metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(2-methyl­benzimidazolium) β-octa­molybdate(VI)

aCollege of Food and Biological Engineering, Shandong Institute of Light Industry, Jinan 250353, People's Republic of China
*Correspondence e-mail: lujianghao001@yahoo.com.cn

(Received 20 March 2010; accepted 1 April 2010; online 10 April 2010)

The asymmetric unit of the title compound, (C8H9N2)4[Mo8O26], consists of two 2-methyl­benzimidazolium cations and one-half of a β-Mo8O264− anion, which is completed by crystallographic inversion symmetry. An extensive net of N—H⋯O hydrogen bonds between the cations and anions contribute to the crystal packing.

Related literature

For general background to polyoxometalates, see: Pope & Müller (1991[Pope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. 30, 34-38.]). For polyoxometalates modified with amines, see: Zhang, Dou et al. (2009[Zhang, X. T., Dou, J. M., Wei, P. H., Li, D. C., Li, B., Shi, C. W. & Hu, B. (2009). Inorg. Chim. Acta, 362, 3325-3332.]); Zhang, Wei et al. (2009[Zhang, X. T., Wei, P. H., Sun, D. F., Ni, Z. H., Dou, J. M., Li, B., Shi, C. W. & Hu, B. (2009). Cryst. Growth Des. 9, 4424-4428.]). For the structures of other polyoxidomolybdates with the β-[Mo8O26]4− anion, see, for example: Chen et al. (2004[Chen, S.-M., Lu, C.-Z., Yu, Y.-Q., Zhang, Q.-Z. & He, X. (2004). Acta Cryst. E60, m723-m725.]); Isobe et al. (1978[Isobe, M., Marumo, F., Yamase, T. & Ikawa, T. (1978). Acta Cryst. B34, 2728-2731.]); Li et al. (2004[Li, J., Qi, Y. F., Wang, E. B., Li, J., Wang, H. F., Li, Y. G., Lu, Y., Hao, N., Xu, L. & Hu, C. W. (2004). J. Coord. Chem. 57, 715-720.]); Lu et al. (2000[Lu, X. M., Li, W. J. & Mao, X. A. (2000). Chinese J.Struct.Chem. (Jiegou Huaxue), 19, 163-167.]).

[Scheme 1]

Experimental

Crystal data
  • (C8H9N2)4[Mo8O26]

  • Mr = 1716.21

  • Monoclinic, P 21 /n

  • a = 10.4831 (12) Å

  • b = 17.803 (2) Å

  • c = 13.794 (2) Å

  • β = 112.305 (5)°

  • V = 2381.6 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.13 mm−1

  • T = 296 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.784, Tmax = 0.848

  • 11151 measured reflections

  • 4167 independent reflections

  • 3566 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.063

  • S = 1.00

  • 4167 reflections

  • 336 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O5i 0.86 1.95 2.811 (4) 176
N2—H2⋯O13ii 0.86 2.06 2.857 (4) 155
N3—H3⋯O1i 0.86 1.99 2.752 (4) 147
N4—H4⋯O4iii 0.86 2.30 3.089 (4) 154
N4—H4⋯O2iii 0.86 2.41 3.060 (5) 133
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x, y+1, z-1; (iii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of polyoxometalates has attracted continuous research interest not only because of their appealing structural and topological novelties, but also due to their interesting optical, electronic, magnetic, and catalytic properties, as well as their potential medical applications (Pope & Müller, 1991). In our research group, organic amines, such as 3-(2-pyridyl)pyrazole and pyrazine, are used to effectively modify polyoxomolybdates under hydrothermal condictions (Zhang, Dou et al., 2009; Zhang, Wei et al., 2009). Here, we describe the synthesis and structural characterization of the title compound.

As shown in Figure 1, the title compound consists of two 3-H-2-methylbenzimidazolium cations and one-half of a Mo8O264- anion. The octamolybdate polyanion shows a β-configuration with a center of symmetry. The bond lengths and angles within the anion are very similar to previously reported polyoxidomolybdates with the β-Mo8O264- structure (Chen et al., 2004; Isobe et al., 1978; Li et al., 2004; Lu et al., 2000). The anion can formally be bisected into two [(µ5-O)(Mo4O12)]2- subunits by breaking the Mo—Oi bonds (-x, -y, -z+2). In this subunit, four Mo atoms sit approximately in a plane. There are four types of Mo—O bonds within the anion: terminal Mo—O bonds and bridging µ2-O—Mo, µ3-O—Mo, and µ5-O—Mo bonds. The corresponding bond lengths vary from the shortest with 1.686 (2) Å for one of the terminal Mo—O bonds, to the longest with 2.519 (3) Å for one of the bonds to the unusual µ5-O atom (O8) that sits in the 4 Mo plane near the center of each Mo—O moiety.

N—H···O hydrogen bonding between the cations and anions leads to a consolidation of the structure (Fig. 2; Table 1).

Related literature top

For general background to polyoxometalates, see: Pope & Müller (1991). For polyoxometalates modified with amines, see: Zhang, Dou et al. (2009); Zhang, Wei et al. (2009). For the structures of other polyoxidomolybdates with the β-[Mo8O26]4- anion, see, for example: Chen et al. (2004); Isobe et al. (1978); Li et al, (2004); Lu et al. (2000).

Experimental top

A mixture of 2-methylbenzimidazole (0.5 mmoL 0.07 g), sodium molybdate (0.4 mmoL, 0.10 g), and iron(III) chloride hexahydrate (0.25 mmol, 0.07 g) in 10 ml distilled water was sealed in a 25 ml Teflon-lined stainless steel autoclave and was kept at 433 K for three days. Colorless crystals suitable for the X-ray experiment were obtained. Anal. / calc. for C32H36Mo8N8O26: C, 22.37; H, 2.10; N, 6.53. Found: C, 22.10; H, 1.98; N, 6.27 %.

Refinement top

All hydrogen atoms bound to aromatic carbon atoms were refined in calculated positions using a riding model with a C—H distance of 0.93 Å and Uiso = 1.2Ueq(C). Methyl H atoms were refined with a a C—H distance of 0.96 Å and 1.5Ueq(C), allowing for free rotation of the methyl groups. Hydrogen atoms attached to aromatic N atoms were refined with a N—H distance of 0.86 Å and Uiso = 1.2Ueq(N).

Structure description top

The design and synthesis of polyoxometalates has attracted continuous research interest not only because of their appealing structural and topological novelties, but also due to their interesting optical, electronic, magnetic, and catalytic properties, as well as their potential medical applications (Pope & Müller, 1991). In our research group, organic amines, such as 3-(2-pyridyl)pyrazole and pyrazine, are used to effectively modify polyoxomolybdates under hydrothermal condictions (Zhang, Dou et al., 2009; Zhang, Wei et al., 2009). Here, we describe the synthesis and structural characterization of the title compound.

As shown in Figure 1, the title compound consists of two 3-H-2-methylbenzimidazolium cations and one-half of a Mo8O264- anion. The octamolybdate polyanion shows a β-configuration with a center of symmetry. The bond lengths and angles within the anion are very similar to previously reported polyoxidomolybdates with the β-Mo8O264- structure (Chen et al., 2004; Isobe et al., 1978; Li et al., 2004; Lu et al., 2000). The anion can formally be bisected into two [(µ5-O)(Mo4O12)]2- subunits by breaking the Mo—Oi bonds (-x, -y, -z+2). In this subunit, four Mo atoms sit approximately in a plane. There are four types of Mo—O bonds within the anion: terminal Mo—O bonds and bridging µ2-O—Mo, µ3-O—Mo, and µ5-O—Mo bonds. The corresponding bond lengths vary from the shortest with 1.686 (2) Å for one of the terminal Mo—O bonds, to the longest with 2.519 (3) Å for one of the bonds to the unusual µ5-O atom (O8) that sits in the 4 Mo plane near the center of each Mo—O moiety.

N—H···O hydrogen bonding between the cations and anions leads to a consolidation of the structure (Fig. 2; Table 1).

For general background to polyoxometalates, see: Pope & Müller (1991). For polyoxometalates modified with amines, see: Zhang, Dou et al. (2009); Zhang, Wei et al. (2009). For the structures of other polyoxidomolybdates with the β-[Mo8O26]4- anion, see, for example: Chen et al. (2004); Isobe et al. (1978); Li et al, (2004); Lu et al. (2000).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The building blocks of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level; H atoms are given as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound, displayed with N—H···O hydrogen bonds as dashed lines.
Tetrakis(2-methylbenzimidazolium) β-octamolybdate(VI) top
Crystal data top
(C8H9N2)4[Mo8O26]F(000) = 1656
Mr = 1716.21Dx = 2.393 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8117 reflections
a = 10.4831 (12) Åθ = 2.4–30.0°
b = 17.803 (2) ŵ = 2.13 mm1
c = 13.794 (2) ÅT = 296 K
β = 112.305 (5)°Block, colorless
V = 2381.6 (5) Å30.12 × 0.10 × 0.08 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
4167 independent reflections
Radiation source: fine-focus sealed tube3566 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
φ– and ω–scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1212
Tmin = 0.784, Tmax = 0.848k = 2116
11151 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.030P)2 + 3.2003P]
where P = (Fo2 + 2Fc2)/3
4167 reflections(Δ/σ)max = 0.001
336 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
(C8H9N2)4[Mo8O26]V = 2381.6 (5) Å3
Mr = 1716.21Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.4831 (12) ŵ = 2.13 mm1
b = 17.803 (2) ÅT = 296 K
c = 13.794 (2) Å0.12 × 0.10 × 0.08 mm
β = 112.305 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
4167 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3566 reflections with I > 2σ(I)
Tmin = 0.784, Tmax = 0.848Rint = 0.043
11151 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.00Δρmax = 0.53 e Å3
4167 reflectionsΔρmin = 0.59 e Å3
336 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2704 (6)0.7102 (3)0.2134 (4)0.0630 (14)
H1A0.30830.73950.27630.094*
H1B0.25360.65990.23070.094*
H1C0.18530.73230.16770.094*
C20.3686 (5)0.7086 (2)0.1602 (3)0.0467 (11)
C30.5050 (5)0.6647 (2)0.0825 (3)0.0432 (11)
C40.5084 (5)0.7430 (2)0.0804 (3)0.0450 (11)
C50.5869 (6)0.7808 (3)0.0347 (3)0.0582 (14)
H50.59100.83290.03400.070*
C60.6577 (6)0.7372 (3)0.0094 (4)0.0628 (15)
H60.71060.76080.04140.075*
C70.6544 (6)0.6583 (3)0.0086 (4)0.0577 (13)
H70.70480.63100.03940.069*
C80.5768 (5)0.6212 (2)0.0378 (3)0.0484 (11)
H80.57310.56900.03880.058*
C90.9368 (6)0.7591 (3)0.2339 (4)0.0662 (15)
H9A0.92390.78040.16680.099*
H9B0.91270.70680.22560.099*
H9C1.03150.76440.28010.099*
C100.8481 (6)0.7986 (3)0.2785 (3)0.0553 (13)
C110.7365 (5)0.8896 (3)0.3277 (3)0.0504 (12)
C120.7073 (5)0.8199 (3)0.3619 (3)0.0535 (13)
C130.6212 (6)0.8145 (3)0.4162 (4)0.0681 (16)
H130.59990.76850.43810.082*
C140.5692 (6)0.8797 (4)0.4361 (4)0.0759 (17)
H140.51090.87770.47280.091*
C150.5990 (6)0.9503 (4)0.4041 (4)0.0716 (16)
H150.56110.99360.41990.086*
C160.6846 (6)0.9552 (3)0.3490 (4)0.0592 (13)
H160.70611.00130.32730.071*
Mo10.04862 (3)0.096451 (15)1.00469 (2)0.02172 (9)
Mo20.15562 (4)0.030802 (16)0.78252 (2)0.02654 (9)
Mo30.16768 (3)0.051020 (16)0.89081 (2)0.02505 (9)
Mo40.37656 (4)0.016654 (17)1.11342 (3)0.02963 (10)
N10.4180 (4)0.64678 (18)0.1335 (3)0.0448 (9)
H10.39860.60180.14620.054*
N20.4224 (5)0.76737 (19)0.1295 (3)0.0508 (10)
H20.40620.81360.13880.061*
N30.7772 (5)0.7662 (2)0.3297 (3)0.0555 (11)
H30.77540.71880.34090.067*
N40.8238 (4)0.8718 (2)0.2755 (3)0.0544 (11)
H40.85740.90420.24530.065*
O10.2370 (3)0.13795 (14)0.9258 (2)0.0361 (6)
O20.1516 (3)0.03926 (15)0.7647 (2)0.0384 (7)
O30.3162 (3)0.01243 (13)0.96278 (19)0.0307 (6)
O40.0395 (3)0.06073 (12)0.86774 (17)0.0251 (5)
O50.1357 (3)0.00303 (15)0.67023 (19)0.0377 (7)
O60.3086 (3)0.02676 (13)0.77550 (19)0.0313 (6)
O70.2220 (3)0.11838 (14)0.7564 (2)0.0405 (7)
O80.1309 (3)0.02939 (12)0.95578 (17)0.0242 (5)
O90.0207 (3)0.18273 (13)0.97196 (19)0.0327 (6)
O100.0283 (3)0.07826 (12)1.13665 (17)0.0238 (5)
O110.2261 (3)0.11265 (13)1.05853 (19)0.0291 (6)
O120.5156 (3)0.07420 (16)1.1525 (2)0.0429 (7)
O130.4390 (3)0.07249 (15)1.1401 (2)0.0398 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.079 (4)0.043 (3)0.070 (3)0.022 (3)0.032 (3)0.014 (2)
C20.056 (3)0.030 (2)0.044 (2)0.008 (2)0.008 (2)0.0069 (18)
C30.052 (3)0.028 (2)0.040 (2)0.009 (2)0.006 (2)0.0075 (17)
C40.054 (3)0.027 (2)0.038 (2)0.007 (2)0.001 (2)0.0049 (17)
C50.071 (4)0.038 (3)0.050 (3)0.023 (3)0.005 (3)0.011 (2)
C60.070 (4)0.057 (3)0.055 (3)0.027 (3)0.017 (3)0.008 (2)
C70.059 (4)0.057 (3)0.053 (3)0.014 (3)0.017 (3)0.000 (2)
C80.060 (3)0.035 (2)0.048 (2)0.006 (2)0.018 (2)0.002 (2)
C90.078 (5)0.060 (3)0.057 (3)0.004 (3)0.022 (3)0.012 (3)
C100.056 (4)0.055 (3)0.042 (2)0.017 (3)0.005 (2)0.019 (2)
C110.037 (3)0.054 (3)0.049 (2)0.013 (2)0.004 (2)0.021 (2)
C120.045 (3)0.059 (3)0.045 (2)0.020 (3)0.005 (2)0.022 (2)
C130.065 (4)0.071 (4)0.067 (3)0.018 (3)0.023 (3)0.025 (3)
C140.058 (4)0.103 (5)0.073 (4)0.003 (4)0.030 (3)0.026 (4)
C150.057 (4)0.078 (4)0.075 (3)0.007 (3)0.020 (3)0.023 (3)
C160.045 (3)0.056 (3)0.068 (3)0.003 (3)0.012 (3)0.023 (3)
Mo10.0292 (2)0.01279 (14)0.02839 (15)0.00022 (12)0.01688 (14)0.00018 (11)
Mo20.0334 (2)0.01937 (16)0.02819 (16)0.00220 (13)0.01317 (15)0.00172 (12)
Mo30.0308 (2)0.01887 (15)0.03238 (16)0.00054 (13)0.01981 (15)0.00203 (12)
Mo40.0279 (2)0.02408 (17)0.03886 (18)0.00065 (13)0.01489 (16)0.00324 (13)
N10.058 (3)0.0221 (16)0.054 (2)0.0012 (17)0.022 (2)0.0097 (15)
N20.070 (3)0.0210 (17)0.049 (2)0.0021 (18)0.009 (2)0.0086 (15)
N30.062 (3)0.046 (2)0.050 (2)0.019 (2)0.012 (2)0.0170 (18)
N40.050 (3)0.049 (2)0.058 (2)0.0124 (19)0.014 (2)0.0295 (19)
O10.0372 (18)0.0232 (13)0.0545 (16)0.0030 (12)0.0251 (14)0.0021 (12)
O20.048 (2)0.0385 (15)0.0393 (14)0.0047 (13)0.0280 (14)0.0034 (12)
O30.0336 (17)0.0265 (13)0.0407 (14)0.0021 (11)0.0240 (13)0.0025 (11)
O40.0326 (16)0.0182 (11)0.0307 (12)0.0016 (10)0.0191 (12)0.0002 (10)
O50.050 (2)0.0327 (14)0.0330 (13)0.0010 (13)0.0192 (13)0.0012 (11)
O60.0319 (17)0.0275 (13)0.0342 (13)0.0010 (11)0.0121 (12)0.0037 (11)
O70.044 (2)0.0242 (14)0.0467 (15)0.0063 (13)0.0105 (14)0.0023 (12)
O80.0260 (15)0.0180 (11)0.0331 (12)0.0023 (10)0.0161 (11)0.0010 (10)
O90.0456 (19)0.0192 (12)0.0389 (13)0.0050 (12)0.0223 (13)0.0019 (10)
O100.0301 (16)0.0175 (11)0.0277 (11)0.0007 (10)0.0154 (11)0.0018 (9)
O110.0333 (17)0.0208 (12)0.0385 (13)0.0022 (11)0.0197 (12)0.0015 (10)
O120.0305 (18)0.0396 (16)0.0591 (17)0.0047 (13)0.0176 (14)0.0087 (14)
O130.0398 (19)0.0302 (14)0.0492 (15)0.0072 (13)0.0167 (14)0.0008 (13)
Geometric parameters (Å, º) top
C1—C21.473 (7)Mo1—O91.686 (2)
C1—H1A0.9600Mo1—O111.746 (3)
C1—H1B0.9600Mo1—O101.939 (2)
C1—H1C0.9600Mo1—O41.961 (2)
C2—N21.332 (6)Mo1—O82.112 (2)
C2—N11.326 (5)Mo1—O8i2.388 (2)
C3—N11.384 (6)Mo1—Mo3i3.2178 (5)
C3—C81.378 (6)Mo1—Mo23.2189 (6)
C3—C41.395 (5)Mo2—O71.689 (3)
C4—C51.386 (7)Mo2—O51.712 (2)
C4—N21.386 (6)Mo2—O61.874 (3)
C5—C61.366 (8)Mo2—O42.007 (3)
C5—H50.9300Mo2—O82.304 (2)
C6—C71.405 (7)Mo2—O10i2.380 (2)
C6—H60.9300Mo3—O21.696 (2)
C7—C81.379 (6)Mo3—O11.700 (3)
C7—H70.9300Mo3—O31.874 (3)
C8—H80.9300Mo3—O10i2.002 (2)
C9—C101.474 (8)Mo3—O8i2.322 (2)
C9—H9A0.9600Mo3—O42.354 (2)
C9—H9B0.9600Mo3—Mo1i3.2178 (5)
C9—H9C0.9600Mo4—O121.694 (3)
C10—N41.326 (6)Mo4—O131.703 (3)
C10—N31.335 (6)Mo4—O6i1.928 (2)
C11—C161.366 (7)Mo4—O31.930 (2)
C11—N41.399 (6)Mo4—O112.253 (3)
C11—C121.402 (6)Mo4—O8i2.519 (3)
C12—N31.377 (7)N1—H10.8600
C12—C131.377 (7)N2—H20.8600
C13—C141.353 (8)N3—H30.8600
C13—H130.9300N4—H40.8600
C14—C151.407 (8)O6—Mo4i1.928 (2)
C14—H140.9300O8—Mo3i2.322 (2)
C15—C161.381 (8)O8—Mo1i2.388 (2)
C15—H150.9300O10—Mo3i2.002 (2)
C16—H160.9300O10—Mo2i2.380 (2)
C2—C1—H1A109.5Mo3i—Mo1—Mo290.460 (15)
C2—C1—H1B109.5O7—Mo2—O5104.76 (13)
H1A—C1—H1B109.5O7—Mo2—O6102.64 (13)
C2—C1—H1C109.5O5—Mo2—O6101.01 (12)
H1A—C1—H1C109.5O7—Mo2—O497.22 (12)
H1B—C1—H1C109.5O5—Mo2—O499.18 (12)
N2—C2—N1107.8 (4)O6—Mo2—O4146.89 (10)
N2—C2—C1127.1 (4)O7—Mo2—O896.12 (11)
N1—C2—C1125.1 (4)O5—Mo2—O8158.55 (11)
N1—C3—C8132.5 (4)O6—Mo2—O878.74 (9)
N1—C3—C4105.5 (4)O4—Mo2—O872.97 (8)
C8—C3—C4122.0 (4)O7—Mo2—O10i164.81 (11)
C5—C4—N2132.7 (4)O5—Mo2—O10i87.08 (10)
C5—C4—C3121.2 (5)O6—Mo2—O10i83.97 (10)
N2—C4—C3106.1 (4)O4—Mo2—O10i71.11 (9)
C6—C5—C4116.4 (4)O8—Mo2—O10i71.52 (8)
C6—C5—H5121.8O7—Mo2—Mo186.53 (10)
C4—C5—H5121.8O5—Mo2—Mo1134.48 (10)
C5—C6—C7123.0 (5)O6—Mo2—Mo1119.64 (7)
C5—C6—H6118.5O4—Mo2—Mo135.30 (6)
C7—C6—H6118.5O8—Mo2—Mo140.91 (6)
C8—C7—C6120.2 (5)O10i—Mo2—Mo178.35 (6)
C8—C7—H7119.9O2—Mo3—O1105.60 (13)
C6—C7—H7119.9O2—Mo3—O3102.02 (12)
C3—C8—C7117.2 (4)O1—Mo3—O3102.64 (13)
C3—C8—H8121.4O2—Mo3—O10i98.07 (12)
C7—C8—H8121.4O1—Mo3—O10i97.49 (12)
C10—C9—H9A109.5O3—Mo3—O10i146.37 (9)
C10—C9—H9B109.5O2—Mo3—O8i158.12 (11)
H9A—C9—H9B109.5O1—Mo3—O8i95.34 (10)
C10—C9—H9C109.5O3—Mo3—O8i78.99 (9)
H9A—C9—H9C109.5O10i—Mo3—O8i72.51 (9)
H9B—C9—H9C109.5O2—Mo3—O485.84 (11)
N4—C10—N3107.6 (5)O1—Mo3—O4165.57 (10)
N4—C10—C9126.9 (4)O3—Mo3—O483.04 (10)
N3—C10—C9125.5 (5)O10i—Mo3—O471.77 (8)
C16—C11—N4134.1 (4)O8i—Mo3—O472.51 (8)
C16—C11—C12121.8 (5)O2—Mo3—Mo1i132.68 (10)
N4—C11—C12104.1 (4)O1—Mo3—Mo1i86.67 (9)
N3—C12—C13131.7 (5)O3—Mo3—Mo1i119.94 (7)
N3—C12—C11107.1 (4)O10i—Mo3—Mo1i34.61 (6)
C13—C12—C11121.1 (5)O8i—Mo3—Mo1i40.95 (6)
C14—C13—C12116.6 (5)O4—Mo3—Mo1i79.05 (5)
C14—C13—H13121.7O12—Mo4—O13106.33 (15)
C12—C13—H13121.7O12—Mo4—O6i102.94 (12)
C13—C14—C15123.2 (5)O13—Mo4—O6i98.20 (12)
C13—C14—H14118.4O12—Mo4—O3104.89 (12)
C15—C14—H14118.4O13—Mo4—O397.98 (12)
C16—C15—C14119.8 (6)O6i—Mo4—O3142.20 (11)
C16—C15—H15120.1O12—Mo4—O1193.22 (12)
C14—C15—H15120.1O13—Mo4—O11160.46 (12)
C11—C16—C15117.4 (5)O6i—Mo4—O1176.92 (10)
C11—C16—H16121.3O3—Mo4—O1176.46 (9)
C15—C16—H16121.3C2—N1—C3110.6 (4)
O9—Mo1—O11104.19 (13)C2—N1—H1124.7
O9—Mo1—O10102.34 (10)C3—N1—H1124.7
O11—Mo1—O1096.18 (11)C2—N2—C4110.0 (4)
O9—Mo1—O4100.32 (10)C2—N2—H2125.0
O11—Mo1—O496.74 (10)C4—N2—H2125.0
O10—Mo1—O4150.22 (9)C10—N3—C12110.0 (4)
O9—Mo1—O8100.83 (12)C10—N3—H3125.0
O11—Mo1—O8154.98 (10)C12—N3—H3125.0
O10—Mo1—O878.64 (9)C10—N4—C11111.2 (4)
O4—Mo1—O878.32 (9)C10—N4—H4124.4
O9—Mo1—O8i175.91 (12)C11—N4—H4124.4
O11—Mo1—O8i79.83 (10)Mo3—O3—Mo4117.45 (12)
O10—Mo1—O8i77.76 (8)Mo1—O4—Mo2108.44 (11)
O4—Mo1—O8i78.28 (8)Mo1—O4—Mo3109.11 (10)
O8—Mo1—O8i75.15 (10)Mo2—O4—Mo3104.92 (9)
O9—Mo1—Mo3i92.48 (9)Mo2—O6—Mo4i118.36 (13)
O11—Mo1—Mo3i132.03 (7)Mo1—O8—Mo293.48 (8)
O10—Mo1—Mo3i35.91 (8)Mo1—O8—Mo3i92.93 (9)
O4—Mo1—Mo3i124.42 (7)Mo2—O8—Mo3i162.00 (12)
O8—Mo1—Mo3i46.11 (6)Mo1—O8—Mo1i104.85 (10)
O8i—Mo1—Mo3i85.24 (5)Mo2—O8—Mo1i97.79 (8)
O9—Mo1—Mo290.71 (9)Mo3i—O8—Mo1i96.78 (8)
O11—Mo1—Mo2132.94 (7)Mo1—O10—Mo3i109.48 (11)
O10—Mo1—Mo2124.25 (7)Mo1—O10—Mo2i109.51 (9)
O4—Mo1—Mo236.25 (7)Mo3i—O10—Mo2i104.12 (9)
O8—Mo1—Mo245.61 (6)Mo1—O11—Mo4120.98 (12)
O8i—Mo1—Mo285.92 (6)
Symmetry code: (i) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5ii0.861.952.811 (4)176
N2—H2···O13iii0.862.062.857 (4)155
N3—H3···O1ii0.861.992.752 (4)147
N4—H4···O4iv0.862.303.089 (4)154
N4—H4···O2iv0.862.413.060 (5)133
Symmetry codes: (ii) x+1/2, y+1/2, z1/2; (iii) x, y+1, z1; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C8H9N2)4[Mo8O26]
Mr1716.21
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)10.4831 (12), 17.803 (2), 13.794 (2)
β (°) 112.305 (5)
V3)2381.6 (5)
Z2
Radiation typeMo Kα
µ (mm1)2.13
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.784, 0.848
No. of measured, independent and
observed [I > 2σ(I)] reflections
11151, 4167, 3566
Rint0.043
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.063, 1.00
No. of reflections4167
No. of parameters336
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.59

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.861.952.811 (4)175.7
N2—H2···O13ii0.862.062.857 (4)154.7
N3—H3···O1i0.861.992.752 (4)147.0
N4—H4···O4iii0.862.303.089 (4)153.5
N4—H4···O2iii0.862.413.060 (5)133.0
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x, y+1, z1; (iii) x+1, y+1, z+1.
 

Acknowledgements

Financial support from the Inter­national Cooperation Program for Excellent Lecturers of 2008 from Shandong Provincial Education Department, the Research Award Fund for Outstanding Young and Middle-aged Scientists of Shandong Province (2008BS04022), Shandong Provincial Education Department and Shandong Institute of Education are gratefully acknowledged.

References

First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, S.-M., Lu, C.-Z., Yu, Y.-Q., Zhang, Q.-Z. & He, X. (2004). Acta Cryst. E60, m723–m725.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIsobe, M., Marumo, F., Yamase, T. & Ikawa, T. (1978). Acta Cryst. B34, 2728–2731.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationLi, J., Qi, Y. F., Wang, E. B., Li, J., Wang, H. F., Li, Y. G., Lu, Y., Hao, N., Xu, L. & Hu, C. W. (2004). J. Coord. Chem. 57, 715-720.  Web of Science CSD CrossRef CAS Google Scholar
First citationLu, X. M., Li, W. J. & Mao, X. A. (2000). Chinese J.Struct.Chem. (Jiegou Huaxue), 19, 163–167.  CAS Google Scholar
First citationPope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. 30, 34–38.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X. T., Dou, J. M., Wei, P. H., Li, D. C., Li, B., Shi, C. W. & Hu, B. (2009). Inorg. Chim. Acta, 362, 3325–3332.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X. T., Wei, P. H., Sun, D. F., Ni, Z. H., Dou, J. M., Li, B., Shi, C. W. & Hu, B. (2009). Cryst. Growth Des. 9, 4424–4428.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds