organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[2-(4,4-Di­methyl-2,6-dioxo­cyclo­hexyl­­idene)hydrazin­yl]benzo­nitrile

aHitit Üniversitesi, Fen-Edebiyat Fakültesi, Kimya Bölümü, Çorum, Turkey, bOndokuz Mayis Üniversitesi, Fen-Edebiyat Fakültesi, Kimya Bölümü, 55200 Atakum, Samsun, Turkey, and cOndokuz Mayis Üniversitesi, Fen-Edebiyat Fakültesi, Fizik Bölümü, 55200 Atakum, Samsun, Turkey
*Correspondence e-mail: orhan@omu.edu.tr

(Received 5 April 2010; accepted 9 April 2010; online 24 April 2010)

The title compound, C15H15N3O2, contains benzonitrile and 4,4-dimethyl-2,6-dioxocyclo­hexyl­idene groups connected via a hydrazinyl group. The structure is in the hydrazone tautomeric form in the solid state. The benzonitrile and hydrazinyl groups (3-hydrazinylbenzonitrile) are essentially coplanar with an r.m.s. deviation of 0.016 Å. Intra­molecular N—H⋯O hydrogen bonding helps to stabilize the mol­ecular structure, and weak inter­molecular C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

The title compound is a tautomeric form of the azo compound; for the applications of azo compounds, see: Kobrakov et al. (2004[Kobrakov, K. I., Glyadyaeva, O. Yu., Stankevich, G. S. & Kovtun, L. G. (2004). Fibre Chem. 36, 41-42.]); Karcı et al. (2004[Karcı, F., Şener, İ. & Deligöz, H. (2004). Dyes Pigments, 62, 131-140.]); Gale et al. (1998[Gale, P. A., Chen, Z., Drew, M. G. B., Heath, J. A. & Beer, P. D. (1998). Polyhedron, 4, 405-412.]). For related structures of hydra­zone derivatives, see: Kelemen et al. (1982[Kelemen, J., Kormany, G. & Rihs, G. (1982). Dyes Pigments, 3, 249-271.]); Saylam et al. (2008[Saylam, A., Seferoğlu, Z. & Ertan, N. (2008). Dyes Pigments, 76, 470-476.]); Seferoğlu et al. (2008[Seferoğlu, Z., Ertan, N., Hökelek, T. & Şahin, E. (2008). Dyes Pigments, 77, 614-625.]; 2009[Seferoğlu, Z., Ertan, N., Kickelbick, G. & Hökelek, T. (2009). Dyes Pigments, 82, 20-25.]); Batchelor et al. (1997[Batchelor, R. A., Hunter, C. A. & Simpson, J. (1997). Acta Cryst. C53, 1117-1119.]); de Lima et al. (2009[Lima, G. M. de, Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3241.]); de Souza et al. (2010[Souza, M. V. N. de, Howie, R. A., Tiekink, E. R. T., Wardell, J. L., Wardell, S. M. S. V. & Kaiser, C. R. (2010). Acta Cryst. E66, o698-o699.]); Özbey et al. (1997[Özbey, S., Temel, A., Özgün, B. H. & Ertan, N. (1997). Acta Cryst. C53, 113-116.]); Alpaslan et al. (2005[Alpaslan, G., Özdamar, O., Odabaşogˇlu, M., Ersanlı, C. C., Erdönmez, A. & Ocak Ískeleli, N. (2005). Acta Cryst. E61, o3442-o3444.]). For additional structural analaysis, see: Spek (2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15N3O2

  • Mr = 269.30

  • Orthorhombic, P b c a

  • a = 12.9496 (8) Å

  • b = 8.6028 (6) Å

  • c = 24.324 (2) Å

  • V = 2709.8 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.80 × 0.36 × 0.14 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.959, Tmax = 0.991

  • 10586 measured reflections

  • 2880 independent reflections

  • 1557 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.090

  • S = 0.85

  • 2880 reflections

  • 185 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2 0.95 (2) 1.91 (2) 2.6461 (19) 132.6 (18)
C10—H10⋯O2i 0.93 2.57 3.442 (2) 156
Symmetry code: (i) -x+2, -y+1, -z+1.

Table 2
Selected bonds compared with related hydrazone compounds (Å)

Nsp3—Csp2 Nsp2—Csp2 Nsp3—Nsp2 Reference
1.412 1.313 1.305 Current work
1.406 1.313 1.300 Alpaslan et al. (2005[Alpaslan, G., Özdamar, O., Odabaşogˇlu, M., Ersanlı, C. C., Erdönmez, A. & Ocak Ískeleli, N. (2005). Acta Cryst. E61, o3442-o3444.])
1.382 1.289 1.364 de Lima et al. (2009[Lima, G. M. de, Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3241.])
1.347 1.282 1.378 de Souza et al. (2010[Souza, M. V. N. de, Howie, R. A., Tiekink, E. R. T., Wardell, J. L., Wardell, S. M. S. V. & Kaiser, C. R. (2010). Acta Cryst. E66, o698-o699.])
1.376–1.384 1.300–1.325 1.319–1.325 Özbey et al. (1997[Özbey, S., Temel, A., Özgün, B. H. & Ertan, N. (1997). Acta Cryst. C53, 113-116.])

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

It has been known for many years that the azo compounds are a widely used class of dyes due to their application in various fields such as the dyeing of textile fibers, the coloring of different materials, colored plastics and electrochemical sensors (Kobrakov et al., 2004; Karcı et al., 2004; Gale et al., 1998).

Azo dyes are known to exist in the azo-hydrazone tautomeric forms (Saylam et al., 2008; Seferoğlu et al., 2008; Seferoğlu et al., 2009). The dyes may exist in two possible tautomeric forms, namely azo form A and hydrazone form B as depicted in Figure 3. It is suggested that in a real azo compound the N=N double bond should have a length of 1.20–1.28 Å and the bond length of N–N single bonds, as in hydrazone tautomers, should be more than 1.4 Å (Kelemen et al., 1982). In the title compound, N–N bond length is 1.304 Å, between the suggested N=N double bond and N–N single bond lengths. The bond lengths of N(sp3)–C(sp2), N(sp2)–C(sp2) and N(sp3)–N(sp2) in related hydrazone tatutomers are listed in Table 2. Comparing to related bond lengths in in Table 2, C1–N1(N(sp2)–C(sp2)) and N2–C9(N(sp3)–C(sp2)) are slightly longer, and N1–N2(N(sp3)–N(sp2)) is shorter than the expected values. Also, carbonyl oxygens slightly deviates from the least-squares plane (N1, C1, C2, C6) by -0.305 (3)Å for O1 and -0.297 (3)Å for O2. From the bond lengths and these deviations, it can be concluded that the compound exists both in azo and hydrazone tautomeric forms, and is mainly in the hydrazone tautomeric form, i.e. it is close to being real hydrazone pigments. C11–C15 bond length is longer for C(sp2)-C(sp1) but in agreement with previously reported value (Batchelor et al., 1997).

Related literature top

The title compound is a tautomeric form of the azo compound; for the applications of azo compounds, see: Kobrakov et al. (2004); Karcı et al. (2004); Gale et al. (1998). For related structures of hydrazone derivatives, see: Kelemen et al. (1982); Saylam et al. (2008); Seferoğlu et al. (2008); Seferoğlu et al. (2009); Batchelor et al. (1997); de Lima et al. (2009); de Souza et al. (2010); Özbey et al. (1997); Alpaslan et al. (2005). For additional structural analaysis, see: Spek (2003).

Experimental top

A hydrochloric acid solution (2.5 ml) of 3-aminobenzonitrile (1.18 g, 0.010 mol) and an aqueous solution (10 ml) of sodium nitrite (0.69 g, 0.010 mol) were mixed and stirred at 273 K for 1 h, followed by the addition of ethanol solution (10 ml) of the coupling component 5,5-dimethylcyclohexane-1,3-dione (1.40 g, 0.010 mol) and continued stirring at 273 K for 4 h. The resulting product was filtered and washed with water, dried, and crystallized from ethanol gave fine crystals of benzonitrile, 3-[2-(4,4-dimethyl-2,6-dioxocyclohexylidene)hydrazinyl].

Refinement top

H atoms attached to carbon atoms were placed in calculated positions with Uiso(H) = 1.2Ueq(C). The coordinates of the amine hydrogen obtained from a difference map and refined isotropically.

Structure description top

It has been known for many years that the azo compounds are a widely used class of dyes due to their application in various fields such as the dyeing of textile fibers, the coloring of different materials, colored plastics and electrochemical sensors (Kobrakov et al., 2004; Karcı et al., 2004; Gale et al., 1998).

Azo dyes are known to exist in the azo-hydrazone tautomeric forms (Saylam et al., 2008; Seferoğlu et al., 2008; Seferoğlu et al., 2009). The dyes may exist in two possible tautomeric forms, namely azo form A and hydrazone form B as depicted in Figure 3. It is suggested that in a real azo compound the N=N double bond should have a length of 1.20–1.28 Å and the bond length of N–N single bonds, as in hydrazone tautomers, should be more than 1.4 Å (Kelemen et al., 1982). In the title compound, N–N bond length is 1.304 Å, between the suggested N=N double bond and N–N single bond lengths. The bond lengths of N(sp3)–C(sp2), N(sp2)–C(sp2) and N(sp3)–N(sp2) in related hydrazone tatutomers are listed in Table 2. Comparing to related bond lengths in in Table 2, C1–N1(N(sp2)–C(sp2)) and N2–C9(N(sp3)–C(sp2)) are slightly longer, and N1–N2(N(sp3)–N(sp2)) is shorter than the expected values. Also, carbonyl oxygens slightly deviates from the least-squares plane (N1, C1, C2, C6) by -0.305 (3)Å for O1 and -0.297 (3)Å for O2. From the bond lengths and these deviations, it can be concluded that the compound exists both in azo and hydrazone tautomeric forms, and is mainly in the hydrazone tautomeric form, i.e. it is close to being real hydrazone pigments. C11–C15 bond length is longer for C(sp2)-C(sp1) but in agreement with previously reported value (Batchelor et al., 1997).

The title compound is a tautomeric form of the azo compound; for the applications of azo compounds, see: Kobrakov et al. (2004); Karcı et al. (2004); Gale et al. (1998). For related structures of hydrazone derivatives, see: Kelemen et al. (1982); Saylam et al. (2008); Seferoğlu et al. (2008); Seferoğlu et al. (2009); Batchelor et al. (1997); de Lima et al. (2009); de Souza et al. (2010); Özbey et al. (1997); Alpaslan et al. (2005). For additional structural analaysis, see: Spek (2003).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ORTEPIII drawing of title complex with the atom numbering scheme at 40% ellipsoid. A view of the title compound, with the atom-labeling scheme.
[Figure 2] Fig. 2. The packing diagram of the complex with hydrogen bonds shown as dashed lines.
[Figure 3] Fig. 3. Tautomeric forms.
3-[2-(4,4-Dimethyl-2,6-dioxocyclohexylidene)hydrazinyl]benzonitrile top
Crystal data top
C15H15N3O2F(000) = 1136
Mr = 269.30Dx = 1.320 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 8472 reflections
a = 12.9496 (8) Åθ = 1.6–27.3°
b = 8.6028 (6) ŵ = 0.09 mm1
c = 24.324 (2) ÅT = 296 K
V = 2709.8 (3) Å3Prism, yellow
Z = 80.80 × 0.36 × 0.14 mm
Data collection top
Stoe IPDS II
diffractometer
2880 independent reflections
Radiation source: fine-focus sealed tube1557 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.052
Detector resolution: 6.67 pixels mm-1θmax = 26.8°, θmin = 1.7°
rotation method scansh = 1616
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 107
Tmin = 0.959, Tmax = 0.991l = 3027
10586 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: mixed
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 0.85 w = 1/[σ2(Fo2) + (0.0393P)2]
where P = (Fo2 + 2Fc2)/3
2880 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C15H15N3O2V = 2709.8 (3) Å3
Mr = 269.30Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.9496 (8) ŵ = 0.09 mm1
b = 8.6028 (6) ÅT = 296 K
c = 24.324 (2) Å0.80 × 0.36 × 0.14 mm
Data collection top
Stoe IPDS II
diffractometer
2880 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1557 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.991Rint = 0.052
10586 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 0.85Δρmax = 0.12 e Å3
2880 reflectionsΔρmin = 0.21 e Å3
185 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.80305 (13)0.3690 (2)0.40962 (7)0.0361 (5)
C20.74316 (13)0.2806 (2)0.36821 (7)0.0389 (5)
C30.79117 (13)0.2623 (3)0.31243 (8)0.0488 (6)
H3A0.77590.35410.29080.059*
H3B0.75950.17410.29420.059*
C40.90833 (12)0.2382 (3)0.31345 (7)0.0397 (5)
C50.95623 (13)0.3737 (3)0.34490 (7)0.0435 (5)
H5A1.03020.35730.34730.052*
H5B0.94490.46850.32420.052*
C60.91435 (13)0.3956 (2)0.40184 (7)0.0386 (5)
C70.95030 (15)0.2359 (3)0.25490 (8)0.0609 (7)
H7A1.02410.22570.25590.091*
H7B0.93210.33090.23660.091*
H7C0.92110.14950.23530.091*
C80.93372 (16)0.0846 (3)0.34174 (9)0.0588 (6)
H8A1.00730.07320.34440.088*
H8B0.90580.00010.32070.088*
H8C0.90410.08380.37790.088*
C90.72958 (12)0.5914 (2)0.52616 (7)0.0370 (5)
C100.77582 (13)0.6709 (2)0.56870 (7)0.0405 (5)
H100.84720.66960.57270.049*
C110.71482 (13)0.7530 (2)0.60557 (7)0.0406 (5)
C120.60825 (14)0.7562 (3)0.59960 (8)0.0450 (5)
H120.56750.81080.62450.054*
C130.56389 (14)0.6779 (3)0.55664 (8)0.0504 (6)
H130.49260.68040.55230.060*
C140.62310 (13)0.5957 (3)0.51986 (8)0.0453 (5)
H140.59190.54310.49090.054*
C150.76084 (15)0.8376 (3)0.65054 (8)0.0503 (6)
N10.74838 (11)0.42725 (19)0.45015 (6)0.0387 (4)
N20.79244 (12)0.5078 (2)0.48910 (6)0.0397 (4)
N30.79474 (14)0.9049 (3)0.68665 (8)0.0735 (7)
O10.65786 (9)0.22775 (17)0.37853 (5)0.0507 (4)
O20.96910 (9)0.43863 (18)0.44021 (5)0.0494 (4)
H20.8663 (18)0.515 (3)0.4890 (8)0.074 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0351 (9)0.0363 (13)0.0368 (10)0.0015 (8)0.0046 (8)0.0001 (9)
C20.0371 (9)0.0341 (12)0.0455 (11)0.0054 (9)0.0010 (8)0.0010 (9)
C30.0438 (10)0.0592 (17)0.0434 (12)0.0017 (10)0.0014 (8)0.0087 (11)
C40.0385 (9)0.0420 (14)0.0387 (10)0.0006 (9)0.0065 (8)0.0021 (10)
C50.0389 (10)0.0464 (14)0.0451 (11)0.0030 (9)0.0089 (8)0.0006 (10)
C60.0384 (10)0.0360 (13)0.0414 (10)0.0003 (9)0.0040 (8)0.0010 (10)
C70.0595 (12)0.077 (2)0.0459 (12)0.0031 (13)0.0112 (10)0.0101 (13)
C80.0562 (12)0.0484 (17)0.0716 (14)0.0059 (11)0.0163 (11)0.0012 (13)
C90.0356 (9)0.0393 (13)0.0363 (10)0.0030 (9)0.0056 (7)0.0026 (9)
C100.0335 (10)0.0483 (15)0.0398 (11)0.0022 (8)0.0017 (8)0.0014 (10)
C110.0428 (10)0.0431 (14)0.0359 (10)0.0019 (9)0.0022 (8)0.0008 (10)
C120.0433 (10)0.0483 (14)0.0435 (11)0.0081 (10)0.0080 (8)0.0057 (11)
C130.0336 (9)0.0605 (16)0.0570 (13)0.0036 (9)0.0051 (9)0.0092 (12)
C140.0361 (10)0.0544 (16)0.0455 (11)0.0017 (10)0.0026 (8)0.0101 (11)
C150.0438 (11)0.0629 (17)0.0443 (12)0.0019 (10)0.0076 (10)0.0035 (12)
N10.0400 (7)0.0382 (11)0.0377 (8)0.0007 (8)0.0046 (7)0.0002 (8)
N20.0347 (8)0.0449 (12)0.0394 (9)0.0023 (7)0.0049 (7)0.0047 (8)
N30.0686 (12)0.097 (2)0.0553 (12)0.0122 (12)0.0018 (10)0.0218 (13)
O10.0372 (7)0.0493 (10)0.0656 (9)0.0065 (6)0.0061 (6)0.0052 (8)
O20.0378 (7)0.0661 (12)0.0443 (8)0.0018 (7)0.0005 (6)0.0118 (8)
Geometric parameters (Å, º) top
C1—N11.313 (2)C8—H8A0.9600
C1—C61.472 (2)C8—H8B0.9600
C1—C21.481 (3)C8—H8C0.9600
C2—O11.221 (2)C9—C101.377 (2)
C2—C31.501 (2)C9—C141.388 (2)
C3—C41.532 (2)C9—N21.412 (2)
C3—H3A0.9700C10—C111.388 (2)
C3—H3B0.9700C10—H100.9300
C4—C71.524 (2)C11—C121.388 (2)
C4—C81.526 (3)C11—C151.442 (3)
C4—C51.526 (3)C12—C131.370 (3)
C5—C61.499 (2)C12—H120.9300
C5—H5A0.9700C13—C141.374 (3)
C5—H5B0.9700C13—H130.9300
C6—O21.229 (2)C14—H140.9300
C7—H7A0.9600C15—N31.140 (2)
C7—H7B0.9600N1—N21.305 (2)
C7—H7C0.9600N2—H20.96 (2)
N1—C1—C6124.40 (17)H7A—C7—H7C109.5
N1—C1—C2115.10 (15)H7B—C7—H7C109.5
C6—C1—C2120.35 (16)C4—C8—H8A109.5
O1—C2—C1121.69 (17)C4—C8—H8B109.5
O1—C2—C3121.42 (17)H8A—C8—H8B109.5
C1—C2—C3116.87 (16)C4—C8—H8C109.5
C2—C3—C4114.21 (15)H8A—C8—H8C109.5
C2—C3—H3A108.7H8B—C8—H8C109.5
C4—C3—H3A108.7C10—C9—C14120.13 (17)
C2—C3—H3B108.7C10—C9—N2118.83 (15)
C4—C3—H3B108.7C14—C9—N2121.04 (18)
H3A—C3—H3B107.6C9—C10—C11119.38 (16)
C7—C4—C8109.47 (18)C9—C10—H10120.3
C7—C4—C5109.47 (16)C11—C10—H10120.3
C8—C4—C5110.37 (17)C12—C11—C10120.55 (18)
C7—C4—C3109.86 (16)C12—C11—C15118.70 (17)
C8—C4—C3109.75 (16)C10—C11—C15120.75 (16)
C5—C4—C3107.90 (16)C13—C12—C11119.15 (18)
C6—C5—C4114.32 (16)C13—C12—H12120.4
C6—C5—H5A108.7C11—C12—H12120.4
C4—C5—H5A108.7C12—C13—C14121.05 (18)
C6—C5—H5B108.7C12—C13—H13119.5
C4—C5—H5B108.7C14—C13—H13119.5
H5A—C5—H5B107.6C13—C14—C9119.74 (19)
O2—C6—C1120.94 (16)C13—C14—H14120.1
O2—C6—C5122.05 (15)C9—C14—H14120.1
C1—C6—C5116.97 (16)N3—C15—C11178.2 (2)
C4—C7—H7A109.5N2—N1—C1120.80 (15)
C4—C7—H7B109.5N1—N2—C9118.82 (16)
H7A—C7—H7B109.5N1—N2—H2118.0 (13)
C4—C7—H7C109.5C9—N2—H2122.9 (13)
N1—C1—C2—O120.3 (3)C4—C5—C6—C138.1 (2)
C6—C1—C2—O1163.84 (18)C14—C9—C10—C111.0 (3)
N1—C1—C2—C3158.29 (18)N2—C9—C10—C11179.69 (19)
C6—C1—C2—C317.5 (3)C9—C10—C11—C120.4 (3)
O1—C2—C3—C4143.91 (19)C9—C10—C11—C15179.95 (19)
C1—C2—C3—C437.5 (3)C10—C11—C12—C130.3 (3)
C2—C3—C4—C7174.81 (19)C15—C11—C12—C13179.2 (2)
C2—C3—C4—C864.8 (2)C11—C12—C13—C140.5 (3)
C2—C3—C4—C555.5 (2)C12—C13—C14—C90.0 (3)
C7—C4—C5—C6175.37 (17)C10—C9—C14—C130.8 (3)
C8—C4—C5—C664.1 (2)N2—C9—C14—C13179.9 (2)
C3—C4—C5—C655.8 (2)C6—C1—N1—N24.2 (3)
N1—C1—C6—O220.1 (3)C2—C1—N1—N2179.81 (17)
C2—C1—C6—O2164.49 (19)C1—N1—N2—C9168.70 (18)
N1—C1—C6—C5157.67 (19)C10—C9—N2—N1177.20 (18)
C2—C1—C6—C517.8 (3)C14—C9—N2—N13.5 (3)
C4—C5—C6—O2144.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.95 (2)1.91 (2)2.6461 (19)132.6 (18)
C10—H10···O2i0.932.573.442 (2)156
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H15N3O2
Mr269.30
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)12.9496 (8), 8.6028 (6), 24.324 (2)
V3)2709.8 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.80 × 0.36 × 0.14
Data collection
DiffractometerStoe IPDS II
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.959, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
10586, 2880, 1557
Rint0.052
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.090, 0.85
No. of reflections2880
No. of parameters185
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.12, 0.21

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.95 (2)1.91 (2)2.6461 (19)132.6 (18)
C10—H10···O2i0.932.573.442 (2)156
Symmetry code: (i) x+2, y+1, z+1.
Selected bonds compared with related hydrazone compounds (Å) [should this be 1.313 and 1.305 for current work?] top
Nsp3—Csp2Nsp2—Csp2Nsp3—Nsp2Reference
1.4121.3131.305Current work
1.4061.3131.300Alpaslan et al. (2005)
1.3821.2891.364de Lima et al. (2009)
1.3471.2821.378de Souza et al. (2010)
1.376-1.3841.300-1.3251.319-1.325Özbey et al. (1997)
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAlpaslan, G., Özdamar, O., Odabaşogˇlu, M., Ersanlı, C. C., Erdönmez, A. & Ocak Ískeleli, N. (2005). Acta Cryst. E61, o3442–o3444.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBatchelor, R. A., Hunter, C. A. & Simpson, J. (1997). Acta Cryst. C53, 1117–1119.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGale, P. A., Chen, Z., Drew, M. G. B., Heath, J. A. & Beer, P. D. (1998). Polyhedron, 4, 405–412.  Web of Science CSD CrossRef Google Scholar
First citationKarcı, F., Şener, İ. & Deligöz, H. (2004). Dyes Pigments, 62, 131–140.  Google Scholar
First citationKelemen, J., Kormany, G. & Rihs, G. (1982). Dyes Pigments, 3, 249–271.  CSD CrossRef CAS Web of Science Google Scholar
First citationKobrakov, K. I., Glyadyaeva, O. Yu., Stankevich, G. S. & Kovtun, L. G. (2004). Fibre Chem. 36, 41–42.  Web of Science CrossRef CAS Google Scholar
First citationLima, G. M. de, Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3241.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzbey, S., Temel, A., Özgün, B. H. & Ertan, N. (1997). Acta Cryst. C53, 113–116.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationSaylam, A., Seferoğlu, Z. & Ertan, N. (2008). Dyes Pigments, 76, 470–476.  Web of Science CrossRef CAS Google Scholar
First citationSeferoğlu, Z., Ertan, N., Hökelek, T. & Şahin, E. (2008). Dyes Pigments, 77, 614–625.  Google Scholar
First citationSeferoğlu, Z., Ertan, N., Kickelbick, G. & Hökelek, T. (2009). Dyes Pigments, 82, 20–25.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSouza, M. V. N. de, Howie, R. A., Tiekink, E. R. T., Wardell, J. L., Wardell, S. M. S. V. & Kaiser, C. R. (2010). Acta Cryst. E66, o698–o699.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds