has not been yet reported. Here we report its crystal structure and packing pattern.

A perspective view of the title compound is shown in Fig. 1. The C—S bond lengths were 1.694 (3) and 1.700 (2) Å, shorter than those in the above-mentioned metal complexes (typically 1.740 Å). This clearly indicates that the neutral title compound in solid state exists as a pyridinethione, while in metal complexes it ligates to metal centers as a pyridinethiolate anion. As shown in Fig. 2, adjacent two molecules are linked by intermolecular N–H···S interactions, forming a cyclic dimer.

Related literature top

For the synthesis of 2-mercaptopyridines, see: Thirtle (1946). For background to the applications of organic sulfur-containing compounds, see: Cui et al. (2009); Saadat et al. (2004); Qian et al. (2007). For metal complexes of 2-mercapto pyridine N-oxide and 6-methyl substituted derivatives, see: Hamaguchi et al. (2007); Chunchuryukin et al. (2006); Cotton et al. (1978); West et al. (1998); Fielding et al. (1997); Berardini et al. (1997); Tylicki et al. (1995); Hong et al. (1999); Cabeza et al. (2007).

Experimental top

6-methylpyridine-2(1H)-thione was synthesized by a literature method (Thirtle 1946). X-ray quality single crystals were grown from ethyl acetate and petroleum ether (1/10, v/v).

Refinement top

H atoms bonded to C atoms were placed in geometrically calculated position and were refined using a riding model, the C–H bond lengths are 0.93 or 0.96 [Uiso(H) = 1.2 Ueq(C)] or [Uiso(H) = 1.5 Ueq(C)] for the methyl group, H atoms bonded to N atoms were placed in geometrically calculated positions and were also refined as riding [Uiso(H) = 1.2 Ueq(N)]. .

Structure description top

Organic sulfur-containing compounds have been frequently encountered or used in chemical industry (Cui et al., 2009), life science (Saadat et al., 2004) and pharmacy (Qian et al., 2007). Some of them have found their applications in crystal engineering. 2-mercaptopyridine, its 6-methyl substituted and N-oxide derivatives have exhibited rich coordination motifs. They can serve as monodentate (Hamaguchi et al., 2007; Chunchuryukin et al., 2006), bidentate (Cotton et al., 1978; West et al., 1998; Fielding et al., 1997; Berardini et al., 1997), and bridging (Tylicki et al., 1995; Hong, et al., 1999; Cabeza, et al., 2007) ligands to coordinate metals. Though syntheses and crystal structures of these metal complexes have been reported, the crystal structure of 2-mercapto-6-methylpyridine itself has not been yet reported. Here we report its crystal structure and packing pattern.

A perspective view of the title compound is shown in Fig. 1. The C—S bond lengths were 1.694 (3) and 1.700 (2) Å, shorter than those in the above-mentioned metal complexes (typically 1.740 Å). This clearly indicates that the neutral title compound in solid state exists as a pyridinethione, while in metal complexes it ligates to metal centers as a pyridinethiolate anion. As shown in Fig. 2, adjacent two molecules are linked by intermolecular N–H···S interactions, forming a cyclic dimer.

For the synthesis of 2-mercaptopyridines, see: Thirtle (1946). For background to the applications of organic sulfur-containing compounds, see: Cui et al. (2009); Saadat et al. (2004); Qian et al. (2007). For metal complexes of 2-mercapto pyridine N-oxide and 6-methyl substituted derivatives, see: Hamaguchi et al. (2007); Chunchuryukin et al. (2006); Cotton et al. (1978); West et al. (1998); Fielding et al. (1997); Berardini et al. (1997); Tylicki et al. (1995); Hong et al. (1999); Cabeza et al. (2007).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A perspective view of the title compound. Displacement ellipsoids are drawn at the 45% probability level.
[Figure 2] Fig. 2. Part of the packing of the title compound showing the formation of centrosymmetric dimers.
6-Methylpyridine-2(1H)-thione top
Crystal data top
C6H7NSF(000) = 528
Mr = 125.19Dx = 1.287 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 12782 reflections
a = 7.4608 (15) Åθ = 3.1–27.4°
b = 14.902 (3) ŵ = 0.39 mm1
c = 11.665 (2) ÅT = 295 K
β = 94.85 (3)°Block, yellow
V = 1292.3 (4) Å30.33 × 0.33 × 0.20 mm
Z = 8
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2944 independent reflections
Radiation source: fine-focus sealed tube2088 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 0 pixels mm-1θmax = 27.4°, θmin = 3.1°
ω scansh = 99
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1919
Tmin = 0.880, Tmax = 0.926l = 1515
12472 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0738P)2 + 0.3029P]
where P = (Fo2 + 2Fc2)/3
2944 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C6H7NSV = 1292.3 (4) Å3
Mr = 125.19Z = 8
Monoclinic, P21/cMo Kα radiation
a = 7.4608 (15) ŵ = 0.39 mm1
b = 14.902 (3) ÅT = 295 K
c = 11.665 (2) Å0.33 × 0.33 × 0.20 mm
β = 94.85 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2944 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2088 reflections with I > 2σ(I)
Tmin = 0.880, Tmax = 0.926Rint = 0.030
12472 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.12Δρmax = 0.36 e Å3
2944 reflectionsΔρmin = 0.26 e Å3
146 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.52754 (9)0.10281 (4)0.87258 (5)0.0561 (2)
S20.90012 (12)0.13575 (4)0.50014 (6)0.0743 (3)
N10.5873 (2)0.07318 (12)0.85963 (15)0.0470 (4)
H1A0.57250.07230.93190.056*
N20.9262 (2)0.02468 (12)0.32400 (15)0.0488 (4)
H2A0.95550.01390.37710.059*
C10.6385 (5)0.23318 (17)0.8905 (2)0.0746 (8)
H1B0.61600.21490.96690.112*
H1C0.75680.25870.89160.112*
H1D0.55090.27720.86330.112*
C20.6257 (3)0.15375 (16)0.8125 (2)0.0541 (6)
C30.6503 (4)0.15630 (18)0.6979 (2)0.0626 (6)
H3A0.67730.21020.66310.075*
C40.6350 (4)0.0782 (2)0.6339 (2)0.0658 (7)
H4A0.65130.08000.55570.079*
C50.5961 (3)0.00181 (18)0.68372 (19)0.0593 (6)
H5A0.58680.05360.63920.071*
C60.5702 (3)0.00646 (15)0.80167 (18)0.0469 (5)
C70.9694 (4)0.10058 (16)0.1955 (2)0.0609 (6)
H7A0.99630.12910.26870.091*
H7B1.07230.10420.15160.091*
H7C0.86930.13030.15460.091*
C80.9229 (3)0.00394 (16)0.21353 (19)0.0499 (5)
C90.8776 (3)0.05620 (18)0.1275 (2)0.0590 (6)
H9A0.87440.03860.05080.071*
C100.8365 (4)0.14393 (18)0.1558 (2)0.0634 (7)
H10A0.80720.18530.09750.076*
C110.8384 (3)0.17037 (16)0.2678 (2)0.0581 (6)
H11A0.80740.22900.28490.070*
C120.8870 (3)0.10976 (15)0.3583 (2)0.0517 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0712 (4)0.0439 (3)0.0542 (4)0.0043 (3)0.0104 (3)0.0009 (2)
S20.1163 (7)0.0487 (4)0.0574 (4)0.0151 (4)0.0044 (4)0.0032 (3)
N10.0524 (11)0.0453 (9)0.0438 (9)0.0011 (8)0.0076 (7)0.0034 (8)
N20.0570 (11)0.0408 (9)0.0485 (10)0.0023 (8)0.0037 (8)0.0057 (8)
C10.108 (2)0.0494 (14)0.0673 (16)0.0165 (14)0.0117 (15)0.0044 (12)
C20.0553 (14)0.0508 (13)0.0567 (13)0.0033 (10)0.0078 (10)0.0093 (10)
C30.0703 (17)0.0623 (15)0.0561 (13)0.0028 (12)0.0102 (11)0.0160 (12)
C40.0716 (17)0.0807 (18)0.0463 (12)0.0021 (14)0.0114 (11)0.0101 (12)
C50.0671 (16)0.0642 (15)0.0468 (12)0.0044 (12)0.0059 (10)0.0038 (11)
C60.0424 (12)0.0508 (12)0.0475 (11)0.0029 (9)0.0044 (8)0.0009 (9)
C70.0648 (16)0.0570 (14)0.0614 (14)0.0012 (12)0.0087 (11)0.0063 (11)
C80.0442 (12)0.0530 (12)0.0531 (12)0.0045 (9)0.0073 (9)0.0001 (10)
C90.0590 (15)0.0682 (16)0.0502 (12)0.0028 (12)0.0057 (10)0.0077 (11)
C100.0646 (16)0.0623 (15)0.0619 (15)0.0042 (12)0.0030 (11)0.0229 (12)
C110.0595 (15)0.0423 (11)0.0716 (15)0.0034 (10)0.0006 (11)0.0120 (11)
C120.0534 (13)0.0418 (11)0.0601 (13)0.0022 (10)0.0053 (10)0.0047 (10)
Geometric parameters (Å, º) top
S1—C61.700 (2)C4—C51.368 (4)
S2—C121.694 (3)C4—H4A0.9300
N1—C21.361 (3)C5—C61.407 (3)
N1—C61.367 (3)C5—H5A0.9300
N1—H1A0.8600C7—C81.500 (3)
N2—C81.356 (3)C7—H7A0.9600
N2—C121.369 (3)C7—H7B0.9600
N2—H2A0.8600C7—H7C0.9600
C1—C21.491 (4)C8—C91.367 (3)
C1—H1B0.9600C9—C101.389 (4)
C1—H1C0.9600C9—H9A0.9300
C1—H1D0.9600C10—C111.363 (4)
C2—C31.366 (3)C10—H10A0.9300
C3—C41.383 (4)C11—C121.413 (3)
C3—H3A0.9300C11—H11A0.9300
C2—N1—C6125.47 (18)N1—C6—C5115.2 (2)
C2—N1—H1A117.3N1—C6—S1120.41 (15)
C6—N1—H1A117.3C5—C6—S1124.34 (19)
C8—N2—C12125.61 (19)C8—C7—H7A109.5
C8—N2—H2A117.2C8—C7—H7B109.5
C12—N2—H2A117.2H7A—C7—H7B109.5
C2—C1—H1B109.5C8—C7—H7C109.5
C2—C1—H1C109.5H7A—C7—H7C109.5
H1B—C1—H1C109.5H7B—C7—H7C109.5
C2—C1—H1D109.5N2—C8—C9118.4 (2)
H1B—C1—H1D109.5N2—C8—C7116.7 (2)
H1C—C1—H1D109.5C9—C8—C7124.9 (2)
N1—C2—C3118.1 (2)C8—C9—C10119.2 (2)
N1—C2—C1117.3 (2)C8—C9—H9A120.4
C3—C2—C1124.6 (2)C10—C9—H9A120.4
C2—C3—C4119.6 (2)C11—C10—C9121.0 (2)
C2—C3—H3A120.2C11—C10—H10A119.5
C4—C3—H3A120.2C9—C10—H10A119.5
C5—C4—C3121.0 (2)C10—C11—C12120.8 (2)
C5—C4—H4A119.5C10—C11—H11A119.6
C3—C4—H4A119.5C12—C11—H11A119.6
C4—C5—C6120.7 (2)N2—C12—C11114.9 (2)
C4—C5—H5A119.7N2—C12—S2120.08 (17)
C6—C5—H5A119.7C11—C12—S2125.00 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.862.503.3376 (19)165
N2—H2A···S2ii0.862.503.340 (2)166
C1—H1B···S1i0.962.793.678 (3)154
C7—H7A···S2ii0.962.743.639 (3)156
Symmetry codes: (i) x+1, y, z+2; (ii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC6H7NS
Mr125.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)7.4608 (15), 14.902 (3), 11.665 (2)
β (°) 94.85 (3)
V3)1292.3 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.33 × 0.33 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.880, 0.926
No. of measured, independent and
observed [I > 2σ(I)] reflections
12472, 2944, 2088
Rint0.030
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.148, 1.12
No. of reflections2944
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.26

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.862.503.3376 (19)165
N2—H2A···S2ii0.862.503.340 (2)166
C1—H1B···S1i0.962.793.678 (3)154
C7—H7A···S2ii0.962.743.639 (3)156
Symmetry codes: (i) x+1, y, z+2; (ii) x+2, y, z+1.
 

Acknowledgements

The authors thank the Critical Projects in Science and Technology Department of Zhejiang Province (No. 2007 C21113), the Cultivation Program of Young and Middle-aged Academic Leaders in Zhejiang Higher Education Institutions, the Natural Science Foundation of Ningbo City (No. 2009 A610047) and the K. C. Wong Magna Fund of Ningbo University for financial support.

References

First citationBerardini, M., Lee, J., Freedman, D., Lee, J., Emge, T. J. & Brennan, J. G. (1997). Inorg. Chem. 36, 5772–5776.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationCabeza, J. A., del Río, I., Garcia-Álvarez, P. & Miguel, D. (2007). J. Organomet. Chem. 692, 3583–3587.  Web of Science CSD CrossRef CAS Google Scholar
First citationChunchuryukin, A. V., Chase, P. A., Mills, A. M., Lutz, M., Spek, A. L., van Klink, G. P. M. & van Koten, G. (2006). Inorg. Chem. 45, 2045–2054.  Web of Science PubMed Google Scholar
First citationCotton, F. A., Fanwick, P. E. & Fitch, J. W. III (1978). Inorg. Chem. 17, 3254–3257.  CSD CrossRef CAS Web of Science Google Scholar
First citationCui, H., Turn, S. Q. & Reese, M. A. (2009). Catal. Today, 139, 274–279.  Web of Science CrossRef CAS Google Scholar
First citationFielding, C., Parsons, S. & Winpenny, R. E. P. (1997). Acta Cryst. C53, 174–176.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHamaguchi, T., Ujimoto, K. & Ando, I. (2007). Inorg. Chem. 46, 10455–10457.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHong, M., Su, W., Cao, R., Zhang, W. & Lu, J. (1999). Inorg. Chem. 38, 600–602.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationQian, X., Li, Z. & Yang, Q. (2007). Bioorg. Med. Chem. 15, 6846–6851.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSaadat, M., Bahaoddini, A. & Nazemi, S. (2004). Biochem. Biophys. Res. Commun. 313, 568–569.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThirtle, J. R. (1946). J. Am. Chem. Soc. 68, 342–343.  CrossRef CAS Web of Science Google Scholar
First citationTylicki, R. M., Wu, W., Fanwick, P. E. & Walton, R. A. (1995). Inorg. Chem. 34, 988–991.  CSD CrossRef CAS Web of Science Google Scholar
First citationWest, D. X., Brown, C. A., Jasinski, J. P., Jasinski, J. M., Heathwaite, R. M., Fortier, D. G., Staples, R. J. & Bucher, J. (1998). J. Chem. Crystallogr. 28, 853–860.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds