inorganic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dilead(II) chromium(III) heptafluoride

Armel Le Bail

Université du Maine, Laboratoire des Oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,72085 Le Mans, France Correspondence e-mail: armel.le_bail@univ-lemans.fr

Received 18 March 2010; accepted 26 March 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (Pb–F) = 0.006 Å; R factor = 0.036; wR factor = 0.084; data-to-parameter ratio = 26.9.

Single crystals of the title compound, Pb_2CrF_7 , were obtained by solid-state reaction. The monoclinic structure is isotypic with Pb_2RhF_7 and is built up of CrF_6^{3-} octahedra isolated from each other, inserted in a fluorite-related matrix of PbF_6 distorted octahedra, and PbF_8 square antiprisms sharing edges and corners. The seventh F atom is 'independent', connected only to three Pb atoms within FPb₃ triangles, sharing an edge and building an almost planar Pb_4F_2 unit, so that the formula can alternatively be written as $Pb_2F(CrF_6)$.

Related literature

For the Pb₂RhF₇ structure-type, see: Domesle & Hoppe (1983), and for isostructural Sr₂RhF₇, see: Grosse & Hoppe (1987). For the indexed powder pattern of Pb₂CrF₇, see: de Kozak *et al.* (1999). For other compounds containing 'independent' fluorine atoms coordinated to three cations (Ca or Sr) in a plane, see: Ca₂AlF₇ (Domesle & Hoppe, 1980); Sr₅Zr₃F₂₂ (Le Bail, 1996); Sr₅(VOF₅)₃F(H₂O)₃ (Le Bail *et al.*, 2009). For fluorite-related lead-based compounds, see: Pb₈MnFe₂F₂₄ (Le Bail & Mercier, 1992); Pb₂ZrF₈ (Le Bail & Laval, 1998). For the structure simulation of fluoride glasses containing lead by using crystalline models, see: Le Bail (1989, 2000). For details and parameters of the bond-valence model, see: Brown & Altermatt (1985); Brese & O'Keeffe (1991).

Experimental

Crystal data

Pb₂CrF₇ $M_r = 599.40$ Monoclinic, $P2_1/c$ a = 5.4626 (7) Å b = 11.2085 (15) Å c = 9.5738 (11) Å $\beta = 91.197$ (10)°

Data collection

Siemens AED2 diffractometer

 $V = 586.05 (13) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 59.61 \text{ mm}^{-1}$ T = 293 K $0.12 \times 0.07 \times 0.01 \text{ mm}$

Absorption correction: Gaussian (SHELX76; Sheldrick, 2008) $T_{min} = 0.011, T_{max} = 0.321$ 6770 measured reflections 2506 independent reflections 2082 reflections with $I > 2\sigma(I)$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	93 parameters
$wR(F^2) = 0.084$	$\Delta \rho_{\rm max} = 3.17 \text{ e } \text{\AA}^{-3}$
S = 1.64	$\Delta \rho_{\rm min} = -2.20 \text{ e } \text{\AA}^{-3}$
2506 reflections	

 $R_{\rm int} = 0.041$

3 standard reflections every 120 min

intensity decay: 15%

Table 1

Selected	bond	lengths	(A)).
----------	------	---------	-----	----

Pb1-F1	2.324 (5)	Pb2-F2 ^{iv}	2.586 (5)
Pb1-F7 ⁱ	2.437 (5)	Pb2-F6	2.632 (6)
Pb1-F4 ⁱⁱ	2.439 (5)	Pb2-F3 ^{iv}	2.653 (5)
Pb1-F5 ⁱⁱⁱ	2.620 (6)	Pb2-F7	2.743 (6)
Pb1-F6 ^{iv}	2.640 (7)	Cr-F2	1.883 (5)
$Pb1-F2^{v}$	2.899 (6)	Cr-F3	1.900 (5)
Pb1-F6 ^v	3.067 (7)	Cr-F4	1.907 (5)
Pb2-F1	2.412 (5)	Cr-F5	1.909 (5)
Pb2-F1 ⁱⁱ	2.441 (4)	Cr-F6	1.912 (6)
Pb2-F5 ⁱ	2.497 (6)	Cr-F7	1.931 (4)
Pb2-F3 ^{vi}	2.512 (6)		

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) -x, -y + 1, -z; (iii) x, y + 1, z; (iv) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (v) -x + 1, -y + 1, -z; (vi) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

Table 2

Valence-bond analysis according to the empirical expression from Brown & Altermatt (1985), using parameters for solids from Brese & O'Keeffe (1991), with two results for Pb1 and Pb2 according to their coordinations (respectively VI or XI, and VIII or IX).

	Cr	Pb1	Pb2	Σ	Σexpected
F1		0.45	0.36 + 0.33	1.14	1
F2	0.52	0.10 + 0.05	0.22	0.89	1
F3	0.50	0.04	0.27 + 0.19	1.00	1
F4	0.49	0.33 + 0.04	0.05	0.91	1
F5	0.48	0.20	0.28	0.96	1
F6	0.48	0.19 + 0.06	0.20	0.93	1
F7	0.46	0.33 + 0.03	0.15	0.97	1
Σ	2.93	1.60 (VI)	2.00 (VIII)		
or		1.82 (XI)	2.05 (IX)		
Σexpected	3	2	2		

Table 3

Comparison of the cell parameters of the three isostructural hepta-fluorides showing a noticeable anomaly on the c parameter of the chromium compound.

Formula	а	b	С	β	V
$Pb_2RhF_7^a$ $Sr_2RhF_7^b$	5.569 5.510	11.854 11.628	8.832 8.640	91.00 90.98	582.96 553.49
$Pb_2CrF_7^c$	5.463	11.208	9.574	91.20	586.05

Notes: (a) Domesle & Hoppe (1983); (b) Grosse & Hoppe (1987); (c) this work.

Data collection: *STADI4* (Stoe & Cie, 1998); cell refinement: *STADI4*; data reduction: *X-RED* (Stoe & Cie, 1998); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2005) and *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Thanks are due to Professor M. Leblanc for the X-ray data recording and to A.-M. Mercier for the solid-state synthesis.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2317).

References

Brandenburg, K. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Brese, N. E. & O'Keeffe, M. (1991). *Acta Cryst*. B47, 192–197. Brown, I. D. & Altermatt, D. (1985). *Acta Cryst*. B41, 244–247.

Domesle, R. & Hoppe, R. (1980). Z. Kristallogr. 153, 317-328.

Domesle, R. & Hoppe, R. (1983). Z. Anorg. Allg. Chem. 501, 102–110. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Grosse, L. & Hoppe, R. (1987). Z. Anorg. Allg. Chem. 552, 123-131.
- Kozak, A. de (1999). ICDD PDF card 00-051-0237.
- Le Bail, A. (1989). J. Solid State Chem. 83, 267-271.
- Le Bail, A. (1996). Eur. J. Solid State Inorg. Chem. 33, 1211-1222.
- Le Bail, A. (2000). J. Non-Cryst. Solids 271, 249-259.
- Le Bail, A. & Laval, J.-P. (1998). Eur. J. Solid State Inorg. Chem. 35, 357–372. Le Bail, A. & Mercier, A.-M. (1992). Eur. J. Solid State Inorg. Chem. 29, 183–
- 190. Le Ball, A. & Mercler, A.-M. (1992). Eur. J. Solid State Thorg. Chem. 29, 183-

Le Bail, A., Mercier, A.-M. & Dix, I. (2009). Acta Cryst. E65, i46-i47.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Stoe & Cie (1998). *STAD14* and *X-RED*. Stoe & Cie, Darmstadt, Germany. Westrip, S. P. (2010). *publCIF*. In preparation.

supporting information

Acta Cryst. (2010). E66, i32-i33 [https://doi.org/10.1107/S1600536810011608]

Dilead(II) chromium(III) heptafluoride

Armel Le Bail

S1. Comment

Continuing investigations of crystalline complex compounds of lead and 3d metal cation fluorides having chemical formulations similar to some fluoride glasses for structure modelling purposes (Le Bail, 2000), such as Pb₈MnFe₃F₂₄ (Le Bail & Mercier, 1992) or NaPbFe₂F₉ (Le Bail, 1989), the title compound, Pb₂CrF₇, was synthesized and characterized from single crystal X-ray data. The results confirm that it is isostructural with Pb₂RhF₇ (Domesle & Hoppe, 1983), as mentioned previously by de Kozak *et al.* (1999). The monoclinic structure is built up of CrF_6^{3-} octahedra (Fig. 1) isolated from each other, inserted in a fluorite-related matrix of PbF_6 distorted octahedra and PbF_8 square antiprisms sharing edges and corners. The seventh fluorine atom is "independent", connected only to 3 Pb atoms in FPb₃ triangles, sharing an edge and building an almost planar Pb_4F_2 unit (Fig. 2), so that the formula can be alternatively written as $Pb_2F(CrF_6)$. There are some differences observed with the Pb_2RhF_7 structure-type. The Pb1 atom appears to be six-coordinated in Pb_2CrF_7 with Pb—F distances ranging from 2.324 (5) to 2.899 (6) Å, there are then 5 next F atoms being between 3.067 (7) and 3.364 (6) Å whereas in Pb₂RhF₇, Pb1 looks eightfold coordinated (Pb—F distances between 2.375 and 2.744 Å), with two next F atoms at 3.105 and 3.219 Å. The bond valence calculations show that the first 6 F atoms around Pb1 cannot really satisfy the Pb²⁺ charge and that the 5 next F atoms contribute to the overall bond valence (Table 2). The behaviour of the cell parameters is surprising in the series of the three isostructural compounds. If all cell parameters are logically smaller in Sr_2RhF_7 (Grosse & Hoppe, 1987) than in Pb₂RhF₇, due to the smaller Sr^{2+} size, in Pb₂CrF₇ one observes that only a and b are smaller but that c is much larger, in spite of the Cr^{3+} cation being smaller than Rh^{3+} (Table 3). Finally, the cell volume of Pb₂CrF₇ is even slightly larger than that of Pb₂RhF₇.

Usually, such fluorinated phases with high A^{II}/M ratio ($A^{II} = Ca$, Pb, Sr; M = 3d element or In, Nb, Zr, etc), are found to be related to the fluorite structure adopted by PbF₂ or SrF₂. The relation is in general easy to establish due to the presence of "independent" F atoms (not bonded to *M*) which are found to form characteristic FPb₄ tetrahedra. But this is not obvious here (Fig. 3) since no such FPb₄ tetrahedron is observed. Other compounds containing "independent" fluorine atoms coordinated to three cations (Ca or Sr) in a plane are Ca₂AlF₇ (Domesle & Hoppe, 1980), Sr₅Zr₃F₂₂ (Le Bail, 1996) and Sr₅(VOF₅)₃F(H₂O)₃ (Le Bail *et al.*, 2009), the last two being strongly related to the fluorite structure in which the FSr₃ triangles were found to interconnect the fluorite-related blocks. An examination of the Pb coordinates in Pb₂CrF₇ along the *a* axis (which is close to the PbF₂ fluorite cell parameter) shows that they alternate at values *x*~1/4 and 3/4, forming fluorite-related strips corrugating in the *ac* plane where highly distorted PbF₈ cubes as expected in the fluorite structure were obtained by small displacements of some of the F atoms as evidenced in Fig. 4 . Similar corrugated strips were observed for the Pb₂ZrF₈ structure (Le Bail & Laval, 1998), where the Zr⁴⁺ cations occupy bicapped trigonal prisms at positions similar to those of Cr³⁺ in the title compound. In Pb₂ZrF₈, the Pb²⁺ lone pair position was suggested by comparison of the Pb coordination with that of Ba in the isostructural *a*-Ba₂ZrF₈ structure, observing some strong distorsions, the streeochemichally active lone pair repelling clearly some F atoms. The same exercice is not so obvious here, even by comparing Sr₂RhF₇ with Pb₂RhF₇. However, there is a specific pattern of differences in the bond lengths (3 adjacent short Pb—F bonds and 3 adjacent long ones for Pb1; 4 short and 4 long for Pb2) which could be attributed to repulsion effects involving a somehow weak stereochemically active lone pair producing the longer Pb—F distances. The Pb1 lone pair is thus probably oriented towards the barycenter of the (F5—F6—F2) face of the Pb1F₆ octahedron, a similar reasoning applying to the Pb2 lone pair.

S2. Experimental

Solid state reaction between $2PbF_2$ and CrF_3 at 773 K for 96 hours in a platinum tube sealed under argon yielded single crystal of the title compound.

S3. Refinement

The highest residual peak and deepest hole in the final difference map were located respectively 0.67 Å and 0.83 Å from the Pb2 atom.

Figure 1

ORTEP-3 view (Farrugia, 1997) of the regular $[Cr^{III}F_6]^{3-}$ octahedron and of the "independent" fluoride ion F1 connected to Pb1 and Pb2 completing the Pb₂F(CrF₆) formula (ellipsoids at the 50% probability level).

Diamond (Brandenburg, 2005) view of the two $F1Pb_3$ triangles sharing an edge in order to form the planar F_2Pb_4 unit with $Pb1F_6$ distorted octahedra and $Pb2F_8$ square antiprisms.

Diamond (Brandenburg, 2005) view of the crystal packing along [100] showing the isolated [CrF₆] octahedra,

Idealized (with small displacement of some F atoms) view of the Pb atoms alternating positions close to x = 1/4 and 3/4, building corrugated strips with the PbF₂ fluorite structure. Similar kinked blocks were observed for Pb₂ZrF₈ (Le Bail & Laval, 1998).

Dilead(II) chromium(III) heptafluoride

Crystal data Pb₂CrF₇ $M_r = 599.40$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 5.4626 (7) Å b = 11.2085 (15) Å c = 9.5738 (11) Å $\beta = 91.197$ (10)° V = 586.05 (13) Å³ Z = 4

F(000) = 1004 $D_x = 6.793 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71069 Å Cell parameters from 40 reflections $\theta = 2.8-35^{\circ}$ $\mu = 59.61 \text{ mm}^{-1}$ T = 293 KPlatelet, green $0.12 \times 0.07 \times 0.01 \text{ mm}$ Data collection

Siemens AED2	2506 independent reflections
diffractometer	2082 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.041$
Graphite monochromator	$\theta_{\rm max} = 35.0^\circ, \ \theta_{\rm min} = 2.8^\circ$
$2\theta/\omega$ scans	$h = -8 \rightarrow 8$
Absorption correction: gaussian	$k = 0 \rightarrow 18$
(SHELX76; Sheldrick, 2008)	$l = 0 \rightarrow 15$
$T_{\min} = 0.011, \ T_{\max} = 0.321$	3 standard reflections every 120 min
6770 measured reflections	intensity decay: 15%
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.036$	$w = \left[\exp(2.00(\sin\theta/\lambda)^2) \right] / \left[\sigma^2 (F_0^2) + (0.0528P)^2 \right]$
$wR(F^2) = 0.084$	where $P = 0.33333F_o^2 + 0.66667F_c^2$
S = 1.64	$(\Delta/\sigma)_{\rm max} < 0.001$
2506 reflections	$\Delta \rho_{\rm max} = 3.17 \text{ e} \text{ Å}^{-3}$
93 parameters	$\Delta \rho_{\rm min} = -2.20 \text{ e} \text{ Å}^{-3}$
0 restraints	Extinction correction: SHELXL97 (Sheldrick,
0 constraints	2008), Fc [*] =kFc[1+0.001xFc ² λ^{3} /sin(2 θ)] ^{-1/4}

Primary atom site location: structure-invariant Extinction coefficient: 0.0171 (7)

Special details

direct methods

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Pb1	0.21926 (4)	0.81248 (3)	0.05527 (3)	0.01669 (9)	
Pb2	0.23992 (4)	0.43908 (2)	0.13531 (3)	0.01410 (9)	
Cr	0.30002 (17)	0.13284 (9)	0.20773 (11)	0.01105 (17)	
F1	0.1204 (9)	0.6150 (4)	0.0059 (6)	0.0212 (9)	
F2	0.5511 (9)	0.0321 (5)	0.1456 (6)	0.0240 (10)	
F3	0.3978 (9)	0.0941 (5)	0.3938 (6)	0.0233 (10)	
F4	0.2089 (10)	0.1752 (6)	0.0208 (6)	0.0253 (10)	
F5	0.0826 (9)	-0.0003 (5)	0.1978 (7)	0.0251 (11)	
F6	0.5281 (10)	0.2622 (6)	0.2141 (8)	0.0307 (13)	
F7	0.0430 (8)	0.2415 (5)	0.2594 (5)	0.0190 (8)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pb1	0.01615 (12)	0.01664 (12)	0.01736 (14)	-0.00212 (8)	0.00190 (8)	-0.00028 (8)

supporting information

F5 $0.023 (2)$ $0.0195 (19)$ $0.033 (3)$ $-0.0058 (18)$ $0.001 (2)$ $0.0002 (17)$ F6 $0.019 (2)$ $0.024 (2)$ $0.049 (4)$ $-0.0056 (19)$ $0.000 (2)$ $0.002 (2)$	19) (19))
F6 0.019 (2) 0.024 (2) 0.049 (4) -0.0056 (19) 0.000 (2) 0.002 (2) F7 0.0140 (16) 0.022 (2) 0.021 (2) 0.0084 (16) 0.0022 (15) -0.0009) (16)
F = 0.0140(16) = 0.022(2) = 0.021(2) = 0.0084(16) = 0.0022(15) = -0.0009	(16)

Geometric parameters (Å, °)

Pb1—F1	2.324 (5)	Cr—F4	1.907 (5)
Pb1—F7 ⁱ	2.437 (5)	Cr—F5	1.909 (5)
Pb1—F4 ⁱⁱ	2.439 (5)	Cr—F6	1.912 (6)
Pb1—F5 ⁱⁱⁱ	2.620 (6)	Cr—F7	1.931 (4)
Pb1—F6 ^{iv}	2.640 (7)	F2—F3	2.630 (8)
Pb1—F2 ^v	2.899 (6)	F2—F5	2.643 (8)
Pb1—F6 ^v	3.067 (7)	F2—F6	2.665 (9)
Pb2—F1	2.412 (5)	F2—F4	2.721 (7)
Pb2—F1 ⁱⁱ	2.441 (4)	F3—F6	2.659 (9)
Pb2—F5 ⁱ	2.497 (6)	F3—F5	2.734 (8)
Pb2—F3 ^{vi}	2.512 (6)	F3—F7	2.835 (6)
Pb2—F2 ^{iv}	2.586 (5)	F4—F7	2.584 (8)
Pb2—F6	2.632 (6)	F4—F5	2.696 (8)
Pb2—F3 ^{iv}	2.653 (5)	F4—F6	2.698 (9)
Pb2—F7	2.743 (6)	F5—F7	2.784 (8)
Cr—F2	1.883 (5)	F6—F7	2.704 (7)
Cr—F3	1.900 (5)		
F2—Cr—F3	88.1 (2)	F4—Cr—F6	89.9 (3)
F2—Cr—F4	91.8 (2)	F5—Cr—F6	177.6 (3)
F3—Cr—F4	178.3 (3)	F2—Cr—F7	176.1 (2)
F2—Cr—F5	88.4 (3)	F3—Cr—F7	95.5 (2)
F3—Cr—F5	91.7 (3)	F4—Cr—F7	84.6 (2)
F4—Cr—F5	89.9 (3)	F5—Cr—F7	92.9 (2)
F2—Cr—F6	89.2 (3)	F6—Cr—F7	89.4 (3)
F3—Cr—F6	88.5 (3)		

Symmetry codes: (i) -*x*, *y*+1/2, -*z*+1/2; (ii) -*x*, -*y*+1, -*z*; (iii) *x*, *y*+1, *z*; (iv) -*x*+1, *y*+1/2, -*z*+1/2; (v) -*x*+1, -*y*+1, -*z*; (vi) *x*, -*y*+1/2, *z*-1/2.