organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-Benzyl-9H-carbazole

aNamık Kemal University, Faculty of Arts and Sciences, Department of Chemistry, 59100 Tekirdağ, Turkey, bKarabük University, Department of Physics, 78050 Karabük, Turkey, cAnadolu University, Faculty of Science, Department of Chemistry, 26470 Yenibağlar, Eskişehir, Turkey, and dHacettepe University, Department of Physics, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 26 March 2010; accepted 2 April 2010; online 14 April 2010)

The asymmetric unit of the title compound, C19H15N, contains two crystallographically independent mol­ecules. In both mol­ecules, the planar carbazole moieties [maximum deviations = 0.037 (4) and 0.042 (3) Å] are oriented with respect to the adjacent benzene rings, at dihedral angles of 85.29 (8) and 89.89 (7)°, respectively. In the crystal structure, weak C—H⋯π inter­actions are observed involving the carbazole rings.

Related literature

For tetra­hydro­carbazole systems present in the framework of a number of indole-type alkaloids of biological inter­est, see: Phillipson & Zenk (1980[Phillipson, J. D. & Zenk, M. H. (1980). Indole and Biogenetically Related Alkaloids, ch. 3. New York: Academic Press.]); Saxton (1983[Saxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, chs. 8 and 11. New York: Wiley.]); Abraham (1975[Abraham, D. J. (1975). The Catharanthus Alkaloids, edited by W. I. Taylor & N. R. Fransworth, chs. 7 and 8. New York: Marcel Decker.]). For related structures, see: Hökelek et al. (1994[Hökelek, T., Patır, S., Gülce, A. & Okay, G. (1994). Acta Cryst. C50, 450-453.], 1998[Hökelek, T., Gündüz, H., Patır, S. & Uludağ, N. (1998). Acta Cryst. C54, 1297-1299.], 1999[Hökelek, T., Patır, S. & Uludağ, N. (1999). Acta Cryst. C55, 114-116.], 2004[Hökelek, T., Uludağ, N. & Patır, S. (2004). Acta Cryst. E60, o25-o27.], 2006[Hökelek, T., Uludağ, N. & Patır, S. (2006). Acta Cryst. E62, o791-o793.]); Patır et al. (1997[Patır, S., Okay, G., Gülce, A., Salih, B. & Hökelek, T. (1997). J. Heterocycl. Chem. 34, 1239-1242.]); Hökelek & Patır (1999[Hökelek, T. & Patır, S. (1999). Acta Cryst. C55, 675-677.], 2002[Hökelek, T. & Patır, S. (2002). Acta Cryst. E58, o374-o376.]); Çaylak et al. (2007[Çaylak, N., Hökelek, T., Uludağ, N. & Patır, S. (2007). Acta Cryst. E63, o3913-o3914.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15N

  • Mr = 257.32

  • Monoclinic, P 21 /c

  • a = 14.9305 (4) Å

  • b = 5.5612 (2) Å

  • c = 32.7916 (8) Å

  • β = 94.518 (3)°

  • V = 2714.27 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.27 × 0.15 × 0.14 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.981, Tmax = 0.990

  • 24870 measured reflections

  • 6816 independent reflections

  • 3384 reflections with I > 2σ(I)

  • Rint = 0.103

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.210

  • S = 1.03

  • 6816 reflections

  • 474 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Cg1′i 0.97 (4) 2.940 (4) 3.636 (5) 129.46 (5)
C10′—H10CCg1′ii 0.98 (3) 2.787 (4) 3.700 (5) 154.92 (4)
C4′—H4′⋯Cg3i 0.99 (4) 2.706 (4) 3.554 (4) 144.36 (5)
Symmetry codes: (i) [-x, y-{{1\over 2}}, -z+{{1\over 2}}]; (ii) x, y+1, z. Cg1′ and Cg3 are the centroids of the C1′–C4′/C4A′/C9A′ and C5A/C5–C8/C8A rings, respectively.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Tetrahydrocarbazole systems are present in the framework of a number of indole-type alkaloids of biological interest (Phillipson & Zenk, 1980; Saxton, 1983; Abraham, 1975). The structures of tricyclic, tetracyclic and pentacyclic ring systems with dithiolane and other substituents of the tetrahydrocarbazole core, have been the subject of much interest in our laboratory. These include 1,2,3,4-tetrahydrocarbazole-1-spiro-2'-[1,3]dithiolane, (II) (Hökelek et al., 1994), N-(2-methoxyethyl)-N-{2,3,4,9-tetrahydrospiro[1H-carbazole-1, 2-(1,3)dithiolane]-4-yl}benzene-sulfonamide, (III) (Patır et al., 1997), spiro[carbazole-1(2H),2'-[1,3]-dithiolan]-4(3H)-one, (IV) (Hökelek et al., 1998), 9-acetonyl-3-ethylidene-1,2,3,4-tetrahydrospiro[carbazole-1,2'-[1,3] dithiolan]-4-one, (V) (Hökelek et al., 1999), N-(2,2-dimethoxyethyl)-N -{9-methoxymethyl-1,2,3,4-tetrahydrospiro[carbazole-1,2'-[1,3]dithiolan] -4-yl}benzamide, (VI) (Hökelek & Patır, 1999), 3a,4,10,10 b-tetrahydro-2H -furo[2,3-a]carbazol-5(3H)-one, (VII) (Çaylak et al., 2007); also the pentacyclic compounds 6-ethyl-4-(2-methoxyethyl)-2,6-methano-5-oxo-hexahydro- pyrrolo(2,3-d)carbazole-1-spiro-2'-(1,3)dithiolane, (VIII) (Hökelek & Patır, 2002), N-(2-benzyloxyethyl)-4,7-dimethyl-6-(1,3-dithiolan-2-yl)-1,2, 3,4,5,6-hexahydro-1,5-methano-2-azocino[4,3-b]indol-2-one, (IX) (Hökelek et al., 2004) and 4-ethyl-6,6-ethylenedithio-2-(2-methoxyethyl)-7-methoxy- methylene-2,3,4,5,6,7-hexahydro-1,5-methano-1H-azocino[4,3-b]indol-3-one, (X) (Hökelek et al., 2006). The title compound, (I), may be considered as a synthetic precursor of tetracyclic indole alkaloids of biological interests. The present study was undertaken to ascertain its crystal structure.

The title compound consists of a carbazole skeleton with a benzyl group. Its asymmetric unit, (Fig. 1), contains two crystallographically independent molecules, where the bond lengths (Allen et al., 1987) and angles are within normal ranges, and generally agree with those in compounds (II)-(X). In all structures atom N9 is substituted.

An examination of the deviations from the least-squares planes through individual rings shows that rings A (C1—C4/C4a/C9a), B (C4a/C5a/C8a/N9/C9a), C (C5a/C5—C8/C8a), D (C11—C16) and A' (C1'-C4'/C4a'/C9a'), B' (C4a'/C5a'/ C8a'/N9'/C9a'), C' (C5a'/C5'-C8'/C8a'), D' (C11'-C16') are planar. The carbazole skeletons, containing the rings A, B, C and A', B', C' are also nearly coplanar [with a maximum deviations of 0.037 (4) and 0.042 (3) Å for atoms C2 and C7', respectively] with dihedral angles of A/B = 1.28 (10), A/C = 1.57 (9), B/C = 0.32 (7) ° and A'/B' = 0.94 (10), A'/C' = 2.37 (10), B'/C' = 1.72 (11) °. Rings D and D' are oriented with respect to the planar carbazole skeletons at dihedral angles of 85.29 (8) and 89.89 (7) °, respectively. Atoms C10 and C10' displaced by -0.109 (3), -0.005 (4) Å and -0.016 (3), -0.098 (3) Å from the planes of the corresponding carbazole skeletons and benzene rings, respectively.

In the crystal structure, three weak C—H···π interactions (Table 1) involving the carbazole rings are observed.

Related literature top

For tetrahydrocarbazole systems present in the framework of a number of indole-type alkaloids of biological interest, see: Phillipson & Zenk (1980); Saxton (1983); Abraham (1975). For related structures, see: Hökelek et al. (1994, 1998, 1999, 2004, 2006); Patır et al. (1997); Hökelek & Patır (1999, 2002); Çaylak et al. (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, (I), sodium hydride (2.38 g, 59.85 mmol) was added to a solution of carbazole (5.00 g, 29.92 mmol) in dry tetrahydrofuran (200 ml) in several portions, and stirred at room temperature for 1 h under argon atmosphere. Then, benzylchloride (5.68 g, 44.88 mmol) was added and stirred at 343 K for 6 h. The reaction mixture was cooled in an ice bath, and hydrochloric acid (10%, 200 ml) was added. After the extraction with dichloromethane (300 ml), the organic layer was dried over anhydrous magnesium sulfate and the solvent was evaporated under reduced pressure. The residue was purified by column chromatograpy using silica gel and dichloromethane-petroleum ether (1:1), and the product was recrystallized from diethyl ether and cyclohexane mixture (1:1) (yield; 4.00 g, 80%, m.p. 388 K).

Refinement top

H3 and H7' atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H atoms and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The remaining H atoms were located in difference synthesis and refined isotropically.

Structure description top

Tetrahydrocarbazole systems are present in the framework of a number of indole-type alkaloids of biological interest (Phillipson & Zenk, 1980; Saxton, 1983; Abraham, 1975). The structures of tricyclic, tetracyclic and pentacyclic ring systems with dithiolane and other substituents of the tetrahydrocarbazole core, have been the subject of much interest in our laboratory. These include 1,2,3,4-tetrahydrocarbazole-1-spiro-2'-[1,3]dithiolane, (II) (Hökelek et al., 1994), N-(2-methoxyethyl)-N-{2,3,4,9-tetrahydrospiro[1H-carbazole-1, 2-(1,3)dithiolane]-4-yl}benzene-sulfonamide, (III) (Patır et al., 1997), spiro[carbazole-1(2H),2'-[1,3]-dithiolan]-4(3H)-one, (IV) (Hökelek et al., 1998), 9-acetonyl-3-ethylidene-1,2,3,4-tetrahydrospiro[carbazole-1,2'-[1,3] dithiolan]-4-one, (V) (Hökelek et al., 1999), N-(2,2-dimethoxyethyl)-N -{9-methoxymethyl-1,2,3,4-tetrahydrospiro[carbazole-1,2'-[1,3]dithiolan] -4-yl}benzamide, (VI) (Hökelek & Patır, 1999), 3a,4,10,10 b-tetrahydro-2H -furo[2,3-a]carbazol-5(3H)-one, (VII) (Çaylak et al., 2007); also the pentacyclic compounds 6-ethyl-4-(2-methoxyethyl)-2,6-methano-5-oxo-hexahydro- pyrrolo(2,3-d)carbazole-1-spiro-2'-(1,3)dithiolane, (VIII) (Hökelek & Patır, 2002), N-(2-benzyloxyethyl)-4,7-dimethyl-6-(1,3-dithiolan-2-yl)-1,2, 3,4,5,6-hexahydro-1,5-methano-2-azocino[4,3-b]indol-2-one, (IX) (Hökelek et al., 2004) and 4-ethyl-6,6-ethylenedithio-2-(2-methoxyethyl)-7-methoxy- methylene-2,3,4,5,6,7-hexahydro-1,5-methano-1H-azocino[4,3-b]indol-3-one, (X) (Hökelek et al., 2006). The title compound, (I), may be considered as a synthetic precursor of tetracyclic indole alkaloids of biological interests. The present study was undertaken to ascertain its crystal structure.

The title compound consists of a carbazole skeleton with a benzyl group. Its asymmetric unit, (Fig. 1), contains two crystallographically independent molecules, where the bond lengths (Allen et al., 1987) and angles are within normal ranges, and generally agree with those in compounds (II)-(X). In all structures atom N9 is substituted.

An examination of the deviations from the least-squares planes through individual rings shows that rings A (C1—C4/C4a/C9a), B (C4a/C5a/C8a/N9/C9a), C (C5a/C5—C8/C8a), D (C11—C16) and A' (C1'-C4'/C4a'/C9a'), B' (C4a'/C5a'/ C8a'/N9'/C9a'), C' (C5a'/C5'-C8'/C8a'), D' (C11'-C16') are planar. The carbazole skeletons, containing the rings A, B, C and A', B', C' are also nearly coplanar [with a maximum deviations of 0.037 (4) and 0.042 (3) Å for atoms C2 and C7', respectively] with dihedral angles of A/B = 1.28 (10), A/C = 1.57 (9), B/C = 0.32 (7) ° and A'/B' = 0.94 (10), A'/C' = 2.37 (10), B'/C' = 1.72 (11) °. Rings D and D' are oriented with respect to the planar carbazole skeletons at dihedral angles of 85.29 (8) and 89.89 (7) °, respectively. Atoms C10 and C10' displaced by -0.109 (3), -0.005 (4) Å and -0.016 (3), -0.098 (3) Å from the planes of the corresponding carbazole skeletons and benzene rings, respectively.

In the crystal structure, three weak C—H···π interactions (Table 1) involving the carbazole rings are observed.

For tetrahydrocarbazole systems present in the framework of a number of indole-type alkaloids of biological interest, see: Phillipson & Zenk (1980); Saxton (1983); Abraham (1975). For related structures, see: Hökelek et al. (1994, 1998, 1999, 2004, 2006); Patır et al. (1997); Hökelek & Patır (1999, 2002); Çaylak et al. (2007). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level.
9-Benzyl-9H-carbazole top
Crystal data top
C19H15NF(000) = 1088
Mr = 257.32Dx = 1.259 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1669 reflections
a = 14.9305 (4) Åθ = 2.5–22.9°
b = 5.5612 (2) ŵ = 0.07 mm1
c = 32.7916 (8) ÅT = 100 K
β = 94.518 (3)°Block, colorless
V = 2714.27 (14) Å30.27 × 0.15 × 0.14 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
6816 independent reflections
Radiation source: fine-focus sealed tube3384 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.103
φ and ω scansθmax = 28.4°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1918
Tmin = 0.981, Tmax = 0.990k = 77
24870 measured reflectionsl = 4243
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.076H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.210 w = 1/[σ2(Fo2) + (0.0918P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
6816 reflectionsΔρmax = 0.27 e Å3
474 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0068 (11)
Crystal data top
C19H15NV = 2714.27 (14) Å3
Mr = 257.32Z = 8
Monoclinic, P21/cMo Kα radiation
a = 14.9305 (4) ŵ = 0.07 mm1
b = 5.5612 (2) ÅT = 100 K
c = 32.7916 (8) Å0.27 × 0.15 × 0.14 mm
β = 94.518 (3)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
6816 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3384 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.990Rint = 0.103
24870 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0760 restraints
wR(F2) = 0.210H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.27 e Å3
6816 reflectionsΔρmin = 0.26 e Å3
474 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5696 (2)0.6160 (7)0.83884 (11)0.0399 (9)
H10.536 (2)0.451 (6)0.8446 (9)0.042 (9)*
C20.5654 (2)0.7192 (8)0.80036 (11)0.0495 (10)
H20.524 (2)0.643 (6)0.7769 (10)0.040 (9)*
C30.6133 (2)0.9241 (8)0.79216 (10)0.0486 (10)
H30.60770.98900.76590.058*
C40.6692 (2)1.0341 (7)0.82209 (10)0.0364 (8)
H40.702 (2)1.169 (6)0.8155 (9)0.030 (9)*
C4A0.67613 (19)0.9336 (6)0.86118 (9)0.0286 (7)
C50.7898 (2)1.1740 (6)0.91002 (10)0.0286 (7)
H50.807 (2)1.303 (6)0.8898 (10)0.052 (10)*
C5A0.72814 (19)0.9919 (5)0.89881 (8)0.0244 (6)
C60.8284 (2)1.1795 (6)0.94938 (10)0.0308 (7)
H60.870 (2)1.308 (6)0.9577 (9)0.045 (10)*
C70.8064 (2)1.0064 (6)0.97798 (10)0.0294 (7)
H70.836 (2)1.010 (6)1.0055 (10)0.037 (9)*
C80.7450 (2)0.8268 (6)0.96804 (9)0.0284 (7)
H80.727 (2)0.696 (6)0.9883 (10)0.045 (9)*
C8A0.70640 (19)0.8208 (5)0.92781 (9)0.0243 (6)
N90.64413 (16)0.6597 (4)0.90964 (7)0.0263 (6)
C9A0.62622 (19)0.7261 (5)0.86924 (9)0.0274 (7)
C100.5991 (2)0.4654 (6)0.92981 (11)0.0314 (7)
H10A0.604 (2)0.313 (6)0.9142 (9)0.036 (9)*
H10B0.632 (2)0.433 (5)0.9553 (9)0.031 (9)*
C110.50251 (19)0.5224 (5)0.93644 (9)0.0260 (7)
C120.4798 (2)0.7304 (6)0.95693 (10)0.0335 (8)
H120.527 (2)0.852 (6)0.9672 (10)0.048 (10)*
C130.3908 (2)0.7795 (6)0.96297 (10)0.0348 (8)
H130.375 (2)0.931 (6)0.9762 (10)0.052 (10)*
C140.3239 (2)0.6231 (6)0.94863 (9)0.0311 (7)
H140.263 (3)0.675 (6)0.9533 (10)0.054 (11)*
C150.3458 (2)0.4166 (6)0.92833 (10)0.0337 (8)
H150.296 (2)0.295 (6)0.9180 (9)0.038 (9)*
C160.4348 (2)0.3666 (6)0.92232 (10)0.0305 (7)
H160.4532 (19)0.217 (5)0.9088 (8)0.027 (8)*
C1'0.9099 (2)0.8115 (6)0.57706 (9)0.0291 (7)
H1'0.865 (2)0.673 (5)0.5719 (8)0.032 (8)*
C2'0.9229 (2)0.9787 (6)0.54711 (10)0.0333 (8)
H2'0.883 (2)0.951 (5)0.5217 (9)0.029 (8)*
C3'0.9879 (2)1.1600 (6)0.55305 (10)0.0345 (8)
H3'0.998 (2)1.271 (6)0.5318 (9)0.035 (9)*
C4'1.0415 (2)1.1763 (6)0.58923 (10)0.0294 (7)
H4'1.085 (3)1.310 (7)0.5918 (11)0.063 (12)*
C4A'1.02988 (19)1.0096 (5)0.61992 (9)0.0258 (7)
C5'1.1437 (2)1.0841 (6)0.68366 (10)0.0325 (8)
H5'1.177 (2)1.222 (6)0.6724 (9)0.041 (9)*
C5A'1.07331 (19)0.9688 (5)0.66042 (9)0.0258 (7)
C6'1.1713 (2)0.9928 (7)0.72151 (10)0.0399 (8)
H6'1.223 (3)1.067 (7)0.7361 (11)0.061 (11)*
C7'1.1302 (2)0.7899 (6)0.73662 (9)0.0374 (8)
H7'1.15090.73060.76220.045*
C8'1.0594 (2)0.6735 (6)0.71486 (9)0.0305 (7)
H8'1.028 (2)0.519 (6)0.7270 (9)0.043 (9)*
C8A'1.03215 (19)0.7642 (5)0.67661 (8)0.0249 (7)
N9'0.96646 (16)0.6806 (4)0.64747 (7)0.0255 (6)
C9A'0.96460 (19)0.8272 (5)0.61347 (9)0.0258 (7)
C10'0.9071 (2)0.4776 (5)0.65181 (10)0.0267 (7)
H10C0.910 (2)0.373 (6)0.6277 (10)0.042 (10)*
H10D0.932 (2)0.372 (5)0.6747 (9)0.033 (9)*
C11'0.81229 (19)0.5454 (5)0.66032 (8)0.0241 (6)
C12'0.7931 (2)0.7589 (6)0.67972 (9)0.0314 (7)
H12'0.847 (2)0.884 (6)0.6895 (9)0.047 (10)*
C13'0.7052 (2)0.8047 (7)0.68913 (11)0.0401 (9)
H13'0.690 (2)0.951 (6)0.7018 (9)0.042 (10)*
C14'0.6376 (2)0.6429 (7)0.67937 (12)0.0481 (10)
H14'0.576 (3)0.680 (7)0.6901 (12)0.075 (13)*
C15'0.6564 (2)0.4339 (7)0.65933 (12)0.0462 (10)
H15'0.605 (3)0.327 (6)0.6506 (10)0.054 (11)*
C16'0.7434 (2)0.3849 (6)0.64961 (10)0.0350 (8)
H16'0.758 (2)0.242 (6)0.6364 (10)0.041 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0220 (17)0.053 (2)0.045 (2)0.0002 (16)0.0017 (14)0.0173 (18)
C20.029 (2)0.085 (3)0.034 (2)0.009 (2)0.0012 (16)0.015 (2)
C30.031 (2)0.086 (3)0.0284 (18)0.015 (2)0.0033 (15)0.0019 (19)
C40.0239 (18)0.055 (2)0.0316 (19)0.0087 (17)0.0072 (14)0.0043 (17)
C4A0.0183 (15)0.0393 (18)0.0288 (17)0.0061 (14)0.0056 (12)0.0019 (14)
C50.0219 (16)0.0278 (16)0.0372 (19)0.0003 (13)0.0090 (13)0.0011 (14)
C5A0.0196 (15)0.0290 (15)0.0254 (15)0.0057 (13)0.0075 (12)0.0015 (13)
C60.0225 (17)0.0326 (17)0.0379 (19)0.0054 (14)0.0062 (14)0.0049 (15)
C70.0226 (16)0.0366 (17)0.0291 (17)0.0006 (14)0.0024 (13)0.0058 (15)
C80.0247 (17)0.0331 (16)0.0280 (17)0.0018 (14)0.0059 (13)0.0017 (14)
C8A0.0172 (15)0.0259 (15)0.0308 (16)0.0018 (12)0.0074 (12)0.0026 (13)
N90.0188 (13)0.0243 (12)0.0358 (15)0.0004 (10)0.0034 (10)0.0009 (11)
C9A0.0153 (15)0.0365 (17)0.0305 (17)0.0066 (13)0.0030 (12)0.0057 (14)
C100.0203 (16)0.0262 (17)0.048 (2)0.0022 (13)0.0043 (15)0.0017 (16)
C110.0223 (16)0.0238 (14)0.0321 (16)0.0021 (13)0.0025 (12)0.0043 (13)
C120.0273 (18)0.0325 (17)0.0408 (19)0.0022 (15)0.0035 (14)0.0034 (15)
C130.0306 (19)0.0331 (18)0.042 (2)0.0030 (15)0.0097 (14)0.0013 (16)
C140.0210 (17)0.0367 (18)0.0360 (18)0.0040 (15)0.0046 (13)0.0088 (15)
C150.0236 (17)0.0416 (19)0.0357 (18)0.0096 (15)0.0011 (14)0.0044 (16)
C160.0252 (17)0.0284 (17)0.0378 (19)0.0031 (14)0.0021 (13)0.0021 (14)
C1'0.0205 (16)0.0371 (18)0.0298 (17)0.0043 (14)0.0024 (13)0.0036 (15)
C2'0.0202 (16)0.048 (2)0.0318 (18)0.0100 (15)0.0054 (13)0.0058 (16)
C3'0.0312 (19)0.0403 (19)0.0336 (19)0.0107 (15)0.0126 (15)0.0119 (16)
C4'0.0245 (17)0.0282 (16)0.0376 (19)0.0042 (14)0.0154 (14)0.0013 (14)
C4A'0.0193 (15)0.0261 (15)0.0333 (16)0.0024 (13)0.0099 (12)0.0013 (13)
C5'0.0248 (17)0.0365 (18)0.0378 (19)0.0033 (15)0.0115 (14)0.0101 (15)
C5A'0.0202 (15)0.0294 (15)0.0287 (16)0.0016 (13)0.0081 (12)0.0049 (13)
C6'0.0304 (19)0.054 (2)0.0357 (19)0.0029 (18)0.0048 (15)0.0164 (18)
C7'0.0321 (19)0.055 (2)0.0249 (17)0.0100 (17)0.0017 (13)0.0072 (16)
C8'0.0268 (17)0.0378 (18)0.0274 (17)0.0045 (14)0.0042 (13)0.0007 (15)
C8A'0.0199 (15)0.0291 (16)0.0263 (16)0.0024 (13)0.0060 (12)0.0036 (13)
N9'0.0202 (13)0.0284 (13)0.0280 (13)0.0010 (11)0.0030 (10)0.0035 (11)
C9A'0.0197 (15)0.0291 (15)0.0293 (16)0.0026 (13)0.0070 (12)0.0011 (13)
C10'0.0214 (16)0.0252 (15)0.0344 (18)0.0027 (13)0.0075 (13)0.0020 (15)
C11'0.0229 (15)0.0278 (15)0.0219 (15)0.0012 (13)0.0041 (12)0.0057 (13)
C12'0.0312 (18)0.0352 (18)0.0288 (17)0.0031 (15)0.0092 (13)0.0028 (14)
C13'0.039 (2)0.043 (2)0.042 (2)0.0130 (18)0.0205 (16)0.0135 (18)
C14'0.027 (2)0.063 (3)0.056 (2)0.0101 (19)0.0134 (17)0.031 (2)
C15'0.0245 (19)0.051 (2)0.062 (2)0.0046 (18)0.0030 (17)0.022 (2)
C16'0.0276 (18)0.0325 (18)0.044 (2)0.0049 (15)0.0042 (15)0.0083 (16)
Geometric parameters (Å, º) top
C1—C21.383 (5)C1'—C2'1.377 (4)
C1—H11.07 (3)C1'—H1'1.03 (3)
C2—H21.04 (3)C2'—H2'0.99 (3)
C3—C21.383 (6)C3'—C2'1.403 (5)
C3—H30.9300C3'—H3'0.95 (3)
C4—C31.380 (5)C4'—C3'1.381 (5)
C4—H40.93 (3)C4'—H4'0.99 (4)
C4A—C41.395 (4)C4A'—C4'1.389 (4)
C5—H51.02 (4)C4A'—C5A'1.449 (4)
C5A—C4A1.442 (4)C5'—C6'1.374 (5)
C5A—C51.398 (4)C5'—H5'1.00 (3)
C6—C51.372 (4)C5A'—C5'1.404 (4)
C6—C71.401 (4)C6'—H6'0.97 (4)
C6—H60.97 (4)C7'—C6'1.394 (5)
C7—H70.97 (3)C7'—H7'0.9300
C8—C71.377 (4)C8'—C7'1.387 (4)
C8—H81.04 (3)C8'—H8'1.07 (3)
C8A—C5A1.401 (4)C8A'—C5A'1.416 (4)
C8A—C81.398 (4)C8A'—C8'1.383 (4)
N9—C8A1.391 (4)N9'—C8A'1.394 (4)
N9—C9A1.381 (4)N9'—C9A'1.379 (4)
N9—C101.458 (4)N9'—C10'1.450 (4)
C9A—C11.396 (4)C9A'—C1'1.395 (4)
C9A—C4A1.410 (4)C9A'—C4A'1.411 (4)
C10—C111.509 (4)C10'—C11'1.511 (4)
C10—H10A1.00 (3)C10'—H10C0.98 (3)
C10—H10B0.95 (3)C10'—H10D1.00 (3)
C11—C121.393 (4)C11'—C12'1.388 (4)
C11—C161.384 (4)C11'—C16'1.386 (4)
C12—H121.02 (4)C12'—C13'1.395 (4)
C13—C121.386 (4)C12'—H12'1.09 (3)
C13—H130.98 (3)C13'—H13'0.95 (3)
C14—C131.379 (5)C14'—C13'1.371 (5)
C14—C151.379 (5)C14'—C15'1.375 (6)
C14—H140.99 (4)C14'—H14'1.03 (4)
C15—C161.387 (4)C15'—H15'1.00 (4)
C15—H151.04 (3)C16'—C15'1.388 (5)
C16—H160.99 (3)C16'—H16'0.94 (3)
C2—C1—C9A116.8 (4)C2'—C1'—C9A'117.5 (3)
C2—C1—H1122.0 (17)C2'—C1'—H1'121.1 (16)
C9A—C1—H1121.0 (17)C9A'—C1'—H1'121.2 (16)
C1—C2—H2119.3 (18)C1'—C2'—C3'121.4 (3)
C3—C2—C1122.1 (3)C1'—C2'—H2'112.6 (17)
C3—C2—H2118.6 (18)C3'—C2'—H2'126.0 (17)
C2—C3—H3119.3C2'—C3'—H3'120.5 (19)
C4—C3—C2121.3 (3)C4'—C3'—C2'121.0 (3)
C4—C3—H3119.3C4'—C3'—H3'118.5 (19)
C3—C4—C4A118.2 (4)C3'—C4'—C4A'118.8 (3)
C3—C4—H4119.5 (19)C3'—C4'—H4'117 (2)
C4A—C4—H4122.2 (19)C4A'—C4'—H4'124 (2)
C4—C4A—C9A119.9 (3)C4'—C4A'—C5A'134.1 (3)
C4—C4A—C5A133.8 (3)C4'—C4A'—C9A'119.7 (3)
C9A—C4A—C5A106.3 (3)C9A'—C4A'—C5A'106.2 (2)
C5A—C5—H5122 (2)C5A'—C5'—H5'121.5 (18)
C6—C5—C5A118.8 (3)C6'—C5'—C5A'118.7 (3)
C6—C5—H5119 (2)C6'—C5'—H5'119.6 (19)
C5—C5A—C4A133.4 (3)C5'—C5A'—C4A'133.5 (3)
C5—C5A—C8A119.8 (3)C5'—C5A'—C8A'119.5 (3)
C8A—C5A—C4A106.8 (3)C8A'—C5A'—C4A'107.1 (2)
C5—C6—C7120.7 (3)C5'—C6'—C7'120.7 (3)
C5—C6—H6119.5 (19)C5'—C6'—H6'117 (2)
C7—C6—H6119.8 (19)C7'—C6'—H6'122 (2)
C6—C7—H7120 (2)C6'—C7'—H7'118.9
C8—C7—C6121.8 (3)C8'—C7'—C6'122.3 (3)
C8—C7—H7118.5 (19)C8'—C7'—H7'118.9
C7—C8—C8A117.2 (3)C7'—C8'—H8'121.4 (17)
C7—C8—H8124.1 (18)C8A'—C8'—C7'117.0 (3)
C8A—C8—H8118.6 (19)C8A'—C8'—H8'121.6 (17)
N9—C8A—C5A109.2 (2)N9'—C8A'—C5A'108.3 (2)
N9—C8A—C8129.2 (3)C8'—C8A'—C5A'121.8 (3)
C8—C8A—C5A121.6 (3)C8'—C8A'—N9'129.9 (3)
C8A—N9—C10126.8 (3)C8A'—N9'—C10'126.5 (2)
C9A—N9—C8A108.1 (2)C9A'—N9'—C8A'109.0 (2)
C9A—N9—C10124.9 (3)C9A'—N9'—C10'124.5 (2)
N9—C9A—C1128.9 (3)C1'—C9A'—C4A'121.6 (3)
N9—C9A—C4A109.5 (3)N9'—C9A'—C1'128.9 (3)
C1—C9A—C4A121.6 (3)N9'—C9A'—C4A'109.5 (2)
N9—C10—C11112.9 (2)N9'—C10'—C11'114.4 (2)
N9—C10—H10B108.5 (19)N9'—C10'—H10C108.6 (19)
N9—C10—H10A109.9 (18)N9'—C10'—H10D109.6 (18)
C11—C10—H10B110.0 (18)C11'—C10'—H10C113.1 (19)
C11—C10—H10A111.5 (18)C11'—C10'—H10D108.0 (18)
H10B—C10—H10A104 (3)H10C—C10'—H10D103 (2)
C12—C11—C10121.0 (3)C12'—C11'—C10'121.9 (3)
C16—C11—C10120.1 (3)C16'—C11'—C10'118.7 (3)
C16—C11—C12118.9 (3)C16'—C11'—C12'119.4 (3)
C11—C12—H12121.7 (19)C11'—C12'—C13'119.3 (3)
C13—C12—C11120.3 (3)C11'—C12'—H12'120.4 (18)
C13—C12—H12118.0 (19)C13'—C12'—H12'120.1 (18)
C12—C13—H13120 (2)C12'—C13'—H13'121 (2)
C14—C13—C12120.3 (3)C14'—C13'—C12'121.1 (4)
C14—C13—H13120 (2)C14'—C13'—H13'118 (2)
C13—C14—C15119.8 (3)C13'—C14'—C15'119.4 (3)
C13—C14—H14115 (2)C13'—C14'—H14'117 (2)
C15—C14—H14125 (2)C15'—C14'—H14'124 (2)
C14—C15—C16120.1 (3)C14'—C15'—C16'120.4 (4)
C14—C15—H15120.5 (18)C14'—C15'—H15'117 (2)
C16—C15—H15119.3 (18)C16'—C15'—H15'122 (2)
C11—C16—C15120.7 (3)C11'—C16'—C15'120.3 (3)
C11—C16—H16117.0 (17)C11'—C16'—H16'118 (2)
C15—C16—H16122.3 (18)C15'—C16'—H16'122 (2)
C9A—C1—C2—C31.1 (5)C9A'—C1'—C2'—C3'0.8 (5)
C4—C3—C2—C11.0 (6)C4'—C3'—C2'—C1'0.3 (5)
C4A—C4—C3—C20.2 (5)C4A'—C4'—C3'—C2'0.2 (4)
C5A—C4A—C4—C3177.8 (3)C5A'—C4A'—C4'—C3'178.8 (3)
C9A—C4A—C4—C30.5 (5)C9A'—C4A'—C4'—C3'0.5 (4)
C5—C5A—C4A—C41.2 (6)C4'—C4A'—C5A'—C5'0.0 (6)
C5—C5A—C4A—C9A179.7 (3)C4'—C4A'—C5A'—C8A'178.6 (3)
C8A—C5A—C4A—C4179.4 (3)C9A'—C4A'—C5A'—C5'178.5 (3)
C8A—C5A—C4A—C9A0.9 (3)C9A'—C4A'—C5A'—C8A'0.2 (3)
C8A—C5A—C5—C60.6 (4)C5A'—C5'—C6'—C7'0.1 (5)
C4A—C5A—C5—C6179.9 (3)C4A'—C5A'—C5'—C6'177.8 (3)
C7—C6—C5—C5A0.2 (4)C8A'—C5A'—C5'—C6'0.7 (4)
C5—C6—C7—C80.7 (5)C8'—C7'—C6'—C5'1.0 (5)
C8A—C8—C7—C61.2 (4)C8A'—C8'—C7'—C6'1.5 (5)
C8—C8A—C5A—C4A179.5 (3)N9'—C8A'—C5A'—C4A'0.3 (3)
C8—C8A—C5A—C50.0 (4)N9'—C8A'—C5A'—C5'178.5 (3)
N9—C8A—C5A—C4A0.4 (3)C8'—C8A'—C5A'—C4A'178.7 (3)
N9—C8A—C5A—C5179.9 (2)C8'—C8A'—C5A'—C5'0.1 (4)
N9—C8A—C8—C7179.2 (3)N9'—C8A'—C8'—C7'177.1 (3)
C5A—C8A—C8—C70.8 (4)C5A'—C8A'—C8'—C7'0.9 (4)
C9A—N9—C8A—C5A0.2 (3)C9A'—N9'—C8A'—C5A'0.3 (3)
C9A—N9—C8A—C8179.8 (3)C9A'—N9'—C8A'—C8'178.6 (3)
C10—N9—C8A—C5A175.1 (3)C10'—N9'—C8A'—C8'3.0 (5)
C10—N9—C8A—C84.8 (5)C10'—N9'—C8A'—C5A'178.7 (3)
C8A—N9—C9A—C1178.6 (3)C8A'—N9'—C9A'—C1'179.9 (3)
C8A—N9—C9A—C4A0.8 (3)C8A'—N9'—C9A'—C4A'0.2 (3)
C10—N9—C9A—C15.9 (5)C10'—N9'—C9A'—C1'1.7 (5)
C10—N9—C9A—C4A174.7 (3)C10'—N9'—C9A'—C4A'178.6 (3)
C8A—N9—C10—C11104.4 (3)C8A'—N9'—C10'—C11'102.9 (3)
C9A—N9—C10—C1170.2 (4)C9A'—N9'—C10'—C11'75.2 (4)
N9—C9A—C1—C2178.9 (3)N9'—C9A'—C1'—C2'178.5 (3)
C4A—C9A—C1—C20.5 (5)C4A'—C9A'—C1'—C2'1.1 (4)
N9—C9A—C4A—C4179.8 (3)N9'—C9A'—C4A'—C4'178.7 (2)
N9—C9A—C4A—C5A1.1 (3)N9'—C9A'—C4A'—C5A'0.0 (3)
C1—C9A—C4A—C40.3 (4)C1'—C9A'—C4A'—C4'1.0 (4)
C1—C9A—C4A—C5A178.4 (3)C1'—C9A'—C4A'—C5A'179.7 (3)
N9—C10—C11—C1254.4 (4)N9'—C10'—C11'—C16'155.3 (3)
N9—C10—C11—C16125.9 (3)N9'—C10'—C11'—C12'26.9 (4)
C10—C11—C12—C13179.6 (3)C10'—C11'—C12'—C13'175.9 (3)
C16—C11—C12—C130.0 (5)C16'—C11'—C12'—C13'1.9 (4)
C10—C11—C16—C15179.8 (3)C10'—C11'—C16'—C15'175.8 (3)
C12—C11—C16—C150.2 (5)C12'—C11'—C16'—C15'2.0 (5)
C14—C13—C12—C110.2 (5)C11'—C12'—C13'—C14'0.3 (5)
C15—C14—C13—C120.2 (5)C15'—C14'—C13'—C12'1.1 (5)
C13—C14—C15—C160.1 (5)C13'—C14'—C15'—C16'1.0 (5)
C14—C15—C16—C110.1 (5)C11'—C16'—C15'—C14'0.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Cg1i0.97 (4)2.940 (4)3.636 (5)129.46 (5)
C10—H10C···Cg1ii0.98 (3)2.787 (4)3.700 (5)154.92 (4)
C4—H4···Cg3i0.99 (4)2.706 (4)3.554 (4)144.36 (5)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC19H15N
Mr257.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.9305 (4), 5.5612 (2), 32.7916 (8)
β (°) 94.518 (3)
V3)2714.27 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.27 × 0.15 × 0.14
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.981, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
24870, 6816, 3384
Rint0.103
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.210, 1.03
No. of reflections6816
No. of parameters474
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.26

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Cg1'i0.97 (4)2.940 (4)3.636 (5)129.46 (5)
C10'—H10C···Cg1'ii0.98 (3)2.787 (4)3.700 (5)154.92 (4)
C4'—H4'···Cg3i0.99 (4)2.706 (4)3.554 (4)144.36 (5)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1, z.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of the X-ray diffractometer.

References

First citationAbraham, D. J. (1975). The Catharanthus Alkaloids, edited by W. I. Taylor & N. R. Fransworth, chs. 7 and 8. New York: Marcel Decker.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationÇaylak, N., Hökelek, T., Uludağ, N. & Patır, S. (2007). Acta Cryst. E63, o3913–o3914.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Gündüz, H., Patır, S. & Uludağ, N. (1998). Acta Cryst. C54, 1297–1299.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Patır, S. (1999). Acta Cryst. C55, 675–677.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Patır, S. (2002). Acta Cryst. E58, o374–o376.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Patır, S., Gülce, A. & Okay, G. (1994). Acta Cryst. C50, 450–453.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T., Patır, S. & Uludağ, N. (1999). Acta Cryst. C55, 114–116.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Uludağ, N. & Patır, S. (2004). Acta Cryst. E60, o25–o27.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Uludağ, N. & Patır, S. (2006). Acta Cryst. E62, o791–o793.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatır, S., Okay, G., Gülce, A., Salih, B. & Hökelek, T. (1997). J. Heterocycl. Chem. 34, 1239–1242.  CAS Google Scholar
First citationPhillipson, J. D. & Zenk, M. H. (1980). Indole and Biogenetically Related Alkaloids, ch. 3. New York: Academic Press.  Google Scholar
First citationSaxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, chs. 8 and 11. New York: Wiley.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds