organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Fluoro­phenyl­sulfon­yl)-5-iso­propyl-2-methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 6 April 2010; accepted 7 April 2010; online 14 April 2010)

In the title compound, C18H17FO3S, the 4-fluoro­phenyl ring makes a dihedral angle of 82.12 (4)° with the plane of the benzofuran fragment. In the crystal structure, mol­ecules are linked by weak inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions.

Related literature

For the crystal structures of similar 2-methyl-3-phenyl­sulfonyl-1-benzofuran derivatives, see: Choi et al. (2008a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o1257.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o1761.]). For the biological activity of benzofuran compounds, see: Aslam et al. (2006[Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214-4226.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]).

[Scheme 1]

Experimental

Crystal data
  • C18H17FO3S

  • Mr = 332.38

  • Monoclinic, P 21 /c

  • a = 10.9434 (6) Å

  • b = 11.3395 (6) Å

  • c = 13.0988 (7) Å

  • β = 100.252 (3)°

  • V = 1599.51 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 175 K

  • 0.41 × 0.29 × 0.17 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.669, Tmax = 0.746

  • 14304 measured reflections

  • 3655 independent reflections

  • 3109 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.108

  • S = 1.02

  • 3655 reflections

  • 212 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1/C2/C7/O3/C8 furan ring and the C2–C7 benzene ring, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O2i 0.95 2.51 3.401 (2) 155
C10—H10BCg1ii 0.98 2.86 3.561 (2) 120
C11—H11BCg2ii 0.98 2.91 3.670 (2) 135
C17—H17⋯Cg2iii 0.95 2.89 3.528 (2) 147
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The compounds containing benzofuran ring show potent biological activities such as antifungal (Aslam et al., 2006), antitumor and antiviral (Galal et al., 2009), antimicrobial (Khan et al., 2005) properties. These compounds occur widely in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing studies of the effect of side chain substituents on the solid state structures of 2-methyl-3-phenylsulfonyl-1-benzofuran analogues (Choi et al., 2008a,b), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.113 (1) Å from the least-squares plane defined by the nine constituent atoms. The 4-fluorophenyl ring makes a dihedral angle of 82.12 (4)° with the plane of the benzofuran fragment. The molecular packing (Fig. 2) is stabilized by an intermolecular C—H···O hydrogen bond between the 4-fluorophenyl H atom and the oxygen of the sulfonyl group, with a C14—H14···O2i (Table 1). The crystal packing (Fig. 3) is further stabilized by three intermolecular C—H···π interactions; the first one between the methyl H atom of the isopropyl group and the furan ring of an adjacent molecule, with a C10—H10B···Cg1ii, the second one between the methyl H atom of the isopropyl group and the benzene ring of a neighbouring molecule, with a C11—H11B···Cg2ii, and the third one between the 4-fluorophenyl H atom and the benzene ring of an adjacent benzofuran system, with a C17—H17···Cg2iii, respectively (Table 1; Cg1 and Cg2 are the centroids of the C1/C2/C7/O3/C8 furan ring and the C2–C7 benzene ring, respectively).

Related literature top

For the crystal structures of similar 2-methyl-3-phenylsulfonyl-1-benzofuran derivatives, see: Choi et al. (2008a,b). For the biological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003).

Experimental top

77% 3-Chloroperoxybenzoic acid (448 mg, 2.0 mmol) was added in small portions to a stirred solution of 3-(4-fluorophenylsulfanyl)-5-isoproyl-2-methyl-1-benzofuran (270 mg, 0.9 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 8 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (silica gel, hexane–ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 79%, m.p. 402–403 K; Rf = 0.69 (hexane–ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in benzene at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl, 1.00 Å for methine and 0.98 Å for methyl H atoms, respectively. Uiso(H) = 1.2Ueq(C) for aryl and methine, and 1.5Ueq(C) for methyl H atoms.

Structure description top

The compounds containing benzofuran ring show potent biological activities such as antifungal (Aslam et al., 2006), antitumor and antiviral (Galal et al., 2009), antimicrobial (Khan et al., 2005) properties. These compounds occur widely in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing studies of the effect of side chain substituents on the solid state structures of 2-methyl-3-phenylsulfonyl-1-benzofuran analogues (Choi et al., 2008a,b), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.113 (1) Å from the least-squares plane defined by the nine constituent atoms. The 4-fluorophenyl ring makes a dihedral angle of 82.12 (4)° with the plane of the benzofuran fragment. The molecular packing (Fig. 2) is stabilized by an intermolecular C—H···O hydrogen bond between the 4-fluorophenyl H atom and the oxygen of the sulfonyl group, with a C14—H14···O2i (Table 1). The crystal packing (Fig. 3) is further stabilized by three intermolecular C—H···π interactions; the first one between the methyl H atom of the isopropyl group and the furan ring of an adjacent molecule, with a C10—H10B···Cg1ii, the second one between the methyl H atom of the isopropyl group and the benzene ring of a neighbouring molecule, with a C11—H11B···Cg2ii, and the third one between the 4-fluorophenyl H atom and the benzene ring of an adjacent benzofuran system, with a C17—H17···Cg2iii, respectively (Table 1; Cg1 and Cg2 are the centroids of the C1/C2/C7/O3/C8 furan ring and the C2–C7 benzene ring, respectively).

For the crystal structures of similar 2-methyl-3-phenylsulfonyl-1-benzofuran derivatives, see: Choi et al. (2008a,b). For the biological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. C—H···O interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) -x + 1, y - 1/2, -z + 1/2; (iv) -x + 1, y + 1/2, -z + 1/2; (v) x, y + 1, z.]
[Figure 3] Fig. 3. C—H···π interactions (dotted lines) in the crystal structure of the title compound. Cg denotes the ring centroid. [Symmetry codes: (ii) -x + 2, y + 1/2, -z + 1/2; (iii) x, -y + 1/2, z - 1/2; (vi) -x + 2, y - 1/2, -z + 1/2; (vii) x, -y + 1/2, z + 1/2.]
3-(4-Fluorophenylsulfonyl)-5-isopropyl-2-methyl-1-benzofuran top
Crystal data top
C18H17FO3SF(000) = 696
Mr = 332.38Dx = 1.380 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6367 reflections
a = 10.9434 (6) Åθ = 2.4–27.5°
b = 11.3395 (6) ŵ = 0.23 mm1
c = 13.0988 (7) ÅT = 175 K
β = 100.252 (3)°Block, colourless
V = 1599.51 (15) Å30.41 × 0.29 × 0.17 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
3655 independent reflections
Radiation source: rotating anode3109 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.030
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 2.4°
φ and ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1414
Tmin = 0.669, Tmax = 0.746l = 1616
14304 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0594P)2 + 0.4509P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3655 reflectionsΔρmax = 0.36 e Å3
212 parametersΔρmin = 0.37 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0117 (15)
Crystal data top
C18H17FO3SV = 1599.51 (15) Å3
Mr = 332.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.9434 (6) ŵ = 0.23 mm1
b = 11.3395 (6) ÅT = 175 K
c = 13.0988 (7) Å0.41 × 0.29 × 0.17 mm
β = 100.252 (3)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3655 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3109 reflections with I > 2σ(I)
Tmin = 0.669, Tmax = 0.746Rint = 0.030
14304 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.02Δρmax = 0.36 e Å3
3655 reflectionsΔρmin = 0.37 e Å3
212 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.54221 (3)0.13196 (3)0.21925 (3)0.02922 (13)
F0.75485 (9)0.21439 (9)0.02852 (8)0.0475 (3)
O10.44396 (10)0.07695 (11)0.26153 (9)0.0415 (3)
O20.51752 (10)0.23800 (9)0.15885 (8)0.0367 (3)
O30.79447 (10)0.15165 (9)0.47328 (8)0.0300 (2)
C10.66335 (13)0.16383 (12)0.32124 (11)0.0268 (3)
C20.75540 (12)0.25570 (12)0.32202 (10)0.0244 (3)
C30.78117 (13)0.34256 (12)0.25361 (11)0.0270 (3)
H30.72880.35270.18810.032*
C40.88480 (13)0.41423 (13)0.28261 (11)0.0285 (3)
C50.96004 (13)0.39900 (13)0.38020 (11)0.0302 (3)
H51.03000.44910.39930.036*
C60.93628 (13)0.31367 (13)0.44994 (11)0.0297 (3)
H60.98770.30380.51590.036*
C70.83340 (13)0.24398 (12)0.41752 (10)0.0257 (3)
C80.69246 (14)0.10323 (13)0.41204 (11)0.0303 (3)
C90.91774 (15)0.50549 (14)0.20723 (12)0.0356 (4)
H90.84830.50730.14620.043*
C101.0351 (2)0.47032 (18)0.16761 (16)0.0548 (5)
H10A1.10610.47280.22490.082*
H10B1.04920.52530.11320.082*
H10C1.02560.39020.13920.082*
C110.9299 (2)0.62926 (15)0.25374 (16)0.0531 (5)
H11A0.85580.64770.28320.080*
H11B0.93810.68660.19940.080*
H11C1.00360.63290.30850.080*
C120.64435 (18)0.00464 (15)0.45463 (14)0.0452 (4)
H12A0.56750.02940.40940.068*
H12B0.62750.01170.52430.068*
H12C0.70620.06770.45840.068*
C130.60386 (13)0.02725 (12)0.14291 (11)0.0274 (3)
C140.60321 (15)0.09153 (13)0.16991 (12)0.0342 (3)
H140.56840.11590.22790.041*
C150.65382 (15)0.17364 (14)0.11133 (13)0.0375 (4)
H150.65460.25510.12830.045*
C160.70315 (14)0.13427 (13)0.02763 (13)0.0332 (3)
C170.70304 (14)0.01834 (14)0.00155 (12)0.0344 (3)
H170.73640.00490.06060.041*
C180.65300 (14)0.06423 (13)0.05734 (12)0.0309 (3)
H180.65230.14540.03940.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0237 (2)0.0283 (2)0.0349 (2)0.00195 (13)0.00319 (14)0.00717 (14)
F0.0421 (6)0.0428 (6)0.0595 (7)0.0017 (4)0.0145 (5)0.0195 (5)
O10.0295 (6)0.0473 (7)0.0503 (7)0.0098 (5)0.0138 (5)0.0133 (5)
O20.0336 (6)0.0308 (6)0.0412 (6)0.0052 (4)0.0057 (5)0.0056 (5)
O30.0344 (6)0.0300 (5)0.0254 (5)0.0011 (4)0.0047 (4)0.0015 (4)
C10.0263 (7)0.0248 (7)0.0296 (7)0.0011 (5)0.0061 (5)0.0042 (5)
C20.0238 (6)0.0237 (7)0.0254 (7)0.0010 (5)0.0033 (5)0.0044 (5)
C30.0282 (7)0.0272 (7)0.0238 (7)0.0006 (5)0.0001 (5)0.0015 (5)
C40.0309 (7)0.0270 (7)0.0280 (7)0.0026 (6)0.0060 (6)0.0031 (6)
C50.0276 (7)0.0305 (7)0.0317 (8)0.0043 (6)0.0032 (6)0.0058 (6)
C60.0299 (7)0.0317 (7)0.0253 (7)0.0021 (6)0.0009 (5)0.0044 (6)
C70.0296 (7)0.0248 (7)0.0229 (7)0.0026 (5)0.0055 (5)0.0014 (5)
C80.0318 (7)0.0298 (7)0.0307 (8)0.0016 (6)0.0096 (6)0.0033 (6)
C90.0429 (9)0.0341 (8)0.0288 (7)0.0112 (7)0.0035 (6)0.0009 (6)
C100.0683 (13)0.0476 (11)0.0569 (12)0.0131 (9)0.0341 (10)0.0023 (9)
C110.0834 (14)0.0304 (9)0.0503 (11)0.0054 (9)0.0247 (10)0.0037 (8)
C120.0516 (10)0.0413 (9)0.0444 (10)0.0111 (8)0.0130 (8)0.0077 (8)
C130.0245 (7)0.0263 (7)0.0302 (7)0.0030 (5)0.0023 (5)0.0041 (6)
C140.0398 (8)0.0281 (7)0.0351 (8)0.0050 (6)0.0080 (6)0.0006 (6)
C150.0423 (9)0.0249 (7)0.0445 (9)0.0006 (6)0.0054 (7)0.0022 (7)
C160.0248 (7)0.0340 (8)0.0396 (9)0.0004 (6)0.0029 (6)0.0126 (6)
C170.0315 (8)0.0378 (8)0.0349 (8)0.0083 (6)0.0087 (6)0.0040 (6)
C180.0303 (7)0.0269 (7)0.0350 (8)0.0057 (6)0.0046 (6)0.0004 (6)
Geometric parameters (Å, º) top
S—O11.437 (1)C9—C111.526 (2)
S—O21.438 (1)C9—H91.0000
S—C11.744 (2)C10—H10A0.9800
S—C131.762 (1)C10—H10B0.9800
F—C161.355 (2)C10—H10C0.9800
O3—C81.368 (2)C11—H11A0.9800
O3—C71.386 (2)C11—H11B0.9800
C1—C81.361 (2)C11—H11C0.9800
C1—C21.448 (2)C12—H12A0.9800
C2—C71.390 (2)C12—H12B0.9800
C2—C31.394 (2)C12—H12C0.9800
C3—C41.392 (2)C13—C141.393 (2)
C3—H30.9500C13—C181.391 (2)
C4—C51.403 (2)C14—C151.383 (2)
C4—C91.517 (2)C14—H140.9500
C5—C61.387 (2)C15—C161.380 (2)
C5—H50.9500C15—H150.9500
C6—C71.379 (2)C16—C171.369 (2)
C6—H60.9500C17—C181.386 (2)
C8—C121.480 (2)C17—H170.9500
C9—C101.521 (2)C18—H180.9500
O1—S—O2119.66 (7)C9—C10—H10A109.5
O1—S—C1108.28 (7)C9—C10—H10B109.5
O2—S—C1106.91 (7)H10A—C10—H10B109.5
O1—S—C13108.33 (7)C9—C10—H10C109.5
O2—S—C13107.74 (7)H10A—C10—H10C109.5
C1—S—C13104.99 (7)H10B—C10—H10C109.5
C8—O3—C7106.82 (11)C9—C11—H11A109.5
C8—C1—C2107.62 (13)C9—C11—H11B109.5
C8—C1—S126.33 (11)H11A—C11—H11B109.5
C2—C1—S125.97 (11)C9—C11—H11C109.5
C7—C2—C3118.96 (12)H11A—C11—H11C109.5
C7—C2—C1104.63 (12)H11B—C11—H11C109.5
C3—C2—C1136.39 (13)C8—C12—H12A109.5
C4—C3—C2119.04 (13)C8—C12—H12B109.5
C4—C3—H3120.5H12A—C12—H12B109.5
C2—C3—H3120.5C8—C12—H12C109.5
C3—C4—C5119.64 (13)H12A—C12—H12C109.5
C3—C4—C9119.80 (13)H12B—C12—H12C109.5
C5—C4—C9120.53 (13)C14—C13—C18121.08 (14)
C6—C5—C4122.53 (13)C14—C13—S119.19 (11)
C6—C5—H5118.7C18—C13—S119.73 (11)
C4—C5—H5118.7C15—C14—C13119.29 (14)
C7—C6—C5115.82 (13)C15—C14—H14120.4
C7—C6—H6122.1C13—C14—H14120.4
C5—C6—H6122.1C16—C15—C14118.36 (14)
C6—C7—O3125.53 (13)C16—C15—H15120.8
C6—C7—C2124.01 (13)C14—C15—H15120.8
O3—C7—C2110.45 (12)F—C16—C17118.17 (14)
C1—C8—O3110.44 (13)F—C16—C15118.35 (14)
C1—C8—C12134.67 (15)C17—C16—C15123.48 (14)
O3—C8—C12114.75 (13)C16—C17—C18118.29 (14)
C4—C9—C10110.85 (14)C16—C17—H17120.9
C4—C9—C11112.42 (13)C18—C17—H17120.9
C10—C9—C11110.99 (15)C17—C18—C13119.49 (14)
C4—C9—H9107.4C17—C18—H18120.3
C10—C9—H9107.4C13—C18—H18120.3
C11—C9—H9107.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O2i0.952.513.401 (2)155
C10—H10B···Cg1ii0.982.863.561 (2)120
C11—H11B···Cg2ii0.982.913.670 (2)135
C17—H17···Cg2iii0.952.893.528 (2)147
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+2, y+1/2, z+1/2; (iii) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H17FO3S
Mr332.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)175
a, b, c (Å)10.9434 (6), 11.3395 (6), 13.0988 (7)
β (°) 100.252 (3)
V3)1599.51 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.41 × 0.29 × 0.17
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.669, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
14304, 3655, 3109
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.108, 1.02
No. of reflections3655
No. of parameters212
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.37

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O2i0.952.513.401 (2)155.4
C10—H10B···Cg1ii0.982.863.561 (2)120.0
C11—H11B···Cg2ii0.982.913.670 (2)134.7
C17—H17···Cg2iii0.952.893.528 (2)146.8
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+2, y+1/2, z+1/2; (iii) x+2, y1/2, z+1/2.
 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o1257.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o1761.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds