organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N'-(2,3,4-Tri­meth­oxy­benzyl­­idene)isonicotinohydrazide

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 7 April 2010; accepted 26 April 2010; online 30 April 2010)

In the title compound, C16H17N3O4, the mol­ecule exists in an E configuration with respect to the C=N double bond. The mol­ecule is not planar, the dihedral angle between the pyridine and benzene rings being 71.67 (8)°. In the crystal structure, mol­ecules are linked into chains along the b axis by bifurcated N—H⋯O and C—H⋯O hydrogen bonds. These chains are linked into a three-dimensional network by C—H⋯O and C—H⋯π inter­actions.

Related literature

For applications of isoniazid derivatives, see: Janin (2007[Janin, Y. L. (2007). Bioorg. Med. Chem. 15, 2479-2513.]); Maccari et al. (2005[Maccari, R., Ottana, R. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett. 15, 2509-2513.]); Slayden & Barry (2000[Slayden, R. A. & Barry, C. E. (2000). Microbes Infect. 2, 659-669.]); Kahwa et al. (1986[Kahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.]). For preparation of the compound, see: Lourenco et al. (2008[Lourenco, M. C. S., Ferreira, M. L., de Souza, M. V. N., Peralta, M. A., Vasconcelos, T. R. A. & Henriques, M. G. M. O. (2008). Eur. J. Med. Chem. 43, 1344-1347.]). For related structures, see: Naveenkumar et al. (2009[Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Loh, W.-S. & Fun, H.-K. (2009). Acta Cryst. E65, o2540-o2541.], 2010a[Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Quah, C. K. & Fun, H.-K. (2010a). Acta Cryst. E66, o291.],b[Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Yeap, C. S. & Fun, H.-K. (2010b). Acta Cryst. E66, o579.]); Shi (2005[Shi, J. (2005). Acta Cryst. E61, o3933-o3934.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17N3O4

  • Mr = 315.33

  • Monoclinic, P 21 /c

  • a = 14.246 (3) Å

  • b = 9.397 (2) Å

  • c = 12.098 (3) Å

  • β = 109.245 (6)°

  • V = 1529.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.38 × 0.33 × 0.14 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.986

  • 14341 measured reflections

  • 3482 independent reflections

  • 2988 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.159

  • S = 1.10

  • 3482 reflections

  • 215 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1/C2/N1/C3/C4/C5 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1i 0.91 (3) 2.09 (3) 2.7987 (19) 134 (2)
C4—H4A⋯O1i 0.93 2.46 3.348 (2) 159
C14—H14C⋯O3 0.96 2.55 3.113 (2) 118
C15—H15C⋯O2ii 0.96 2.49 3.292 (2) 141
C16—H16A⋯O3iii 0.96 2.57 3.518 (2) 167
C14—H14BCg1i 0.96 2.81 3.719 (3) 159
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In the search of new compounds of pharmaceutical importance, isoniazid derivatives have been found to possess potential tuberculostatic activity (Janin, 2007; Maccari et al., 2005; Slayden & Barry, 2000). Schiff bases have attracted much attention because of their biological activity (Kahwa et al., 1986). As a part of on-going work into the synthesis of (E)-N'-substituted isonicotinohydrazide derivatives, in this paper we present the crystal structure of the title compound (I).

The geometric parameters of (I) are comparable to those in related structures (Naveenkumar et al., 2009, 2010a, 2010b; Shi, 2005). The molecule exists in an E configuration with respect to the C7N3 double bond (Fig. 1). The isoniazid group is twisted away with the torsion angle of C1–C5–C6–N2 being -149.60 (15)°. The dihedral angle between the pyridine ring and the benzene ring is 71.67 (8)°. One of the methoxy group is coplanar with the benzene ring whereas the other two are twisted away from the benzene ring [torsion angles: C16–O4–C11–C12 = -3.8 (2), C15–O3–C10–C11 = -97.83 (17), C14–O2–C9–C10 = 73.23 (19) °]. A weak intramolecular C14–H14C···O3 hydrogen bond stabilizes the molecular structure (Table 1). In the crystal structure, the molecules are linked into one-dimensional chains along the b axis by the bifurcated intermolecular N2–H1N2···O1 and C4–H4A···O1 hydrogen bonds (Table 1). These chains are linked into a three-dimensional network by C15–H15C···O2, C16–H16A···O3 and C14–H14B···Cg1 interactions (Fig. 2, Table 1).

Related literature top

For applications of isoniazid derivatives, see: Janin (2007); Maccari et al. (2005); Slayden & Barry (2000); Kahwa et al. (1986). For preparation of the compound, see: Lourenco et al. (2008). For related structures, see: Naveenkumar et al. (2009, 2010a,b); Shi (2005). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

The isoniazid derivative (I) was prepared following the procedure by Lourenco et al. (2008). 2,3,4-Trimethoxybenzaldehyde (1.0 eq) was reacted with isoniazid (1.0 eq) in ethanol/water. After stirring for 3 h at room temperature, the resulting mixture was concentrated under reduced pressure. The residue was purified by washing with cold ethanol and ethyl ether, affording the pure derivative. The colourless crystals were obtained by recrystallization from a methanol solution of (I).

Refinement top

The H1N2 H atom was located from a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically [C–H = 0.93 or 0.96 Å] and refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups.

Structure description top

In the search of new compounds of pharmaceutical importance, isoniazid derivatives have been found to possess potential tuberculostatic activity (Janin, 2007; Maccari et al., 2005; Slayden & Barry, 2000). Schiff bases have attracted much attention because of their biological activity (Kahwa et al., 1986). As a part of on-going work into the synthesis of (E)-N'-substituted isonicotinohydrazide derivatives, in this paper we present the crystal structure of the title compound (I).

The geometric parameters of (I) are comparable to those in related structures (Naveenkumar et al., 2009, 2010a, 2010b; Shi, 2005). The molecule exists in an E configuration with respect to the C7N3 double bond (Fig. 1). The isoniazid group is twisted away with the torsion angle of C1–C5–C6–N2 being -149.60 (15)°. The dihedral angle between the pyridine ring and the benzene ring is 71.67 (8)°. One of the methoxy group is coplanar with the benzene ring whereas the other two are twisted away from the benzene ring [torsion angles: C16–O4–C11–C12 = -3.8 (2), C15–O3–C10–C11 = -97.83 (17), C14–O2–C9–C10 = 73.23 (19) °]. A weak intramolecular C14–H14C···O3 hydrogen bond stabilizes the molecular structure (Table 1). In the crystal structure, the molecules are linked into one-dimensional chains along the b axis by the bifurcated intermolecular N2–H1N2···O1 and C4–H4A···O1 hydrogen bonds (Table 1). These chains are linked into a three-dimensional network by C15–H15C···O2, C16–H16A···O3 and C14–H14B···Cg1 interactions (Fig. 2, Table 1).

For applications of isoniazid derivatives, see: Janin (2007); Maccari et al. (2005); Slayden & Barry (2000); Kahwa et al. (1986). For preparation of the compound, see: Lourenco et al. (2008). For related structures, see: Naveenkumar et al. (2009, 2010a,b); Shi (2005). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atom labels and 50% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the c axis, showing the molecules are linked into a 3-D network. Intermolecular contacts are shown as dashed lines.
(E)-N'-(2,3,4-Trimethoxybenzylidene)isonicotinohydrazide top
Crystal data top
C16H17N3O4F(000) = 664
Mr = 315.33Dx = 1.370 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5847 reflections
a = 14.246 (3) Åθ = 2.8–33.0°
b = 9.397 (2) ŵ = 0.10 mm1
c = 12.098 (3) ÅT = 100 K
β = 109.245 (6)°Block, colourless
V = 1529.1 (6) Å30.38 × 0.33 × 0.14 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3482 independent reflections
Radiation source: fine-focus sealed tube2988 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1718
Tmin = 0.963, Tmax = 0.986k = 1112
14341 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0903P)2 + 0.7464P]
where P = (Fo2 + 2Fc2)/3
3482 reflections(Δ/σ)max < 0.001
215 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C16H17N3O4V = 1529.1 (6) Å3
Mr = 315.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.246 (3) ŵ = 0.10 mm1
b = 9.397 (2) ÅT = 100 K
c = 12.098 (3) Å0.38 × 0.33 × 0.14 mm
β = 109.245 (6)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3482 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2988 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.986Rint = 0.030
14341 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.57 e Å3
3482 reflectionsΔρmin = 0.38 e Å3
215 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.01090 (9)0.86823 (12)0.28320 (11)0.0286 (3)
O20.36424 (9)0.41851 (12)0.00731 (10)0.0232 (3)
O30.47223 (8)0.40332 (13)0.23303 (10)0.0235 (3)
O40.41436 (9)0.55428 (13)0.38640 (10)0.0245 (3)
N10.18863 (12)0.63126 (17)0.66119 (13)0.0302 (4)
N20.05989 (10)0.63755 (14)0.24901 (12)0.0207 (3)
N30.11895 (10)0.66421 (14)0.13400 (11)0.0208 (3)
C10.08316 (12)0.79807 (18)0.52380 (15)0.0238 (3)
H1A0.05570.88880.50980.029*
C20.14580 (13)0.76010 (19)0.63502 (15)0.0277 (4)
H2A0.15870.82750.69440.033*
C30.16847 (13)0.53782 (19)0.57329 (15)0.0278 (4)
H3A0.19830.44870.58940.033*
C40.10626 (12)0.56370 (17)0.45947 (15)0.0231 (3)
H4A0.09420.49370.40210.028*
C50.06239 (11)0.69824 (17)0.43404 (14)0.0204 (3)
C60.00512 (11)0.74314 (16)0.31422 (14)0.0203 (3)
C70.18304 (11)0.56473 (17)0.09093 (13)0.0200 (3)
H7A0.19100.49140.13870.024*
C80.24315 (11)0.56734 (16)0.03316 (14)0.0198 (3)
C90.33100 (11)0.48599 (16)0.07346 (13)0.0184 (3)
C100.38660 (11)0.48299 (16)0.19251 (13)0.0188 (3)
C110.35435 (12)0.56152 (17)0.27246 (14)0.0205 (3)
C120.26610 (12)0.63962 (17)0.23309 (15)0.0233 (3)
H12A0.24380.68950.28600.028*
C130.21207 (12)0.64218 (17)0.11454 (14)0.0229 (3)
H13A0.15370.69510.08860.027*
C140.35843 (15)0.26623 (19)0.00823 (17)0.0325 (4)
H14A0.37680.22970.07230.049*
H14B0.29170.23760.01710.049*
H14C0.40290.22940.06410.049*
C150.55771 (13)0.4749 (2)0.22131 (17)0.0324 (4)
H15A0.61520.41520.25160.049*
H15B0.56820.56260.26440.049*
H15C0.54680.49450.14010.049*
C160.38727 (14)0.6398 (2)0.46951 (15)0.0308 (4)
H16A0.43430.62480.54630.046*
H16B0.32210.61320.46900.046*
H16C0.38730.73840.44880.046*
H1N20.0529 (18)0.544 (3)0.270 (2)0.038 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0297 (6)0.0180 (6)0.0300 (6)0.0029 (5)0.0011 (5)0.0029 (5)
O20.0270 (6)0.0225 (6)0.0204 (6)0.0008 (4)0.0083 (5)0.0008 (4)
O30.0192 (6)0.0264 (6)0.0232 (6)0.0059 (4)0.0047 (4)0.0030 (4)
O40.0264 (6)0.0278 (6)0.0176 (6)0.0044 (5)0.0048 (5)0.0011 (4)
N10.0324 (8)0.0321 (8)0.0239 (7)0.0010 (6)0.0062 (6)0.0048 (6)
N20.0224 (7)0.0167 (6)0.0202 (6)0.0005 (5)0.0032 (5)0.0022 (5)
N30.0217 (6)0.0189 (6)0.0200 (6)0.0027 (5)0.0045 (5)0.0024 (5)
C10.0234 (7)0.0205 (8)0.0288 (8)0.0018 (6)0.0104 (6)0.0013 (6)
C20.0306 (9)0.0289 (9)0.0244 (8)0.0040 (7)0.0101 (7)0.0026 (6)
C30.0276 (8)0.0244 (8)0.0285 (8)0.0007 (7)0.0055 (7)0.0062 (7)
C40.0214 (7)0.0200 (8)0.0272 (8)0.0014 (6)0.0071 (6)0.0000 (6)
C50.0181 (7)0.0197 (7)0.0243 (8)0.0031 (6)0.0080 (6)0.0013 (6)
C60.0178 (7)0.0172 (7)0.0257 (8)0.0011 (6)0.0069 (6)0.0006 (6)
C70.0201 (7)0.0191 (7)0.0201 (7)0.0028 (6)0.0054 (6)0.0004 (5)
C80.0192 (7)0.0175 (7)0.0211 (7)0.0023 (6)0.0044 (6)0.0028 (5)
C90.0198 (7)0.0160 (7)0.0197 (7)0.0020 (5)0.0069 (6)0.0004 (5)
C100.0175 (7)0.0170 (7)0.0212 (7)0.0014 (5)0.0054 (6)0.0021 (5)
C110.0222 (7)0.0195 (7)0.0192 (7)0.0006 (6)0.0059 (6)0.0013 (6)
C120.0242 (8)0.0227 (8)0.0236 (8)0.0035 (6)0.0088 (6)0.0016 (6)
C130.0216 (7)0.0199 (8)0.0259 (8)0.0026 (6)0.0061 (6)0.0019 (6)
C140.0394 (10)0.0229 (9)0.0378 (10)0.0001 (7)0.0165 (8)0.0068 (7)
C150.0205 (8)0.0433 (11)0.0336 (9)0.0019 (7)0.0092 (7)0.0000 (8)
C160.0330 (9)0.0381 (10)0.0211 (8)0.0055 (8)0.0086 (7)0.0035 (7)
Geometric parameters (Å, º) top
O1—C61.228 (2)C5—C61.512 (2)
O2—C91.3733 (19)C7—C81.463 (2)
O2—C141.433 (2)C7—H7A0.9300
O3—C101.3765 (18)C8—C131.395 (2)
O3—C151.438 (2)C8—C91.409 (2)
O4—C111.3634 (19)C9—C101.397 (2)
O4—C161.436 (2)C10—C111.409 (2)
N1—C31.335 (2)C11—C121.397 (2)
N1—C21.346 (2)C12—C131.387 (2)
N2—C61.345 (2)C12—H12A0.9300
N2—N31.3910 (18)C13—H13A0.9300
N2—H1N20.91 (3)C14—H14A0.9600
N3—C71.290 (2)C14—H14B0.9600
C1—C51.391 (2)C14—H14C0.9600
C1—C21.394 (2)C15—H15A0.9600
C1—H1A0.9300C15—H15B0.9600
C2—H2A0.9300C15—H15C0.9600
C3—C41.391 (2)C16—H16A0.9600
C3—H3A0.9300C16—H16B0.9600
C4—C51.399 (2)C16—H16C0.9600
C4—H4A0.9300
C9—O2—C14115.72 (13)O2—C9—C8118.64 (14)
C10—O3—C15112.99 (13)C10—C9—C8120.32 (14)
C11—O4—C16117.16 (13)O3—C10—C9120.87 (14)
C3—N1—C2116.26 (15)O3—C10—C11119.46 (13)
C6—N2—N3119.77 (13)C9—C10—C11119.68 (14)
C6—N2—H1N2124.0 (15)O4—C11—C12124.39 (15)
N3—N2—H1N2115.3 (15)O4—C11—C10115.49 (14)
C7—N3—N2112.81 (13)C12—C11—C10120.11 (15)
C5—C1—C2119.00 (16)C13—C12—C11119.48 (15)
C5—C1—H1A120.5C13—C12—H12A120.3
C2—C1—H1A120.5C11—C12—H12A120.3
N1—C2—C1123.62 (16)C12—C13—C8121.61 (15)
N1—C2—H2A118.2C12—C13—H13A119.2
C1—C2—H2A118.2C8—C13—H13A119.2
N1—C3—C4124.95 (16)O2—C14—H14A109.5
N1—C3—H3A117.5O2—C14—H14B109.5
C4—C3—H3A117.5H14A—C14—H14B109.5
C3—C4—C5117.92 (16)O2—C14—H14C109.5
C3—C4—H4A121.0H14A—C14—H14C109.5
C5—C4—H4A121.0H14B—C14—H14C109.5
C1—C5—C4118.23 (15)O3—C15—H15A109.5
C1—C5—C6117.70 (15)O3—C15—H15B109.5
C4—C5—C6124.06 (15)H15A—C15—H15B109.5
O1—C6—N2123.99 (15)O3—C15—H15C109.5
O1—C6—C5121.16 (14)H15A—C15—H15C109.5
N2—C6—C5114.79 (14)H15B—C15—H15C109.5
N3—C7—C8119.94 (14)O4—C16—H16A109.5
N3—C7—H7A120.0O4—C16—H16B109.5
C8—C7—H7A120.0H16A—C16—H16B109.5
C13—C8—C9118.77 (14)O4—C16—H16C109.5
C13—C8—C7121.20 (14)H16A—C16—H16C109.5
C9—C8—C7119.90 (14)H16B—C16—H16C109.5
O2—C9—C10120.87 (13)
C6—N2—N3—C7165.58 (14)C7—C8—C9—O27.4 (2)
C3—N1—C2—C10.3 (3)C13—C8—C9—C101.2 (2)
C5—C1—C2—N10.5 (3)C7—C8—C9—C10177.24 (14)
C2—N1—C3—C41.0 (3)C15—O3—C10—C982.69 (18)
N1—C3—C4—C51.0 (3)C15—O3—C10—C1197.83 (17)
C2—C1—C5—C40.5 (2)O2—C9—C10—O35.1 (2)
C2—C1—C5—C6179.50 (14)C8—C9—C10—O3179.63 (14)
C3—C4—C5—C10.2 (2)O2—C9—C10—C11175.45 (14)
C3—C4—C5—C6178.75 (15)C8—C9—C10—C110.2 (2)
N3—N2—C6—O17.8 (2)C16—O4—C11—C123.8 (2)
N3—N2—C6—C5175.09 (13)C16—O4—C11—C10176.28 (14)
C1—C5—C6—O127.6 (2)O3—C10—C11—O41.7 (2)
C4—C5—C6—O1151.38 (17)C9—C10—C11—O4178.79 (13)
C1—C5—C6—N2149.60 (15)O3—C10—C11—C12178.17 (14)
C4—C5—C6—N231.5 (2)C9—C10—C11—C121.3 (2)
N2—N3—C7—C8172.80 (13)O4—C11—C12—C13178.42 (15)
N3—C7—C8—C1322.4 (2)C10—C11—C12—C131.7 (2)
N3—C7—C8—C9161.70 (15)C11—C12—C13—C80.6 (2)
C14—O2—C9—C1073.23 (19)C9—C8—C13—C120.8 (2)
C14—O2—C9—C8111.40 (16)C7—C8—C13—C12176.81 (15)
C13—C8—C9—O2176.62 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 is centroid of the C1/C2/N1/C3/C4/C5 ring.
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.91 (3)2.09 (3)2.7987 (19)134 (2)
C4—H4A···O1i0.932.463.348 (2)159
C14—H14C···O30.962.553.113 (2)118
C15—H15C···O2ii0.962.493.292 (2)141
C16—H16A···O3iii0.962.573.518 (2)167
C14—H14B···Cg1i0.962.813.719 (3)159
Symmetry codes: (i) x, y1/2, z1/2; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H17N3O4
Mr315.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.246 (3), 9.397 (2), 12.098 (3)
β (°) 109.245 (6)
V3)1529.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.38 × 0.33 × 0.14
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.963, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
14341, 3482, 2988
Rint0.030
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.159, 1.10
No. of reflections3482
No. of parameters215
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.38

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is centroid of the C1/C2/N1/C3/C4/C5 ring.
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.91 (3)2.09 (3)2.7987 (19)134 (2)
C4—H4A···O1i0.932.463.348 (2)159
C14—H14C···O30.962.553.113 (2)118
C15—H15C···O2ii0.962.493.292 (2)141
C16—H16A···O3iii0.962.573.518 (2)167
C14—H14B···Cg1i0.962.813.719 (3)159
Symmetry codes: (i) x, y1/2, z1/2; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: amirin@usm.my.

§Thomson Reuters ResearcherID: A-5523-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

This research was supported by Universiti Sains Malaysia (USM) under the Fundamental Research Grant Scheme (203/PFARMASI/671157). HSNK and CSY are grateful to USM for USM Fellowships. HKF and CSY thank USM for the Research University Golden Goose Grant (1001/PFIZIK/811012).

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJanin, Y. L. (2007). Bioorg. Med. Chem. 15, 2479–2513.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.  CrossRef CAS Web of Science Google Scholar
First citationLourenco, M. C. S., Ferreira, M. L., de Souza, M. V. N., Peralta, M. A., Vasconcelos, T. R. A. & Henriques, M. G. M. O. (2008). Eur. J. Med. Chem. 43, 1344–1347.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMaccari, R., Ottana, R. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett. 15, 2509–2513.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNaveenkumar, H. S., Sadikun, A., Ibrahim, P., Loh, W.-S. & Fun, H.-K. (2009). Acta Cryst. E65, o2540–o2541.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNaveenkumar, H. S., Sadikun, A., Ibrahim, P., Quah, C. K. & Fun, H.-K. (2010a). Acta Cryst. E66, o291.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaveenkumar, H. S., Sadikun, A., Ibrahim, P., Yeap, C. S. & Fun, H.-K. (2010b). Acta Cryst. E66, o579.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, J. (2005). Acta Cryst. E61, o3933–o3934.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSlayden, R. A. & Barry, C. E. (2000). Microbes Infect. 2, 659–669.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds