organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Meth­oxy­phen­yl)butane­di­nitrile

aCollege of Chemistry and Materials Science, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241000, People's Republic of China, and bDepartment of Chemistry, WanNan Medical College, Wuhu 241000, People's Republic of China
*Correspondence e-mail: lxz122@mail.ahnu.edu.cn

(Received 27 March 2010; accepted 12 April 2010; online 17 April 2010)

In the title compound, C11H10N2O, the butane­dinitrile unit adopts a synclinal conformation. The crystal packing is stabilized by weak inter­molecular C—H⋯N hydrogen bonding.

Related literature

The title compound is an important inter­mediate in drugs synthesis, see: Obniska et al. (2005[Obniska, J., Jurczyk, S., Zejc, A., Kamiński, K., Tatarczyńska, E. & Stachowicz, K. (2005). Pharmacol. Rep. 57, 170-175.]). For the synthesis, see: Johnson et al. (1962[Johnson, F., Panella, J. P. & Carlson, A. A. (1962). J. Org. Chem. 28, 2241-2243.]).

[Scheme 1]

Experimental

Crystal data
  • C11H10N2O

  • Mr = 186.21

  • Monoclinic, P 21 /c

  • a = 12.393 (9) Å

  • b = 5.405 (4) Å

  • c = 15.216 (10) Å

  • β = 102.947 (8)°

  • V = 993.3 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.37 × 0.25 × 0.14 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.970, Tmax = 0.985

  • 7820 measured reflections

  • 2292 independent reflections

  • 1549 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.116

  • S = 1.04

  • 2292 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N2i 0.93 2.50 3.404 (3) 165
C8—H8⋯N2ii 0.98 2.50 3.262 (3) 135
Symmetry codes: (i) [x, -y+{\script{5\over 2}}, z-{\script{1\over 2}}]; (ii) x, y-1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is an important intermediate in drugs synthesis (Obniska et al., 2005). In this paper, we report the structure of the title compound (I). In (I), the succinonitrite moiety adopts a cis conformation. Two cyanide groups, (N1—C10 and N2—C11), are not coplane. However, the methoxy group is almost coplanar with the the mean plane of the phenyl (C2/C3/C4/C5/C6/C7). The crystal packing is stabilized by two intermolecular non-classic C—H···N hydrogen bonds.

Related literature top

The title compound is an important intermediate in drugs synthesis, see: Obniska et al. (2005). For the synthesis, see: Johnson et al. (1962).

Experimental top

The compound (I) was obtained by reaction of (Z)-ethyl-2-cyano-3-(2-methoxyphenyl)acrylate and NaCN in ethanol-water mixture according to the reported method (Johnson et al., 1962). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.

Refinement top

H atoms were placed in calculated positions and refined using a riding model with C—H = 0.93-0.98 Å. Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for the others.

Structure description top

The title compound is an important intermediate in drugs synthesis (Obniska et al., 2005). In this paper, we report the structure of the title compound (I). In (I), the succinonitrite moiety adopts a cis conformation. Two cyanide groups, (N1—C10 and N2—C11), are not coplane. However, the methoxy group is almost coplanar with the the mean plane of the phenyl (C2/C3/C4/C5/C6/C7). The crystal packing is stabilized by two intermolecular non-classic C—H···N hydrogen bonds.

The title compound is an important intermediate in drugs synthesis, see: Obniska et al. (2005). For the synthesis, see: Johnson et al. (1962).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of (I) viewed down the b axis. Dotted lines show the hydrogen bonds.
2-(2-Methoxyphenyl)butanedinitrile top
Crystal data top
C11H10N2OF(000) = 392
Mr = 186.21Dx = 1.245 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2518 reflections
a = 12.393 (9) Åθ = 2.8–26.1°
b = 5.405 (4) ŵ = 0.08 mm1
c = 15.216 (10) ÅT = 298 K
β = 102.947 (8)°Block, colorless
V = 993.3 (12) Å30.37 × 0.25 × 0.14 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2292 independent reflections
Radiation source: fine-focus sealed tube1549 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 27.7°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.970, Tmax = 0.985k = 66
7820 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.051P)2 + 0.1131P]
where P = (Fo2 + 2Fc2)/3
2292 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C11H10N2OV = 993.3 (12) Å3
Mr = 186.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.393 (9) ŵ = 0.08 mm1
b = 5.405 (4) ÅT = 298 K
c = 15.216 (10) Å0.37 × 0.25 × 0.14 mm
β = 102.947 (8)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2292 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1549 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.985Rint = 0.026
7820 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.04Δρmax = 0.12 e Å3
2292 reflectionsΔρmin = 0.14 e Å3
128 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.34900 (15)1.2727 (3)0.69677 (11)0.0644 (5)
H1A0.37311.17170.65290.097*
H1B0.41061.36570.73030.097*
H1C0.29241.38430.66670.097*
N10.45207 (12)0.7505 (3)1.07568 (10)0.0728 (4)
O10.30584 (9)1.11902 (19)0.75662 (6)0.0581 (3)
C20.22452 (11)0.9545 (3)0.72065 (9)0.0461 (3)
N20.22425 (13)1.2438 (2)0.95010 (9)0.0660 (4)
C30.17425 (13)0.9391 (3)0.63011 (10)0.0585 (4)
H30.19451.04660.58890.070*
C40.09351 (14)0.7621 (3)0.60142 (11)0.0642 (5)
H40.05910.75230.54060.077*
C50.06344 (13)0.6016 (3)0.66096 (11)0.0605 (4)
H50.01020.48100.64060.073*
C60.11252 (11)0.6197 (3)0.75120 (10)0.0500 (4)
H60.09130.51170.79190.060*
C70.19287 (11)0.7958 (2)0.78245 (8)0.0409 (3)
C80.24600 (11)0.8102 (2)0.88203 (9)0.0422 (3)
H80.20640.69390.91290.051*
C90.36818 (12)0.7315 (3)0.90375 (10)0.0518 (4)
H9A0.37410.56450.88190.062*
H9B0.40960.84020.87270.062*
C100.41624 (12)0.7404 (3)1.00039 (11)0.0547 (4)
C110.23445 (11)1.0568 (3)0.91933 (9)0.0457 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0803 (11)0.0570 (10)0.0640 (10)0.0141 (8)0.0332 (9)0.0021 (8)
N10.0724 (10)0.0769 (10)0.0604 (9)0.0051 (7)0.0034 (7)0.0056 (7)
O10.0726 (7)0.0561 (6)0.0471 (6)0.0181 (5)0.0167 (5)0.0032 (5)
C20.0515 (8)0.0429 (8)0.0447 (7)0.0002 (6)0.0129 (6)0.0007 (6)
N20.0978 (11)0.0466 (8)0.0543 (8)0.0086 (7)0.0183 (7)0.0036 (6)
C30.0678 (10)0.0649 (10)0.0435 (8)0.0002 (8)0.0138 (7)0.0049 (7)
C40.0639 (10)0.0787 (12)0.0451 (8)0.0010 (9)0.0018 (7)0.0066 (8)
C50.0527 (9)0.0664 (10)0.0593 (9)0.0081 (7)0.0057 (7)0.0090 (8)
C60.0500 (8)0.0463 (8)0.0543 (9)0.0010 (6)0.0131 (6)0.0000 (6)
C70.0450 (7)0.0372 (7)0.0413 (7)0.0039 (5)0.0112 (6)0.0004 (5)
C80.0507 (8)0.0357 (7)0.0413 (7)0.0008 (6)0.0124 (6)0.0033 (5)
C90.0544 (8)0.0499 (9)0.0495 (8)0.0090 (6)0.0081 (6)0.0022 (6)
C100.0530 (8)0.0493 (9)0.0579 (9)0.0065 (7)0.0041 (7)0.0054 (7)
C110.0555 (8)0.0434 (8)0.0382 (7)0.0030 (6)0.0102 (6)0.0039 (6)
Geometric parameters (Å, º) top
C1—O11.4225 (18)C4—H40.9300
C1—H1A0.9600C5—C61.375 (2)
C1—H1B0.9600C5—H50.9300
C1—H1C0.9600C6—C71.383 (2)
N1—C101.133 (2)C6—H60.9300
O1—C21.3632 (17)C7—C81.513 (2)
C2—C31.381 (2)C8—C111.468 (2)
C2—C71.3928 (19)C8—C91.536 (2)
N2—C111.1327 (18)C8—H80.9800
C3—C41.382 (2)C9—C101.458 (2)
C3—H30.9300C9—H9A0.9700
C4—C51.365 (2)C9—H9B0.9700
O1—C1—H1A109.5C5—C6—H6119.5
O1—C1—H1B109.5C7—C6—H6119.5
H1A—C1—H1B109.5C6—C7—C2118.83 (13)
O1—C1—H1C109.5C6—C7—C8119.89 (12)
H1A—C1—H1C109.5C2—C7—C8121.28 (12)
H1B—C1—H1C109.5C11—C8—C7112.07 (10)
C2—O1—C1118.29 (12)C11—C8—C9110.19 (11)
O1—C2—C3124.58 (13)C7—C8—C9112.84 (11)
O1—C2—C7115.18 (12)C11—C8—H8107.1
C3—C2—C7120.24 (13)C7—C8—H8107.1
C2—C3—C4119.32 (14)C9—C8—H8107.1
C2—C3—H3120.3C10—C9—C8111.60 (12)
C4—C3—H3120.3C10—C9—H9A109.3
C5—C4—C3121.07 (15)C8—C9—H9A109.3
C5—C4—H4119.5C10—C9—H9B109.3
C3—C4—H4119.5C8—C9—H9B109.3
C4—C5—C6119.48 (15)H9A—C9—H9B108.0
C4—C5—H5120.3N1—C10—C9178.67 (17)
C6—C5—H5120.3N2—C11—C8177.91 (15)
C5—C6—C7121.04 (14)
C1—O1—C2—C35.4 (2)C3—C2—C7—C61.5 (2)
C1—O1—C2—C7174.73 (13)O1—C2—C7—C80.32 (18)
O1—C2—C3—C4179.19 (15)C3—C2—C7—C8179.53 (12)
C7—C2—C3—C41.0 (2)C6—C7—C8—C11123.69 (14)
C2—C3—C4—C50.5 (2)C2—C7—C8—C1157.39 (17)
C3—C4—C5—C61.4 (3)C6—C7—C8—C9111.21 (15)
C4—C5—C6—C70.8 (2)C2—C7—C8—C967.71 (16)
C5—C6—C7—C20.6 (2)C11—C8—C9—C1055.55 (15)
C5—C6—C7—C8179.58 (13)C7—C8—C9—C10178.33 (11)
O1—C2—C7—C6178.61 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N2i0.932.503.404 (3)165
C8—H8···N2ii0.982.503.262 (3)135
Symmetry codes: (i) x, y+5/2, z1/2; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC11H10N2O
Mr186.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.393 (9), 5.405 (4), 15.216 (10)
β (°) 102.947 (8)
V3)993.3 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.37 × 0.25 × 0.14
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.970, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
7820, 2292, 1549
Rint0.026
(sin θ/λ)max1)0.655
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.116, 1.04
No. of reflections2292
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.14

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N2i0.932.503.404 (3)165.4
C8—H8···N2ii0.982.503.262 (3)134.9
Symmetry codes: (i) x, y+5/2, z1/2; (ii) x, y1, z.
 

Acknowledgements

This work was supported by the Higher Education Natural Science Foundation of Anhui Province (Nos. KJ2010B250, KJ2009B109, KJ2008B169) and the Higher Education Excellent Youth Talents Foundation of Anhui Province, China (No. 2010SQRL179).

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJohnson, F., Panella, J. P. & Carlson, A. A. (1962). J. Org. Chem. 28, 2241–2243.  CrossRef Web of Science Google Scholar
First citationObniska, J., Jurczyk, S., Zejc, A., Kamiński, K., Tatarczyńska, E. & Stachowicz, K. (2005). Pharmacol. Rep. 57, 170–175.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds