metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-{[2-Carboxyl­ato-1-(4-chloro­phen­yl)eth­yl]imino­meth­yl}phenolato-κ3O,N,O′)(1H-imidazole-κN3)copper(II) monohydrate

aChemistry Department, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: zouyang@zstu.edu.cn

(Received 12 April 2010; accepted 22 April 2010; online 28 April 2010)

The CuII atom of the title complex, [Cu(C16H12ClNO3)(C3H4N2)]·H2O, has a distorted square-planar coordination geometry formed by a tridentate Schiff base dianion and an imidazole ligand. The imidazole is nearly coplanar with the coordination plane, the dihedral angle between the planes being 3.73 (12)°. In the Schiff base ligand, the two benzene rings are oriented at a dihedral angle of 75.87 (12)°. O—H⋯O and N—H⋯O hydrogen bonding is present in the crystal structure. One H atom of the uncoordinated water mol­ecule is disordered equally over two sites.

Related literature

Transition metal complexes of salicylaldehyde-peptides and salicylaldehyde-amino­acid Schiff bases are non-enzymatic models for pyridoxal amino acid systems, which are of importance as key inter­mediates in many metabolic reactions of amino acid catalyses by enzymes, see: Bkouche-Waksman et al. (1988[Bkouche-Waksman, I., Barbe, J. M. & Kvick, Å. (1988). Acta Cryst. B44, 595-601.]); Wetmore et al. (2001[Wetmore, S. D., Smith, D. M. & Radom, L. (2001). J. Am. Chem. Soc. 123, 8678-8689.]); Zabinski & Toney (2001[Zabinski, R. F. & Toney, M. D. (2001). J. Am. Chem. Soc. 123, 193-198.]). For the preparation, structural characterization, appropriate spectroscopy and magnetic studies of Schiff-base complexes derived from salicylaldehyde and amino acids, see: Ganguly et al. (2008[Ganguly, R., Sreenivasulu, B. & Vittal, J. J. (2008). Coord. Chem. Rev. 252, 1027-1050.]) and references cited therein. For Schiff bases derived from β-amino acids, see: Vančo et al. (2008[Vančo, J., Marek, J., Trávníček, Z., Račanská, E., Muselík, J. & Švajlenová, O. (2008). J. Inorg. Biochem. 102, 595-605.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C16H12ClNO3)(C3H4N2)]·H2O

  • Mr = 451.35

  • Monoclinic, C 2/c

  • a = 23.884 (1) Å

  • b = 4.944 (1) Å

  • c = 32.008 (1) Å

  • β = 96.88 (1)°

  • V = 3752.4 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.34 mm−1

  • T = 296 K

  • 0.20 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.776, Tmax = 0.825

  • 18085 measured reflections

  • 4310 independent reflections

  • 3298 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.087

  • S = 1.04

  • 4310 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.8894 (16)
Cu1—O3 1.9494 (16)
Cu1—N1 1.9582 (18)
Cu1—N2 1.9789 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O2i 0.87 1.98 2.799 (3) 156
O1W—H2W1⋯O1Wii 0.82 2.01 2.826 (4) 172
O1W—H2W2⋯O1Wiii 0.83 2.02 2.822 (5) 163
N3—H3A⋯O2iv 0.86 1.90 2.758 (3) 172
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) -x+1, -y+2, -z; (iii) -x+1, -y+1, -z; (iv) [-x+{\script{1\over 2}}, -y+{\script{5\over 2}}, -z].

Data collection: SMART (Bruker, 2003[Bruker (2003). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Transition metal complexes of salicylaldehyde-peptides and salicylaldehyde-amino acid Schiff base are non-enzymatic models for pyridoxal-amino acid systems, which are of considerable importance as key intermediates in many metabolic reactions of amino acids catalyzed by enzymes (Zabinski et al., 2001; Wetmore et al., 2001; Bkouche-Waksman et al.,1988). Considerable effort has been devoted to the preparation, structural characterization, appropriate spectroscopy and magnetic studies of Schiff-base complexes derived from salicylaldehyde and amino acids and reduced salicylidene amino acid (Ganguly et al., 2008), but little attention has been given to Schiff base derived from β-amino acid (Vančo et al., 2008). Herein, we report the structure study of [Cu(L)(C3H4N2)]. H2O (H2L= Schiff bases derived from glycylglycine and salicylaldehyde, C16H14NO3Cl).

The complex crystallizes in the monoclinic space group C2/c. The title molecule,is characterized by a square-planar CuII coordination with the deprotonated tridentate Schiff base dianion and one imidazole molecule in the basal plane (Fig. 1). The Cu1—N1 bond distance is 1.958 Å. The two Cu—O bonds are 1.889(Cu1—O1) and 1.950 Å (Cu1—O3). The fourth position occupied by one N atom from the imidazole ligand, with bond length of 1.980 Å (Cu1—N2). The phenyl ring [C1—C6] and the ring of C1, C6, C7, N1, O1, Cu1 chelate ring are almost coplanar with a small dihedral angle of 1.8o. Hydrogen bond between the coordinated imidazole molecule and the carboxyl oxygen atom of an adjacent, symmetry related CuL unit leads to the formation of a [CuL(C3H4N2)]2 dimer. Hydrogen bond between water molecule and CuL unit further link the dimers into two-dimension layers (Fig. 2).

Related literature top

Transition metal complexes of salicylaldehyde-peptides and salicylaldehyde-aminoacid Schiff bases are non-enzymatic models for pyridoxal amino acid systems, which are of importance as key intermediates in many metabolic reactions of amino acid catalyses by enzymes, see: Bkouche-Waksman et al. (1988); Wetmore et al. (2001); Zabinski & Toney (2001). For the preparation, structural characterization, appropriate spectroscopy and magnetic studies of Schiff-base complexes derived from salicylaldehyde and amino acids, see: Ganguly et al. (2008) and references cited therein. For Schiff bases derived from β-amino acid, see: Vančo et al. (2008).

Experimental top

The Schiff base was prepared through the condensation of 3-amino-3-(4-chlorophenyl) propionic acid and salicylaldehyde. 3-Amino-3-(4-chlorophenyl) propionic acid (10 mmol) was dissolved and refluxed in absolute methanol (40 ml) containing LiOH.H2O (10 mmol). After cooled to room temperature, a solution of salicylaldehyde (10 mmol) in absolute methanol was added slowly with stirring over 10 min. Then Cu(NO3)2 (10 mmol) was added to the HLLi solution and the resulting solution was adjusted to the pH = 9-11 by 1.0 mol/L NaOH solution. After stirring at room temperature for 30 min, imidazole (10 mmol) was added to the solution with stirring. The resulting clear solution was then filtered. The filtrate was allowed to evaporate slowly at room temperature. After several days dark green crystals suitable for X-ray diffraction were obtained.

Refinement top

One H atom of the lattice water molecule is equally disordered over two sites. The water H atoms were placed in chemical sensitive positions and refined with distance restraint of O—H = 0.85 Å and Uiso(H) = 1.2Ueq(O). Other H atoms were positioned geometrically and constrained as riding atoms with C—H = 0.93–0.98 Å and N—H = 0.86 Å, Uiso(H) = 1.2Ueq(C,N).

Structure description top

Transition metal complexes of salicylaldehyde-peptides and salicylaldehyde-amino acid Schiff base are non-enzymatic models for pyridoxal-amino acid systems, which are of considerable importance as key intermediates in many metabolic reactions of amino acids catalyzed by enzymes (Zabinski et al., 2001; Wetmore et al., 2001; Bkouche-Waksman et al.,1988). Considerable effort has been devoted to the preparation, structural characterization, appropriate spectroscopy and magnetic studies of Schiff-base complexes derived from salicylaldehyde and amino acids and reduced salicylidene amino acid (Ganguly et al., 2008), but little attention has been given to Schiff base derived from β-amino acid (Vančo et al., 2008). Herein, we report the structure study of [Cu(L)(C3H4N2)]. H2O (H2L= Schiff bases derived from glycylglycine and salicylaldehyde, C16H14NO3Cl).

The complex crystallizes in the monoclinic space group C2/c. The title molecule,is characterized by a square-planar CuII coordination with the deprotonated tridentate Schiff base dianion and one imidazole molecule in the basal plane (Fig. 1). The Cu1—N1 bond distance is 1.958 Å. The two Cu—O bonds are 1.889(Cu1—O1) and 1.950 Å (Cu1—O3). The fourth position occupied by one N atom from the imidazole ligand, with bond length of 1.980 Å (Cu1—N2). The phenyl ring [C1—C6] and the ring of C1, C6, C7, N1, O1, Cu1 chelate ring are almost coplanar with a small dihedral angle of 1.8o. Hydrogen bond between the coordinated imidazole molecule and the carboxyl oxygen atom of an adjacent, symmetry related CuL unit leads to the formation of a [CuL(C3H4N2)]2 dimer. Hydrogen bond between water molecule and CuL unit further link the dimers into two-dimension layers (Fig. 2).

Transition metal complexes of salicylaldehyde-peptides and salicylaldehyde-aminoacid Schiff bases are non-enzymatic models for pyridoxal amino acid systems, which are of importance as key intermediates in many metabolic reactions of amino acid catalyses by enzymes, see: Bkouche-Waksman et al. (1988); Wetmore et al. (2001); Zabinski & Toney (2001). For the preparation, structural characterization, appropriate spectroscopy and magnetic studies of Schiff-base complexes derived from salicylaldehyde and amino acids, see: Ganguly et al. (2008) and references cited therein. For Schiff bases derived from β-amino acid, see: Vančo et al. (2008).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex with atom numbering scheme; thermal ellipsoids are drawn at 40% probability level.
[Figure 2] Fig. 2. Schematic representation of the hydrogen-bonded (dashed lines).
(2-{[2-Carboxylato-1-(4-chlorophenyl)ethyl]iminomethyl}phenolato- κ3O,N,O')(1H-imidazole-κN3)copper(II) monohydrate top
Crystal data top
[Cu(C16H12ClNO3)(C3H4N2)]·H2OF(000) = 1848
Mr = 451.35Dx = 1.598 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3298 reflections
a = 23.884 (1) Åθ = 1.7–27.5°
b = 4.944 (1) ŵ = 1.34 mm1
c = 32.008 (1) ÅT = 296 K
β = 96.88 (1)°Block, dark green
V = 3752.4 (8) Å30.20 × 0.20 × 0.15 mm
Z = 8
Data collection top
Bruker SMART CCD
diffractometer
4310 independent reflections
Radiation source: fine-focus sealed tube3298 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 3030
Tmin = 0.776, Tmax = 0.825k = 66
18085 measured reflectionsl = 4141
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0381P)2 + 2.3614P]
where P = (Fo2 + 2Fc2)/3
4310 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Cu(C16H12ClNO3)(C3H4N2)]·H2OV = 3752.4 (8) Å3
Mr = 451.35Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.884 (1) ŵ = 1.34 mm1
b = 4.944 (1) ÅT = 296 K
c = 32.008 (1) Å0.20 × 0.20 × 0.15 mm
β = 96.88 (1)°
Data collection top
Bruker SMART CCD
diffractometer
4310 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
3298 reflections with I > 2σ(I)
Tmin = 0.776, Tmax = 0.825Rint = 0.035
18085 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.04Δρmax = 0.33 e Å3
4310 reflectionsΔρmin = 0.30 e Å3
253 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.257392 (11)0.70003 (6)0.103939 (8)0.03102 (10)
Cl10.00394 (3)1.30201 (17)0.18252 (3)0.0645 (2)
N10.20142 (7)0.4707 (4)0.12667 (6)0.0301 (4)
N20.31243 (7)0.9444 (4)0.08174 (6)0.0332 (4)
N30.34883 (9)1.2624 (4)0.04560 (7)0.0414 (5)
H3A0.35131.39150.02790.050*
O10.31821 (6)0.5542 (4)0.14014 (5)0.0406 (4)
O20.13208 (7)0.8259 (4)0.00906 (5)0.0425 (4)
O30.20152 (7)0.8490 (4)0.06065 (5)0.0436 (4)
C10.31811 (10)0.3666 (5)0.16842 (7)0.0351 (5)
C20.36998 (10)0.2833 (6)0.19110 (8)0.0439 (6)
H20.40330.36710.18580.053*
C30.37183 (11)0.0827 (6)0.22041 (7)0.0447 (6)
H30.40650.03160.23460.054*
C40.32307 (11)0.0477 (6)0.22958 (8)0.0462 (7)
H40.32500.18380.24980.055*
C50.27261 (10)0.0272 (5)0.20854 (7)0.0409 (6)
H50.24000.05940.21460.049*
C60.26851 (10)0.2331 (5)0.17774 (7)0.0329 (5)
C70.21439 (10)0.2914 (5)0.15579 (7)0.0335 (5)
H70.18460.18790.16330.040*
C80.14124 (9)0.4717 (5)0.10794 (7)0.0308 (5)
H80.12510.29930.11570.037*
C90.10709 (9)0.6933 (5)0.12577 (7)0.0313 (5)
C100.11509 (10)0.7554 (5)0.16848 (8)0.0383 (6)
H100.14400.67010.18570.046*
C110.08136 (10)0.9405 (6)0.18610 (8)0.0433 (6)
H110.08750.97880.21470.052*
C120.03856 (10)1.0673 (5)0.16069 (8)0.0426 (6)
C130.02920 (10)1.0118 (5)0.11820 (8)0.0431 (6)
H130.00031.09870.10130.052*
C140.06307 (9)0.8260 (5)0.10105 (8)0.0387 (6)
H140.05650.78810.07240.046*
C150.13857 (9)0.4720 (5)0.05973 (7)0.0331 (5)
H15A0.16170.32500.05130.040*
H15B0.10000.43730.04770.040*
C160.15803 (9)0.7320 (5)0.04156 (7)0.0325 (5)
C170.30207 (10)1.1329 (5)0.05273 (7)0.0385 (6)
H170.26641.17070.03890.046*
C180.39202 (11)1.1523 (6)0.07154 (8)0.0487 (7)
H180.42981.20160.07350.058*
C190.36968 (9)0.9583 (6)0.09385 (8)0.0408 (6)
H190.38970.85040.11420.049*
O1W0.48323 (8)0.7498 (5)0.01584 (7)0.0703 (6)
H1W0.44690.73370.01590.084*
H2W10.49590.88830.00660.084*0.50
H2W20.49870.62090.00500.084*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02878 (15)0.03081 (17)0.03347 (16)0.00405 (12)0.00374 (11)0.00462 (13)
Cl10.0498 (4)0.0640 (5)0.0836 (6)0.0023 (4)0.0240 (4)0.0184 (4)
N10.0281 (9)0.0298 (11)0.0323 (10)0.0028 (8)0.0034 (8)0.0038 (9)
N20.0315 (10)0.0363 (12)0.0314 (10)0.0053 (9)0.0027 (8)0.0040 (9)
N30.0459 (12)0.0394 (13)0.0399 (11)0.0119 (10)0.0094 (9)0.0071 (10)
O10.0320 (8)0.0453 (11)0.0439 (10)0.0041 (8)0.0017 (7)0.0127 (9)
O20.0417 (9)0.0455 (11)0.0387 (9)0.0073 (8)0.0022 (8)0.0123 (8)
O30.0362 (9)0.0392 (11)0.0525 (10)0.0121 (8)0.0064 (8)0.0160 (9)
C10.0399 (13)0.0362 (14)0.0290 (12)0.0020 (11)0.0040 (10)0.0005 (11)
C20.0349 (13)0.0546 (18)0.0418 (14)0.0031 (12)0.0025 (11)0.0028 (13)
C30.0447 (14)0.0524 (17)0.0354 (13)0.0139 (13)0.0020 (11)0.0034 (13)
C40.0584 (16)0.0458 (17)0.0340 (13)0.0074 (14)0.0034 (12)0.0102 (12)
C50.0450 (14)0.0396 (15)0.0381 (13)0.0007 (12)0.0050 (11)0.0069 (12)
C60.0354 (12)0.0322 (13)0.0310 (12)0.0030 (10)0.0044 (9)0.0014 (10)
C70.0341 (12)0.0310 (13)0.0364 (12)0.0047 (11)0.0081 (10)0.0022 (11)
C80.0276 (11)0.0297 (12)0.0349 (12)0.0080 (10)0.0026 (9)0.0058 (10)
C90.0271 (11)0.0332 (13)0.0340 (12)0.0093 (10)0.0043 (9)0.0028 (11)
C100.0343 (12)0.0436 (16)0.0366 (13)0.0048 (11)0.0023 (10)0.0048 (11)
C110.0448 (14)0.0499 (17)0.0359 (13)0.0082 (13)0.0076 (11)0.0029 (13)
C120.0344 (12)0.0404 (15)0.0552 (16)0.0069 (12)0.0152 (11)0.0048 (13)
C130.0293 (12)0.0477 (16)0.0508 (15)0.0029 (12)0.0009 (11)0.0003 (13)
C140.0329 (12)0.0457 (16)0.0367 (13)0.0029 (12)0.0003 (10)0.0016 (12)
C150.0348 (12)0.0282 (13)0.0355 (12)0.0060 (10)0.0009 (10)0.0003 (11)
C160.0325 (11)0.0325 (13)0.0332 (12)0.0026 (10)0.0073 (10)0.0018 (10)
C170.0354 (12)0.0422 (15)0.0381 (13)0.0083 (11)0.0046 (10)0.0050 (12)
C180.0370 (13)0.0574 (19)0.0522 (16)0.0136 (13)0.0069 (12)0.0030 (14)
C190.0319 (12)0.0470 (16)0.0425 (14)0.0066 (11)0.0004 (10)0.0069 (12)
O1W0.0450 (11)0.0803 (16)0.0830 (15)0.0032 (11)0.0032 (11)0.0025 (12)
Geometric parameters (Å, º) top
Cu1—O11.8894 (16)C6—C71.425 (3)
Cu1—O31.9494 (16)C7—H70.9300
Cu1—N11.9582 (18)C8—C91.518 (3)
Cu1—N21.9789 (18)C8—C151.537 (3)
Cl1—C121.742 (3)C8—H80.9800
N1—C71.297 (3)C9—C101.392 (3)
N1—C81.489 (3)C9—C141.401 (3)
N2—C171.318 (3)C10—C111.383 (3)
N2—C191.378 (3)C10—H100.9300
N3—C171.331 (3)C11—C121.379 (3)
N3—C181.358 (3)C11—H110.9300
N3—H3A0.8600C12—C131.379 (3)
O1—C11.296 (3)C13—C141.381 (3)
O2—C161.236 (3)C13—H130.9300
O3—C161.278 (3)C14—H140.9300
C1—C61.419 (3)C15—C161.507 (3)
C1—C21.420 (3)C15—H15A0.9700
C2—C31.362 (4)C15—H15B0.9700
C2—H20.9300C17—H170.9300
C3—C41.393 (4)C18—C191.344 (3)
C3—H30.9300C18—H180.9300
C4—C51.360 (3)C19—H190.9300
C4—H40.9300O1W—H1W0.8709
C5—C61.412 (3)O1W—H2W10.8180
C5—H50.9300O1W—H2W20.8325
O1—Cu1—O3172.18 (7)C9—C8—H8106.6
O1—Cu1—N193.45 (7)C15—C8—H8106.6
O3—Cu1—N192.47 (7)C10—C9—C14117.2 (2)
O1—Cu1—N287.61 (7)C10—C9—C8120.8 (2)
O3—Cu1—N286.66 (7)C14—C9—C8121.8 (2)
N1—Cu1—N2177.75 (8)C11—C10—C9121.9 (2)
C7—N1—C8115.30 (18)C11—C10—H10119.1
C7—N1—Cu1123.22 (15)C9—C10—H10119.1
C8—N1—Cu1121.16 (14)C12—C11—C10119.2 (2)
C17—N2—C19105.0 (2)C12—C11—H11120.4
C17—N2—Cu1127.44 (16)C10—C11—H11120.4
C19—N2—Cu1127.53 (16)C11—C12—C13120.8 (2)
C17—N3—C18107.1 (2)C11—C12—Cl1119.5 (2)
C17—N3—H3A126.5C13—C12—Cl1119.6 (2)
C18—N3—H3A126.5C12—C13—C14119.4 (2)
C1—O1—Cu1129.47 (15)C12—C13—H13120.3
C16—O3—Cu1128.07 (16)C14—C13—H13120.3
O1—C1—C6123.5 (2)C13—C14—C9121.5 (2)
O1—C1—C2119.3 (2)C13—C14—H14119.2
C6—C1—C2117.2 (2)C9—C14—H14119.2
C3—C2—C1121.2 (2)C16—C15—C8114.26 (19)
C3—C2—H2119.4C16—C15—H15A108.7
C1—C2—H2119.4C8—C15—H15A108.7
C2—C3—C4121.5 (2)C16—C15—H15B108.7
C2—C3—H3119.2C8—C15—H15B108.7
C4—C3—H3119.2H15A—C15—H15B107.6
C5—C4—C3118.9 (2)O2—C16—O3122.0 (2)
C5—C4—H4120.5O2—C16—C15119.9 (2)
C3—C4—H4120.5O3—C16—C15118.1 (2)
C4—C5—C6121.7 (2)N2—C17—N3111.7 (2)
C4—C5—H5119.2N2—C17—H17124.1
C6—C5—H5119.2N3—C17—H17124.1
C5—C6—C1119.5 (2)C19—C18—N3106.9 (2)
C5—C6—C7118.2 (2)C19—C18—H18126.6
C1—C6—C7122.2 (2)N3—C18—H18126.6
N1—C7—C6128.1 (2)C18—C19—N2109.3 (2)
N1—C7—H7115.9C18—C19—H19125.4
C6—C7—H7115.9N2—C19—H19125.4
N1—C8—C9112.78 (18)H1W—O1W—H2W1119.3
N1—C8—C15109.03 (17)H1W—O1W—H2W2115.1
C9—C8—C15114.66 (19)H2W1—O1W—H2W2106.8
N1—C8—H8106.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2i0.871.982.799 (3)156
O1W—H2W1···O1Wii0.822.012.826 (4)172
O1W—H2W2···O1Wiii0.832.022.822 (5)163
N3—H3A···O2iv0.861.902.758 (3)172
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1, y+2, z; (iii) x+1, y+1, z; (iv) x+1/2, y+5/2, z.

Experimental details

Crystal data
Chemical formula[Cu(C16H12ClNO3)(C3H4N2)]·H2O
Mr451.35
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)23.884 (1), 4.944 (1), 32.008 (1)
β (°) 96.88 (1)
V3)3752.4 (8)
Z8
Radiation typeMo Kα
µ (mm1)1.34
Crystal size (mm)0.20 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.776, 0.825
No. of measured, independent and
observed [I > 2σ(I)] reflections
18085, 4310, 3298
Rint0.035
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.087, 1.04
No. of reflections4310
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.30

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O11.8894 (16)Cu1—N11.9582 (18)
Cu1—O31.9494 (16)Cu1—N21.9789 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2i0.871.982.799 (3)155.8
O1W—H2W1···O1Wii0.822.012.826 (4)172.3
O1W—H2W2···O1Wiii0.832.022.822 (5)163.2
N3—H3A···O2iv0.861.902.758 (3)171.8
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1, y+2, z; (iii) x+1, y+1, z; (iv) x+1/2, y+5/2, z.
 

Acknowledgements

The authors thank the Natural Science Foundation of Zhejiang Province, China (No. Y4080342) and the Science Foundation of Zhejiang Sci-Tech University (No. 0813622-Y) for financial support.

References

First citationBkouche-Waksman, I., Barbe, J. M. & Kvick, Å. (1988). Acta Cryst. B44, 595–601.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2003). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGanguly, R., Sreenivasulu, B. & Vittal, J. J. (2008). Coord. Chem. Rev. 252, 1027–1050.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVančo, J., Marek, J., Trávníček, Z., Račanská, E., Muselík, J. & Švajlenová, O. (2008). J. Inorg. Biochem. 102, 595–605.  Web of Science PubMed Google Scholar
First citationWetmore, S. D., Smith, D. M. & Radom, L. (2001). J. Am. Chem. Soc. 123, 8678–8689.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZabinski, R. F. & Toney, M. D. (2001). J. Am. Chem. Soc. 123, 193–198.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds