organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Cyclo­hexyl-4-methyl­tetra­hydro­pyran-4-ol1

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, bDepartment of Chemistry, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, and cInstituto de Química, Universidade de São Paulo, São Paulo-SP, Brazil
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 26 April 2010; accepted 26 April 2010; online 30 April 2010)

In the title compound, C12H22O2, the 4-methyl­tetra­hydro­pyran-4-ol ring adopts a conformation close to that of a chair and with the two O atoms syn; the cyclo­hexyl group occupies an equatorial position and adopts a chair conformation. In the crystal packing, supra­molecular chains along the b axis are sustained by O—H⋯O hydrogen bonds. These are connected into undulating layers in the ab plane by C—H⋯O inter­actions.

Related literature

For background to the solvent-free catalysed synthesis of tetra­hydro­pyran odorants, see: Macedo et al. (2010[Macedo, A., Wendler, E. P., Dos Santos, A. A., Zukerman-Schpector, J. & Tiekink, E. R. T. (2010). J. Braz. Chem. Soc. In the press.]). For conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.])

[Scheme 1]

Experimental

Crystal data
  • C12H22O2

  • Mr = 198.30

  • Orthorhombic, P 21 21 21

  • a = 5.5714 (10) Å

  • b = 11.0182 (12) Å

  • c = 18.753 (3) Å

  • V = 1151.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 153 K

  • 0.20 × 0.10 × 0.08 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.510, Tmax = 1.000

  • 8308 measured reflections

  • 1404 independent reflections

  • 1338 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.107

  • S = 1.18

  • 1404 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1o⋯O1i 0.92 1.88 2.773 (2) 164
C13—H13b⋯O2ii 0.98 2.40 3.337 (3) 159
C6—H6b⋯O2ii 0.99 2.58 3.552 (3) 168
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3( Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

The structure of the title compound, (I), was investigated as a part of a study into the solvent-free catalysed synthesis of tetrahydropyran odorants (Macedo et al., 2010). The key observation in the molecular structure is the syn relationship of the oxygen atoms. The six-membered 4-methyltetrahydropyran-4-ol ring adopts a conformation close to a chair as defined by the ring-puckering parameters of q2 = 0.041 (2) Å, q3 = -0.559 (2) Å, Q = 0.560 (2) Å, θ = 176.6 (2) °, and φ2 = 159 (3) ° (Cremer & Pople, 1975). The cyclohexyl substituent occupies an equatorial position and adopts an almost perfect chair conformation. In the crystal packing, O–H···O hydrogen bonding leads to the formation of supramolecular chains along the b axis, Table 1. These are connected by C–H···O contacts into a 2-D array in the ab plane, Fig. 2 and Table 1. The layers have an undulating topology and the pendent cyclohexyl rings inter-digitate along the c axis, Fig. 3.

Related literature top

For background to solvent-free catalysed synthesis of tetrahydropyran odorants, see: Macedo et al. (2010). For conformational analysis, see: Cremer & Pople (1975)

Experimental top

The preparation and characterisation is as described in the literature (Macedo et al., 2010). The compound was dissolved in a mixture of hexane:ethyl acetate (2:1) and left to stand for five days at room temperature. The white irregular crystals were collected and washed with a small amount of hexane before drying in air.

Refinement top

The H atoms were geometrically placed (O—H = 0.92 Å and C—H = 0.98-1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C, O) or 1.5Ueq(methyl-C). In the absence of significant anomalous scattering effects, 1934 Friedel pairs were averaged in the final refinement.

Structure description top

The structure of the title compound, (I), was investigated as a part of a study into the solvent-free catalysed synthesis of tetrahydropyran odorants (Macedo et al., 2010). The key observation in the molecular structure is the syn relationship of the oxygen atoms. The six-membered 4-methyltetrahydropyran-4-ol ring adopts a conformation close to a chair as defined by the ring-puckering parameters of q2 = 0.041 (2) Å, q3 = -0.559 (2) Å, Q = 0.560 (2) Å, θ = 176.6 (2) °, and φ2 = 159 (3) ° (Cremer & Pople, 1975). The cyclohexyl substituent occupies an equatorial position and adopts an almost perfect chair conformation. In the crystal packing, O–H···O hydrogen bonding leads to the formation of supramolecular chains along the b axis, Table 1. These are connected by C–H···O contacts into a 2-D array in the ab plane, Fig. 2 and Table 1. The layers have an undulating topology and the pendent cyclohexyl rings inter-digitate along the c axis, Fig. 3.

For background to solvent-free catalysed synthesis of tetrahydropyran odorants, see: Macedo et al. (2010). For conformational analysis, see: Cremer & Pople (1975)

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3( Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of a supramolecular layer in (I) in the ab plane. The O–H···O hydrogen bonds and C–H···O contacts are shown as orange and blue dashed lines, respectively. Colour code: O, red; C, grey; and H, green.
[Figure 3] Fig. 3. Stacking of undulating layers in (I) along the c direction. The O–H···O hydrogen bonds are shown as orange dashed lines. Colour code: O, red; C, grey; and H, green.
2-Cyclohexyl-4-methyltetrahydropyran-4-ol top
Crystal data top
C12H22O2F(000) = 440
Mr = 198.30Dx = 1.144 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3569 reflections
a = 5.5714 (10) Åθ = 2.9–30.1°
b = 11.0182 (12) ŵ = 0.08 mm1
c = 18.753 (3) ÅT = 153 K
V = 1151.2 (3) Å3Prism, colourless
Z = 40.20 × 0.10 × 0.08 mm
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
1404 independent reflections
Radiation source: fine-focus sealed tube1338 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 26.5°, θmin = 2.9°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 56
Tmin = 0.510, Tmax = 1.000k = 1313
8308 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.288P]
where P = (Fo2 + 2Fc2)/3
1404 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C12H22O2V = 1151.2 (3) Å3
Mr = 198.30Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.5714 (10) ŵ = 0.08 mm1
b = 11.0182 (12) ÅT = 153 K
c = 18.753 (3) Å0.20 × 0.10 × 0.08 mm
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
1404 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1338 reflections with I > 2σ(I)
Tmin = 0.510, Tmax = 1.000Rint = 0.040
8308 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.18Δρmax = 0.17 e Å3
1404 reflectionsΔρmin = 0.18 e Å3
128 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. In the absence of significant anomalous scattering effects, 967 Friedel pairs were averaged in the final refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2884 (3)0.09963 (12)0.27691 (8)0.0230 (4)
O20.2092 (3)0.37416 (14)0.28439 (9)0.0274 (4)
H1o0.21180.44520.25860.033*
C20.2556 (4)0.15401 (18)0.34614 (11)0.0208 (5)
H2A0.39800.20600.35730.025*
C30.0318 (4)0.23271 (19)0.34544 (12)0.0230 (5)
H3A0.01700.27400.39210.028*
H3B0.11050.17990.33940.028*
C40.0323 (4)0.32838 (19)0.28640 (12)0.0220 (5)
C50.0907 (4)0.26595 (19)0.21548 (12)0.0233 (5)
H5A0.04630.21430.20110.028*
H5B0.11420.32830.17810.028*
C60.3154 (5)0.18839 (19)0.22109 (12)0.0241 (5)
H6A0.34460.14680.17510.029*
H6B0.45550.24080.23140.029*
C70.2457 (5)0.04850 (19)0.39950 (11)0.0212 (5)
H70.10380.00300.38720.025*
C80.4706 (5)0.0307 (2)0.39425 (12)0.0262 (6)
H8A0.48270.06430.34540.031*
H8B0.61420.02020.40280.031*
C90.4676 (5)0.1351 (2)0.44794 (12)0.0313 (6)
H9A0.33300.19050.43670.038*
H9B0.61900.18170.44410.038*
C100.4400 (5)0.0879 (2)0.52343 (12)0.0296 (6)
H10A0.58260.03900.53630.036*
H10B0.42990.15720.55690.036*
C110.2151 (5)0.0102 (2)0.53033 (12)0.0307 (6)
H11A0.20660.02380.57920.037*
H11B0.07160.06160.52290.037*
C120.2135 (5)0.0940 (2)0.47612 (11)0.0281 (6)
H12A0.34460.15140.48770.034*
H12B0.05960.13850.47980.034*
C130.2059 (5)0.43185 (19)0.30228 (12)0.0246 (5)
H13A0.20060.49110.26330.037*
H13B0.36910.39950.30670.037*
H13C0.15950.47150.34700.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0312 (9)0.0196 (7)0.0183 (7)0.0014 (7)0.0004 (7)0.0011 (6)
O20.0215 (8)0.0250 (8)0.0358 (9)0.0037 (7)0.0021 (8)0.0072 (7)
C20.0233 (12)0.0215 (10)0.0174 (10)0.0009 (10)0.0015 (9)0.0014 (8)
C30.0250 (12)0.0218 (10)0.0222 (10)0.0013 (10)0.0021 (10)0.0005 (9)
C40.0217 (12)0.0204 (10)0.0238 (10)0.0006 (9)0.0013 (10)0.0003 (9)
C50.0275 (12)0.0213 (10)0.0211 (11)0.0026 (10)0.0024 (10)0.0014 (9)
C60.0290 (13)0.0225 (10)0.0208 (10)0.0008 (10)0.0033 (11)0.0019 (9)
C70.0230 (13)0.0209 (10)0.0198 (10)0.0001 (10)0.0004 (10)0.0012 (8)
C80.0273 (14)0.0278 (12)0.0237 (11)0.0054 (11)0.0027 (11)0.0017 (9)
C90.0364 (15)0.0278 (12)0.0297 (12)0.0092 (12)0.0004 (12)0.0044 (10)
C100.0347 (15)0.0285 (12)0.0257 (11)0.0028 (12)0.0031 (11)0.0076 (10)
C110.0387 (15)0.0330 (12)0.0205 (10)0.0016 (13)0.0024 (12)0.0030 (10)
C120.0371 (15)0.0262 (11)0.0209 (10)0.0052 (12)0.0037 (11)0.0016 (9)
C130.0247 (12)0.0210 (10)0.0281 (11)0.0006 (10)0.0032 (10)0.0010 (9)
Geometric parameters (Å, º) top
O1—C21.441 (2)C7—H71.0000
O1—C61.440 (2)C8—C91.529 (3)
O2—C41.438 (3)C8—H8A0.9900
O2—H1O0.9200C8—H8B0.9900
C2—C31.519 (3)C9—C101.516 (3)
C2—C71.535 (3)C9—H9A0.9900
C2—H2A1.0000C9—H9B0.9900
C3—C41.529 (3)C10—C111.524 (4)
C3—H3A0.9900C10—H10A0.9900
C3—H3B0.9900C10—H10B0.9900
C4—C131.524 (3)C11—C121.533 (3)
C4—C51.532 (3)C11—H11A0.9900
C5—C61.519 (3)C11—H11B0.9900
C5—H5A0.9900C12—H12A0.9900
C5—H5B0.9900C12—H12B0.9900
C6—H6A0.9900C13—H13A0.9800
C6—H6B0.9900C13—H13B0.9800
C7—C81.530 (3)C13—H13C0.9800
C7—C121.532 (3)
C2—O1—C6112.68 (15)C2—C7—H7108.0
C4—O2—H1O109.1C9—C8—C7112.20 (19)
O1—C2—C3109.48 (17)C9—C8—H8A109.2
O1—C2—C7106.08 (15)C7—C8—H8A109.2
C3—C2—C7114.10 (18)C9—C8—H8B109.2
O1—C2—H2A109.0C7—C8—H8B109.2
C3—C2—H2A109.0H8A—C8—H8B107.9
C7—C2—H2A109.0C10—C9—C8110.99 (19)
C2—C3—C4113.48 (18)C10—C9—H9A109.4
C2—C3—H3A108.9C8—C9—H9A109.4
C4—C3—H3A108.9C10—C9—H9B109.4
C2—C3—H3B108.9C8—C9—H9B109.4
C4—C3—H3B108.9H9A—C9—H9B108.0
H3A—C3—H3B107.7C9—C10—C11110.8 (2)
O2—C4—C13109.66 (17)C9—C10—H10A109.5
O2—C4—C3105.02 (18)C11—C10—H10A109.5
C13—C4—C3112.05 (18)C9—C10—H10B109.5
O2—C4—C5109.49 (18)C11—C10—H10B109.5
C13—C4—C5111.76 (19)H10A—C10—H10B108.1
C3—C4—C5108.63 (17)C10—C11—C12111.7 (2)
C6—C5—C4111.56 (18)C10—C11—H11A109.3
C6—C5—H5A109.3C12—C11—H11A109.3
C4—C5—H5A109.3C10—C11—H11B109.3
C6—C5—H5B109.3C12—C11—H11B109.3
C4—C5—H5B109.3H11A—C11—H11B107.9
H5A—C5—H5B108.0C11—C12—C7112.08 (18)
O1—C6—C5110.25 (18)C11—C12—H12A109.2
O1—C6—H6A109.6C7—C12—H12A109.2
C5—C6—H6A109.6C11—C12—H12B109.2
O1—C6—H6B109.6C7—C12—H12B109.2
C5—C6—H6B109.6H12A—C12—H12B107.9
H6A—C6—H6B108.1C4—C13—H13A109.5
C8—C7—C12110.03 (19)C4—C13—H13B109.5
C8—C7—C2111.11 (18)H13A—C13—H13B109.5
C12—C7—C2111.57 (17)C4—C13—H13C109.5
C8—C7—H7108.0H13A—C13—H13C109.5
C12—C7—H7108.0H13B—C13—H13C109.5
C6—O1—C2—C359.9 (2)O1—C2—C7—C856.2 (2)
C6—O1—C2—C7176.59 (18)C3—C2—C7—C8176.83 (18)
O1—C2—C3—C454.8 (2)O1—C2—C7—C12179.4 (2)
C7—C2—C3—C4173.46 (18)C3—C2—C7—C1260.0 (3)
C2—C3—C4—O2167.77 (17)C12—C7—C8—C954.8 (3)
C2—C3—C4—C1373.3 (2)C2—C7—C8—C9178.84 (19)
C2—C3—C4—C550.7 (2)C7—C8—C9—C1056.7 (3)
O2—C4—C5—C6165.23 (17)C8—C9—C10—C1156.2 (3)
C13—C4—C5—C673.1 (2)C9—C10—C11—C1255.4 (3)
C3—C4—C5—C651.1 (2)C10—C11—C12—C754.6 (3)
C2—O1—C6—C561.8 (2)C8—C7—C12—C1153.5 (3)
C4—C5—C6—O157.0 (2)C2—C7—C12—C11177.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1o···O1i0.921.882.773 (2)164
C13—H13b···O2ii0.982.403.337 (3)159
C6—H6b···O2ii0.992.583.552 (3)168
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC12H22O2
Mr198.30
Crystal system, space groupOrthorhombic, P212121
Temperature (K)153
a, b, c (Å)5.5714 (10), 11.0182 (12), 18.753 (3)
V3)1151.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.10 × 0.08
Data collection
DiffractometerRigaku AFC12K/SATURN724
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.510, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8308, 1404, 1338
Rint0.040
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.107, 1.18
No. of reflections1404
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.18

Computer programs: CrystalClear (Rigaku/MSC, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3( Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1o···O1i0.921.882.773 (2)164
C13—H13b···O2ii0.982.403.337 (3)159
C6—H6b···O2ii0.992.583.552 (3)168
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z.
 

Footnotes

1Data reported in this paper were previously deposited with the CCDC (746915).

Additional correspondence author, email: julio@power.ufscar.br.

Acknowledgements

We thank FAPESP, CNPq (306532/2009-3 to JZS) and CAPES for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMacedo, A., Wendler, E. P., Dos Santos, A. A., Zukerman-Schpector, J. & Tiekink, E. R. T. (2010). J. Braz. Chem. Soc. In the press.  Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds