organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Di­phenyl-2-(m-tolyl­amino)ethanone1

aDepartamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, C/ Julián Clavería, 8, 33006 Oviedo, Spain, and bDepartamento de Química, Facultad de Ciencias Naturales, Universidad de Oriente, Santiago de Cuba, Cuba
*Correspondence e-mail: sgg@uniovi.es

(Received 19 March 2010; accepted 11 April 2010; online 17 April 2010)

The title compound, C21H19NO, belongs to the family of α-amino­ketones. The structure contains three benzene rings, two of which [the phenyl ring in the 1-position (B) and the methylaniline ring (A)] are nearly coplanar [dihedral angle = 5.4 (1)°], whereas the phenyl ring in the 2-position (C) is nearly normal to them [dihedral angles = 81.8 (1) and 87.0 (1)° for A/C and B/C, respectively]. The conformation of the N—H bond is syn to the C=O bond, favouring the formation of a centrosymmetric dimer of mol­ecules in the crystal structure. The mol­ecular packing is consolidated by this N—H⋯O hydrogen-bonding network.

Related literature

For the structure of alpha-amino­ketones, see: Batsanov et al. (2006[Batsanov, A. S., Goeta, A. E., Howard, J. A. K., Soto, B. & Au-Alvarez, O. (2006). Acta Cryst. C62, o304-o306.]). For the crystal structure of 1,2-diphenyl-2-(p-tolyl­amino)ethanone, see: Au & Tafeenko (1986[Au, O. & Tafeenko, V. (1986). Rev. Cubana Quim. 2, 65-74.]).

[Scheme 1]

Experimental

Crystal data
  • C21H19NO

  • Mr = 301.37

  • Triclinic, [P \overline 1]

  • a = 6.0510 (3) Å

  • b = 11.5745 (4) Å

  • c = 12.9458 (7) Å

  • α = 112.542 (5)°

  • β = 97.396 (4)°

  • γ = 99.960 (4)°

  • V = 805.62 (8) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.59 mm−1

  • T = 293 K

  • 0.34 × 0.12 × 0.07 mm

Data collection
  • Oxford Diffraction Xcalibur Gemini S diffractometer

  • Absorption correction: refined from ΔF [cubic fit to sin(theta)/lambda - 24 parameters; Parkin et al. (1995[Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53-56.])] Tmin = 0.919, Tmax = 0.960

  • 8027 measured reflections

  • 2833 independent reflections

  • 2174 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.137

  • S = 1.09

  • 2833 reflections

  • 213 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H22⋯O1i 0.859 (17) 2.660 (17) 3.3913 (17) 143.8 (15)
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The structure of various members of the alpha-aminoketone family have been extensively studied (Batsanov et al., 2006). These compounds can be used as intermediates to synthesize other biologically active compounds like thiosemicarbazones. Alpha-aminoketones also exhibit biological activity but are less active than the thiosemicarbazones. They are generally synthesised by the reaction of an alpha-hydroxiketone with an amine.

The molecular structure of the title molecule is illustrated in Fig. 1. According to the dihedral angles between the benzene rings planes, two benzene rings are nearly coplanar whereas the central ring is almost normal to them (5.3 (1)° for A/B, 81.8 (1)° for A/C and 87.0 (1)° for B/C). Comparing these values with those in the similar structure where the methyl subtitutent is in the para position (5.1° for A/B, 86.28° for A/C and 84.19° for B/C), there are no noticeable differences (Au & Tafeenko, 1986).

In the crystal structure, the molecular packing is made up of a network of weak hydrogen-bonding interactions (Fig. 2 & Table 1), favouring the formation of centrosymmetric dimers. Such conformations bring the CO and N—H bonds into a syn orientation. The intermolecular distance between the centroids of the parallel benzene rings is ca. 3.77 Å. This value suggests the absence of any relevant π-stacking interactions.

Related literature top

For the structure of alpha-aminoketones, see: Batsanov et al. (2006). For the crystal structure of 1,2-diphenyl-2-(p-tolylamino)ethanone, see: Au & Tafeenko (1986).

Experimental top

0.0235 mol benzoin, 0.0235 mol 3-methylaniline and 0.0235 mol boric acid were added to 10 ml of ethyleneglycol. The mixture was heated to reflux for 1 h, then 15 ml of ethanol were added and the mixture cooled to RT. The reaction was followed using TLC. The yellow precipitate obtained was washed with cold water and ethanol (yield 85%). Yellow needle-like crystals, suitable for x-ray diffraction analysis, were obtained after a week by slow evaporation of a solution in ethanol.

Refinement top

The NH H-atom was located in difference electron-density map and was freely refined: N-H = 0.858 (17) Å. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C-H = 0.98 Å, 0.93 Å and 0.96 Å for tertiary CH, aromatic CH and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.2 for CH H-atoms, and 1.5 for CH3 H-atoms.

Structure description top

The structure of various members of the alpha-aminoketone family have been extensively studied (Batsanov et al., 2006). These compounds can be used as intermediates to synthesize other biologically active compounds like thiosemicarbazones. Alpha-aminoketones also exhibit biological activity but are less active than the thiosemicarbazones. They are generally synthesised by the reaction of an alpha-hydroxiketone with an amine.

The molecular structure of the title molecule is illustrated in Fig. 1. According to the dihedral angles between the benzene rings planes, two benzene rings are nearly coplanar whereas the central ring is almost normal to them (5.3 (1)° for A/B, 81.8 (1)° for A/C and 87.0 (1)° for B/C). Comparing these values with those in the similar structure where the methyl subtitutent is in the para position (5.1° for A/B, 86.28° for A/C and 84.19° for B/C), there are no noticeable differences (Au & Tafeenko, 1986).

In the crystal structure, the molecular packing is made up of a network of weak hydrogen-bonding interactions (Fig. 2 & Table 1), favouring the formation of centrosymmetric dimers. Such conformations bring the CO and N—H bonds into a syn orientation. The intermolecular distance between the centroids of the parallel benzene rings is ca. 3.77 Å. This value suggests the absence of any relevant π-stacking interactions.

For the structure of alpha-aminoketones, see: Batsanov et al. (2006). For the crystal structure of 1,2-diphenyl-2-(p-tolylamino)ethanone, see: Au & Tafeenko (1986).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the a-axis of the crystal packing of the title compound. Hydrogen bonds are indicated by dashed lines (see Table 1 for details).
1,2-Diphenyl-2-(m-tolylamino)ethanone top
Crystal data top
C21H19NOZ = 2
Mr = 301.37F(000) = 320
Triclinic, P1Dx = 1.242 Mg m3
Hall symbol: -P 1Melting point: 385.14 K
a = 6.0510 (3) ÅCu Kα radiation, λ = 1.54184 Å
b = 11.5745 (4) ÅCell parameters from 4346 reflections
c = 12.9458 (7) Åθ = 3.8–66.7°
α = 112.542 (5)°µ = 0.59 mm1
β = 97.396 (4)°T = 293 K
γ = 99.960 (4)°Needle, yellow
V = 805.62 (8) Å30.34 × 0.12 × 0.07 mm
Data collection top
Oxford Diffraction Xcalibur Gemini S
diffractometer
2833 independent reflections
Radiation source: Enhance (Cu) X-ray Source2174 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 16.0827 pixels mm-1θmax = 66.7°, θmin = 3.8°
ω scansh = 67
Absorption correction: part of the refinement model (ΔF)
[cubic fit to sin(theta)/lambda - 24 parameters; Parkin et al. (1995)]
k = 1013
Tmin = 0.919, Tmax = 0.960l = 1514
8027 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0863P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2833 reflectionsΔρmax = 0.25 e Å3
213 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0041 (11)
Crystal data top
C21H19NOγ = 99.960 (4)°
Mr = 301.37V = 805.62 (8) Å3
Triclinic, P1Z = 2
a = 6.0510 (3) ÅCu Kα radiation
b = 11.5745 (4) ŵ = 0.59 mm1
c = 12.9458 (7) ÅT = 293 K
α = 112.542 (5)°0.34 × 0.12 × 0.07 mm
β = 97.396 (4)°
Data collection top
Oxford Diffraction Xcalibur Gemini S
diffractometer
2833 independent reflections
Absorption correction: part of the refinement model (ΔF)
[cubic fit to sin(theta)/lambda - 24 parameters; Parkin et al. (1995)]
2174 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.960Rint = 0.027
8027 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.25 e Å3
2833 reflectionsΔρmin = 0.16 e Å3
213 parameters
Special details top

Experimental. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.52659 (18)0.50924 (11)0.14596 (9)0.0662 (4)
N10.1300 (2)0.38301 (13)0.00199 (11)0.0529 (4)
C10.6200 (3)0.63202 (19)0.38272 (15)0.0714 (6)
C20.6620 (4)0.6946 (2)0.50033 (17)0.0880 (8)
C30.4898 (4)0.6891 (2)0.55688 (17)0.0847 (8)
C40.2717 (4)0.6232 (2)0.49658 (17)0.0863 (8)
C50.2260 (3)0.56261 (18)0.37817 (15)0.0707 (6)
C60.4006 (3)0.56467 (14)0.31949 (13)0.0497 (5)
C70.3671 (2)0.49865 (14)0.19224 (13)0.0480 (5)
C80.1322 (2)0.41085 (13)0.12058 (12)0.0452 (4)
C90.0958 (2)0.28933 (13)0.14383 (11)0.0454 (4)
C100.0802 (3)0.25707 (16)0.19337 (14)0.0586 (5)
C110.1102 (3)0.14576 (19)0.21171 (17)0.0757 (7)
C120.0364 (4)0.06604 (19)0.18093 (18)0.0819 (7)
C130.2102 (3)0.09623 (17)0.13051 (17)0.0742 (7)
C140.2411 (3)0.20731 (15)0.11226 (14)0.0574 (5)
C150.0560 (2)0.30252 (13)0.08485 (12)0.0452 (4)
C160.2728 (3)0.26933 (15)0.06433 (14)0.0540 (5)
C170.4522 (3)0.18600 (16)0.15360 (14)0.0597 (6)
C180.4218 (3)0.13398 (16)0.26408 (15)0.0633 (6)
C190.2086 (3)0.16684 (16)0.28761 (14)0.0578 (5)
C200.0286 (3)0.25155 (14)0.19799 (13)0.0510 (5)
C210.1709 (4)0.1084 (2)0.40766 (16)0.0896 (8)
H10.740800.635100.345400.0860*
H20.810000.741000.541300.1060*
H30.520000.730000.636400.1020*
H40.153300.619000.535200.1040*
H50.076100.520100.337800.0850*
H80.011800.455800.144100.0540*
H100.179600.310800.214600.0700*
H110.229700.124800.244900.0910*
H120.017700.008100.194300.0980*
H130.307900.041600.108500.0890*
H140.360200.227300.078500.0690*
H160.297000.303400.009800.0650*
H170.596400.164700.138700.0720*
H180.544100.076800.323000.0760*
H200.114000.275000.213600.0610*
H21A0.312500.052700.458500.1340*
H21B0.057300.059400.409900.1340*
H21C0.118600.175700.431200.1340*
H220.262 (3)0.4037 (17)0.0130 (15)0.062 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0533 (7)0.0727 (8)0.0548 (7)0.0058 (6)0.0118 (5)0.0167 (6)
N10.0473 (7)0.0602 (8)0.0438 (7)0.0004 (6)0.0051 (6)0.0207 (6)
C10.0584 (10)0.0864 (13)0.0546 (10)0.0023 (9)0.0014 (8)0.0235 (9)
C20.0714 (12)0.1108 (17)0.0540 (11)0.0008 (11)0.0099 (10)0.0220 (11)
C30.1014 (16)0.0868 (14)0.0459 (10)0.0088 (12)0.0028 (10)0.0164 (10)
C40.0896 (14)0.0886 (14)0.0559 (11)0.0028 (12)0.0230 (10)0.0096 (10)
C50.0637 (10)0.0698 (11)0.0536 (10)0.0000 (9)0.0116 (8)0.0066 (9)
C60.0528 (8)0.0442 (8)0.0467 (8)0.0051 (6)0.0043 (7)0.0180 (7)
C70.0482 (8)0.0424 (8)0.0495 (9)0.0043 (6)0.0072 (7)0.0189 (7)
C80.0449 (7)0.0435 (7)0.0419 (8)0.0067 (6)0.0063 (6)0.0148 (6)
C90.0449 (7)0.0429 (8)0.0373 (7)0.0024 (6)0.0008 (6)0.0114 (6)
C100.0547 (9)0.0597 (9)0.0553 (10)0.0018 (7)0.0080 (7)0.0239 (8)
C110.0766 (12)0.0717 (12)0.0716 (13)0.0114 (10)0.0029 (10)0.0387 (10)
C120.0939 (14)0.0551 (10)0.0810 (14)0.0101 (10)0.0212 (11)0.0360 (10)
C130.0802 (12)0.0503 (10)0.0758 (12)0.0156 (9)0.0107 (10)0.0177 (9)
C140.0583 (9)0.0513 (9)0.0527 (9)0.0100 (7)0.0032 (7)0.0152 (7)
C150.0466 (8)0.0422 (7)0.0455 (8)0.0090 (6)0.0030 (6)0.0199 (6)
C160.0487 (8)0.0590 (9)0.0502 (9)0.0106 (7)0.0078 (7)0.0202 (7)
C170.0452 (8)0.0632 (10)0.0640 (11)0.0057 (7)0.0031 (7)0.0253 (9)
C180.0583 (10)0.0554 (9)0.0591 (10)0.0013 (8)0.0093 (8)0.0178 (8)
C190.0662 (10)0.0531 (9)0.0479 (9)0.0111 (7)0.0037 (7)0.0187 (7)
C200.0531 (8)0.0517 (8)0.0481 (9)0.0092 (7)0.0085 (7)0.0230 (7)
C210.0968 (15)0.0917 (15)0.0515 (11)0.0013 (12)0.0072 (10)0.0113 (10)
Geometric parameters (Å, º) top
O1—C71.2123 (18)C17—C181.374 (2)
N1—C81.4405 (19)C18—C191.386 (3)
N1—C151.3810 (19)C19—C201.388 (2)
N1—H220.862 (19)C19—C211.505 (3)
C1—C61.383 (3)C1—H10.9300
C1—C21.378 (3)C2—H20.9300
C2—C31.355 (3)C3—H30.9300
C3—C41.365 (3)C4—H40.9300
C4—C51.385 (3)C5—H50.9300
C5—C61.381 (3)C8—H80.9800
C6—C71.495 (2)C10—H100.9300
C7—C81.534 (2)C11—H110.9300
C8—C91.534 (2)C12—H120.9300
C9—C141.388 (2)C13—H130.9300
C9—C101.381 (2)C14—H140.9300
C10—C111.383 (3)C16—H160.9300
C11—C121.375 (3)C17—H170.9300
C12—C131.371 (3)C18—H180.9300
C13—C141.380 (3)C20—H200.9300
C15—C201.398 (2)C21—H21A0.9600
C15—C161.390 (2)C21—H21B0.9600
C16—C171.380 (2)C21—H21C0.9600
C8—N1—C15122.36 (13)C6—C1—H1120.00
C8—N1—H22115.3 (12)C1—C2—H2120.00
C15—N1—H22120.7 (12)C3—C2—H2120.00
C2—C1—C6120.89 (18)C2—C3—H3120.00
C1—C2—C3120.6 (2)C4—C3—H3120.00
C2—C3—C4119.66 (19)C3—C4—H4120.00
C3—C4—C5120.3 (2)C5—C4—H4120.00
C4—C5—C6120.71 (18)C4—C5—H5120.00
C1—C6—C7118.15 (15)C6—C5—H5120.00
C1—C6—C5117.76 (15)N1—C8—H8109.00
C5—C6—C7124.08 (15)C7—C8—H8109.00
O1—C7—C8119.84 (13)C9—C8—H8109.00
O1—C7—C6120.53 (14)C9—C10—H10120.00
C6—C7—C8119.55 (13)C11—C10—H10120.00
N1—C8—C9112.77 (13)C10—C11—H11120.00
C7—C8—C9107.94 (12)C12—C11—H11120.00
N1—C8—C7108.31 (12)C11—C12—H12120.00
C10—C9—C14118.55 (16)C13—C12—H12120.00
C8—C9—C10122.18 (13)C12—C13—H13120.00
C8—C9—C14119.26 (13)C14—C13—H13120.00
C9—C10—C11120.72 (17)C9—C14—H14120.00
C10—C11—C12120.06 (19)C13—C14—H14120.00
C11—C12—C13119.8 (2)C15—C16—H16120.00
C12—C13—C14120.36 (19)C17—C16—H16120.00
C9—C14—C13120.52 (16)C16—C17—H17119.00
C16—C15—C20117.97 (14)C18—C17—H17119.00
N1—C15—C16122.36 (13)C17—C18—H18120.00
N1—C15—C20119.68 (13)C19—C18—H18120.00
C15—C16—C17120.25 (15)C15—C20—H20119.00
C16—C17—C18121.25 (17)C19—C20—H20119.00
C17—C18—C19119.89 (17)C19—C21—H21A109.00
C18—C19—C20118.88 (16)C19—C21—H21B109.00
C18—C19—C21120.58 (17)C19—C21—H21C110.00
C20—C19—C21120.51 (17)H21A—C21—H21B109.00
C15—C20—C19121.73 (16)H21A—C21—H21C110.00
C2—C1—H1120.00H21B—C21—H21C109.00
C15—N1—C8—C7177.87 (14)N1—C8—C9—C1455.51 (17)
C15—N1—C8—C958.48 (18)C7—C8—C9—C10117.19 (14)
C8—N1—C15—C1617.0 (2)C7—C8—C9—C1464.09 (16)
C8—N1—C15—C20162.92 (15)C8—C9—C10—C11179.09 (15)
C6—C1—C2—C31.5 (4)C14—C9—C10—C110.4 (2)
C2—C1—C6—C50.1 (3)C8—C9—C14—C13178.99 (15)
C2—C1—C6—C7179.82 (19)C10—C9—C14—C130.2 (2)
C1—C2—C3—C41.4 (4)C9—C10—C11—C120.2 (3)
C2—C3—C4—C50.3 (4)C10—C11—C12—C131.0 (3)
C3—C4—C5—C61.9 (4)C11—C12—C13—C141.1 (3)
C4—C5—C6—C11.8 (3)C12—C13—C14—C90.5 (3)
C4—C5—C6—C7178.17 (19)N1—C15—C16—C17178.40 (17)
C1—C6—C7—O13.4 (3)C20—C15—C16—C171.5 (3)
C1—C6—C7—C8173.22 (17)N1—C15—C20—C19177.80 (17)
C5—C6—C7—O1176.72 (18)C16—C15—C20—C192.2 (3)
C5—C6—C7—C86.7 (3)C15—C16—C17—C180.1 (3)
O1—C7—C8—N116.0 (2)C16—C17—C18—C191.1 (3)
O1—C7—C8—C9106.37 (17)C17—C18—C19—C200.5 (3)
C6—C7—C8—N1167.39 (14)C17—C18—C19—C21178.57 (19)
C6—C7—C8—C970.22 (17)C18—C19—C20—C151.1 (3)
N1—C8—C9—C10123.21 (14)C21—C19—C20—C15176.92 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H22···O1i0.859 (17)2.660 (17)3.3913 (17)143.8 (15)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC21H19NO
Mr301.37
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.0510 (3), 11.5745 (4), 12.9458 (7)
α, β, γ (°)112.542 (5), 97.396 (4), 99.960 (4)
V3)805.62 (8)
Z2
Radiation typeCu Kα
µ (mm1)0.59
Crystal size (mm)0.34 × 0.12 × 0.07
Data collection
DiffractometerOxford Diffraction Xcalibur Gemini S
Absorption correctionPart of the refinement model (ΔF)
[cubic fit to sin(theta)/lambda - 24 parameters; Parkin et al. (1995)]
Tmin, Tmax0.919, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
8027, 2833, 2174
Rint0.027
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.137, 1.09
No. of reflections2833
No. of parameters213
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.16

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H22···O1i0.859 (17)2.660 (17)3.3913 (17)143.8 (15)
Symmetry code: (i) x+1, y+1, z.
 

Footnotes

1Dedicated to the memory of Professor José Manuel Concellón.

Acknowledgements

Financial support by the Agencia Española de Cooperación Inter­nacional y Desarrollo (AECID), FEDER funding, the Spanish MICINN (MAT2006–01997 and Factoría de Cristalización Consolider Ingenio 2010) and the Gobierno del Principado de Asturias (PCTI) is acknowledged. Special acknowledgements go to Professor José Manuel Concellón for his support and scientific advice.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAu, O. & Tafeenko, V. (1986). Rev. Cubana Quim. 2, 65–74.  CAS Google Scholar
First citationBatsanov, A. S., Goeta, A. E., Howard, J. A. K., Soto, B. & Au-Alvarez, O. (2006). Acta Cryst. C62, o304–o306.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationParkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53–56.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds