organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Amino­phen­yl)-3-[2-(tri­fluoro­meth­yl)phen­yl]prop-2-en-1-one

aSchool of Pharmacy, Wenzhou Medical College, Wenzhou, Zhejiang Province 325035, People's Republic of China, bLife Science College, Wenzhou Medical College, Wenzhou, Zhejiang Province 325035, People's Republic of China, and cInstitute of Biotechnology, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, People's Republic of China
*Correspondence e-mail: wujianzhang6@163.com,wzmcwjz@163.com

(Received 5 April 2010; accepted 17 April 2010; online 24 April 2010)

The title compound, C16H12F3NO, a derivative of biologically active chalcones, comprises two benzene rings and a central –CH=CH—C(=O)– unit. The dihedral angle between the two rings is 10.9 (1)° and the mol­ecule adopts an E configuration about the central olefinic bond. The crystal structure is stabilized by inter­molecular N—H⋯O and N—H⋯N hydrogen bonds.

Related literature

For related structures, see: Narender et al. (2007[Narender T., Reddy K.P., Shweta, Srivastava K., Mishra D.K., Puri S.K. (2007). Org Lett. 9, 5369-5372.]); Kamal et al. (2008[Kamal, A., Shankaraiah, N., Prabhakar, S., Reddy, C. R., Markandeya, N., Reddy, K. L. & Devaiah, V. (2008). Bioorg. Med. Chem. Lett. 18, 2434-2439.]); Wu et al. (2009[Wu, J. Z., Zhang, L., Wang, J., Yang, S. L. & Li, X. K. (2009). Acta Cryst. E65, o2805.]); Low et al. (2002[Low, J. N., Cobo, J., Nogueras, M., Sánchez, A., Albornoz, A. & Abonia, R. (2002). Acta Cryst. C58, o42-o45.]); Yathirajan et al. (2006[Yathirajan, H. S., Sarojini, B. K., Narayana, B., Bindya, S. & Bolte, M. (2006). Acta Cryst. E62, o3629-o3630.]); Suwunwong et al. (2009[Suwunwong, T., Chantrapromma, S., Pakdeevanich, P. & Fun, H.-K. (2009). Acta Cryst. E65, o1575-o1576.]). For background to and applications of chalcones, see: Heidari et al. (2009[Heidari, M. R., Foroumadi, A., Noroozi, H., Samzadeh-Kermani, A. & Azimzadeh, B. S. (2009). Pak. J. Pharm. Sci. 22, 395-401.]); Nielsen et al. (2005[Nielsen, S. F., Larsen, M., Boesen, T., Schonning, K. & Kromann, H. (2005). J. Med. Chem. 48, 2667-2677.]); Mojzis et al. (2008[Mojzis, J., Varinska, L., Mojzisova, G., Kostova, I. & Mirossay, L. (2008). Pharmacol. Res. 57, 259-265.]); Achanta et al. (2006[Achanta, G., Modzelewska, A., Feng, L., Khan, S. R. & Huang, P. (2006). Mol. Pharmacol. 70, 426-433.]); Dimmock et al. (1999[Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1150.]); Liang et al. (2007a[Liang, G., Tian, J.-L., Zhao, C.-G. & Li, X.-K. (2007a). Acta Cryst. E63, o3630.],b[Liang, G., Yang, S.-L., Wang, X.-H., Li, Y.-R. & Li, X.-K. (2007b). Acta Cryst. E63, o4118.], 2009[Liang, G., Shao, L. L., Wang, Y., Zhao, C. G., Chu, Y. H., Xiao, J., Zhao, Y., Li, X. K. & Yang, S. L. (2009). Bioorg. Med. Chem. 17, 2623-2631.]); Zhao et al. (2010[Zhao, C. G., Yang, J., Wang, Y., Liang, D. L., Yang, X. Y., Li, X. X., Wu, J. Z., Wu, X. P., Yang, S. L., Li, X. K. & Liang, G. (2010). Bioorg. Med. Chem. 18, 2388-2393.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12F3NO

  • Mr = 291.27

  • Monoclinic, P 21 /c

  • a = 18.835 (3) Å

  • b = 4.7866 (8) Å

  • c = 15.177 (3) Å

  • β = 101.108 (3)°

  • V = 1342.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 273 K

  • 0.43 × 0.28 × 0.22 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.951, Tmax = 0.974

  • 6607 measured reflections

  • 2360 independent reflections

  • 1700 reflections with I > 2σ(I)

  • Rint = 0.130

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.185

  • S = 1.00

  • 2360 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N1i 0.86 2.42 3.235 (3) 158
N1—H1B⋯O1ii 0.86 2.45 3.162 (3) 140
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chalcones, which are open-chain flavonoids, distribute widespread in fruits, vegetables and so on. Chalcone and their derivatives are obtained from the aldol condensation of aromatic aldehydes and aromatic ketones. They are important intermediate of organic synthesis. Due to their significant biological activities such as anti-inflammatory, antibacterial, antiangiogenic, antitumor and analgesic, they have attracted more and more attention (Heidari et al., 2009; Nielsen et al., 2005; Mojzis et al., 2008; Achanta et al., 2006; Dimmock et al., 1999). The molecule of chalcone possess two phenyl rings and one –CH=CH–C(=O)– central part. The carbonyl functional group which is responsible for the antibacterial activity of these compounds is the main feature of chalcone derivatives (Suwunwong et al., 2009).

Due to the broad spectrum of biological activities of this type of compounds, various chalcone analogues have been synthesized in order to filter the better ones or the unique ones (Narender et al., 2007; Kamal et al., 2008). As a continuation of our broad program of work on the synthesis and structural study of chalcones, the title chalcone derivative has been obtained and an X-ray diffraction study was carried out.

The molecule is approximately planar and the dihedral angle between the two phenyl rings is 10.9 (1)°. The H atoms of the central propenone group are trans to each other. The average value of the phenyl bond distances [1.385 (5) Å] and bond angles [120.7 (4)°] have normal values which agree quite well with the values reported in the literature for some analogous structures (Wu et al., 2009; Low et al., 2002; Yathirajan et al., 2006). The crystal structure is stabilized by intermolecular N(1)–H1A···O(1) and N(1)–H1B···N(1) hydrogen bonds.

Related literature top

For related structures, see: Narender et al. (2007); Kamal et al. (2008); Wu et al. (2009); Low et al. (2002); Yathirajan et al. (2006); Suwunwong et al. (2009). For background to and applications of chalcones, see: Heidari et al. (2009); Nielsen et al. (2005); Mojzis et al. (2008); Achanta et al. (2006); Dimmock et al. (1999); Liang et al. (2007a,b, 2009); Zhao et al. (2010).

Experimental top

1-(4-aminophenyl)ethanone (5 mmol) was dissolved in ethanol (10 ml) and a solution of KOH (40%, 5 drops) was added. The flask was immersed in bath of crushed ice and a solution of 2-(trifluoromethyl)benzaldehyde (5 mmol) in ethanol (10 ml) was added. The reaction mixture was stirred at 300 K and completion of the reaction was monitored by thin-layer chromatography. Ice-cold water was added to the reaction mixture after 24 h and the yellow solid that separated was filtered off, washed with water and cold ethanol, dried and purified by column chromatography on silica gel (yield: 68%). Single crystals of the title compound were grown in a CH2Cl2/CH3OH mixture (7:3 v/v) by slow evaporation at 277 K.

Refinement top

The H atoms were positioned geometrically (C—H = 0.93 and N—H = 0.86 Å) and refined as riding with Uiso(H) = 1.2Ueq(C,N).

Structure description top

Chalcones, which are open-chain flavonoids, distribute widespread in fruits, vegetables and so on. Chalcone and their derivatives are obtained from the aldol condensation of aromatic aldehydes and aromatic ketones. They are important intermediate of organic synthesis. Due to their significant biological activities such as anti-inflammatory, antibacterial, antiangiogenic, antitumor and analgesic, they have attracted more and more attention (Heidari et al., 2009; Nielsen et al., 2005; Mojzis et al., 2008; Achanta et al., 2006; Dimmock et al., 1999). The molecule of chalcone possess two phenyl rings and one –CH=CH–C(=O)– central part. The carbonyl functional group which is responsible for the antibacterial activity of these compounds is the main feature of chalcone derivatives (Suwunwong et al., 2009).

Due to the broad spectrum of biological activities of this type of compounds, various chalcone analogues have been synthesized in order to filter the better ones or the unique ones (Narender et al., 2007; Kamal et al., 2008). As a continuation of our broad program of work on the synthesis and structural study of chalcones, the title chalcone derivative has been obtained and an X-ray diffraction study was carried out.

The molecule is approximately planar and the dihedral angle between the two phenyl rings is 10.9 (1)°. The H atoms of the central propenone group are trans to each other. The average value of the phenyl bond distances [1.385 (5) Å] and bond angles [120.7 (4)°] have normal values which agree quite well with the values reported in the literature for some analogous structures (Wu et al., 2009; Low et al., 2002; Yathirajan et al., 2006). The crystal structure is stabilized by intermolecular N(1)–H1A···O(1) and N(1)–H1B···N(1) hydrogen bonds.

For related structures, see: Narender et al. (2007); Kamal et al. (2008); Wu et al. (2009); Low et al. (2002); Yathirajan et al. (2006); Suwunwong et al. (2009). For background to and applications of chalcones, see: Heidari et al. (2009); Nielsen et al. (2005); Mojzis et al. (2008); Achanta et al. (2006); Dimmock et al. (1999); Liang et al. (2007a,b, 2009); Zhao et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% displacement ellipsoids for the non-hydrogen atoms. Hydrogen atoms are drawn as spheres of arbitrary radius.
1-(4-Aminophenyl)-3-[2-(trifluoromethyl)phenyl]prop-2-en-1-one top
Crystal data top
C16H12F3NOF(000) = 600
Mr = 291.27Dx = 1.441 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1903 reflections
a = 18.835 (3) Åθ = 2.7–25.4°
b = 4.7866 (8) ŵ = 0.12 mm1
c = 15.177 (3) ÅT = 273 K
β = 101.108 (3)°Block, colorless
V = 1342.7 (4) Å30.43 × 0.28 × 0.22 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2360 independent reflections
Radiation source: fine-focus sealed tube1700 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.130
φ and ω scansθmax = 25.0°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2122
Tmin = 0.951, Tmax = 0.974k = 55
6607 measured reflectionsl = 1810
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.185 w = 1/[σ2(Fo2) + (0.1025P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
2360 reflectionsΔρmax = 0.23 e Å3
191 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.005 (3)
Crystal data top
C16H12F3NOV = 1342.7 (4) Å3
Mr = 291.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.835 (3) ŵ = 0.12 mm1
b = 4.7866 (8) ÅT = 273 K
c = 15.177 (3) Å0.43 × 0.28 × 0.22 mm
β = 101.108 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2360 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1700 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.974Rint = 0.130
6607 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.185H-atom parameters constrained
S = 1.00Δρmax = 0.23 e Å3
2360 reflectionsΔρmin = 0.25 e Å3
191 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.34496 (14)0.3803 (5)0.79335 (18)0.0501 (6)
C20.36516 (11)0.4190 (5)0.70442 (16)0.0410 (6)
C30.42148 (13)0.6043 (6)0.69850 (19)0.0522 (7)
H30.44570.69520.74970.063*
C40.44121 (14)0.6525 (6)0.6172 (2)0.0604 (8)
H40.47860.77620.61350.073*
C50.40580 (14)0.5182 (6)0.5413 (2)0.0593 (8)
H50.41930.55020.48640.071*
C60.34998 (13)0.3352 (6)0.54698 (18)0.0529 (7)
H60.32630.24640.49500.063*
C70.32798 (12)0.2792 (5)0.62745 (16)0.0412 (6)
C80.26836 (13)0.0800 (5)0.62980 (17)0.0476 (6)
H80.25430.05560.68480.057*
C90.23372 (13)0.0641 (5)0.56274 (18)0.0486 (6)
H90.24680.04080.50720.058*
C100.17464 (12)0.2634 (5)0.56880 (16)0.0416 (6)
C110.14526 (11)0.4364 (4)0.48894 (16)0.0375 (6)
C120.17160 (12)0.4283 (5)0.40932 (17)0.0449 (6)
H120.20900.30570.40460.054*
C130.14390 (12)0.5965 (5)0.33733 (17)0.0469 (6)
H130.16280.58610.28520.056*
C140.08774 (11)0.7824 (5)0.34190 (16)0.0416 (6)
C150.05970 (12)0.7888 (5)0.42057 (18)0.0459 (6)
H150.02150.90840.42460.055*
C160.08779 (12)0.6204 (5)0.49211 (17)0.0431 (6)
H160.06830.62860.54390.052*
F10.34613 (11)0.1107 (3)0.81944 (11)0.0793 (6)
F20.27876 (9)0.4720 (4)0.79671 (12)0.0768 (6)
F30.38918 (9)0.5133 (4)0.86064 (11)0.0736 (6)
N10.05877 (11)0.9453 (4)0.26847 (15)0.0543 (6)
H1A0.02271.05350.27070.065*
H1B0.07680.93840.22060.065*
O10.15200 (10)0.2839 (4)0.63840 (13)0.0660 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0540 (15)0.0454 (14)0.0489 (15)0.0024 (11)0.0046 (12)0.0064 (12)
C20.0363 (12)0.0409 (12)0.0441 (13)0.0044 (10)0.0037 (10)0.0006 (11)
C30.0437 (14)0.0539 (14)0.0552 (16)0.0059 (11)0.0000 (12)0.0051 (13)
C40.0424 (14)0.0695 (17)0.0703 (19)0.0150 (13)0.0132 (13)0.0025 (15)
C50.0568 (16)0.0717 (18)0.0522 (16)0.0089 (14)0.0179 (14)0.0028 (14)
C60.0482 (14)0.0662 (16)0.0442 (14)0.0107 (13)0.0087 (12)0.0049 (13)
C70.0352 (12)0.0448 (13)0.0432 (13)0.0002 (10)0.0065 (10)0.0021 (11)
C80.0443 (13)0.0562 (14)0.0439 (14)0.0075 (11)0.0127 (11)0.0048 (12)
C90.0473 (14)0.0549 (15)0.0441 (14)0.0092 (11)0.0100 (12)0.0055 (12)
C100.0351 (12)0.0461 (13)0.0433 (14)0.0020 (10)0.0070 (10)0.0018 (11)
C110.0289 (11)0.0391 (12)0.0443 (13)0.0040 (9)0.0063 (10)0.0018 (10)
C120.0340 (12)0.0507 (14)0.0508 (14)0.0063 (10)0.0103 (11)0.0009 (12)
C130.0407 (13)0.0590 (15)0.0430 (14)0.0018 (11)0.0130 (11)0.0022 (12)
C140.0314 (11)0.0433 (12)0.0469 (14)0.0070 (9)0.0009 (10)0.0021 (11)
C150.0352 (12)0.0487 (13)0.0542 (15)0.0075 (10)0.0093 (11)0.0002 (12)
C160.0375 (12)0.0496 (13)0.0438 (13)0.0004 (10)0.0118 (10)0.0019 (11)
F10.1293 (15)0.0565 (10)0.0519 (10)0.0041 (10)0.0173 (10)0.0057 (8)
F20.0622 (10)0.1068 (14)0.0678 (11)0.0078 (9)0.0287 (9)0.0063 (10)
F30.0831 (12)0.0847 (12)0.0489 (10)0.0169 (9)0.0029 (9)0.0161 (8)
N10.0472 (12)0.0637 (13)0.0503 (13)0.0050 (10)0.0052 (10)0.0114 (11)
O10.0664 (12)0.0844 (14)0.0514 (11)0.0276 (10)0.0223 (10)0.0148 (10)
Geometric parameters (Å, º) top
C1—F11.349 (3)C9—C101.482 (3)
C1—F21.332 (3)C9—H90.9300
C1—F31.347 (3)C10—O11.217 (3)
C1—C21.483 (4)C10—C111.484 (3)
C2—C31.399 (3)C11—C161.404 (3)
C2—C71.410 (3)C11—C121.392 (3)
C3—C41.375 (4)C12—C131.376 (3)
C3—H30.9300C12—H120.9300
C4—C51.374 (4)C13—C141.394 (3)
C4—H40.9300C13—H130.9300
C5—C61.384 (4)C14—N11.383 (3)
C5—H50.9300C14—C151.396 (3)
C6—C71.389 (3)C15—C161.374 (3)
C6—H60.9300C15—H150.9300
C7—C81.479 (3)C16—H160.9300
C8—C91.296 (4)N1—H1A0.8600
C8—H80.9300N1—H1B0.8600
F1—C1—F2105.4 (2)C8—C9—C10124.3 (2)
F1—C1—F3104.9 (2)C8—C9—H9117.8
F2—C1—F3105.2 (2)C10—C9—H9117.8
F1—C1—C2113.2 (2)O1—C10—C11121.7 (2)
F2—C1—C2113.6 (2)O1—C10—C9119.9 (2)
F3—C1—C2113.7 (2)C11—C10—C9118.3 (2)
C3—C2—C7120.6 (2)C16—C11—C12116.9 (2)
C3—C2—C1117.9 (2)C16—C11—C10119.4 (2)
C7—C2—C1121.4 (2)C12—C11—C10123.7 (2)
C4—C3—C2120.2 (3)C13—C12—C11121.9 (2)
C4—C3—H3119.9C13—C12—H12119.0
C2—C3—H3119.9C11—C12—H12119.0
C3—C4—C5120.1 (2)C12—C13—C14120.6 (2)
C3—C4—H4119.9C12—C13—H13119.7
C5—C4—H4119.9C14—C13—H13119.7
C6—C5—C4119.7 (3)N1—C14—C15121.4 (2)
C6—C5—H5120.1N1—C14—C13120.3 (2)
C4—C5—H5120.1C15—C14—C13118.2 (2)
C5—C6—C7122.4 (3)C16—C15—C14120.8 (2)
C5—C6—H6118.8C16—C15—H15119.6
C7—C6—H6118.8C14—C15—H15119.6
C6—C7—C2116.9 (2)C15—C16—C11121.6 (2)
C6—C7—C8120.1 (2)C15—C16—H16119.2
C2—C7—C8123.0 (2)C11—C16—H16119.2
C9—C8—C7126.4 (2)C14—N1—H1A120.0
C9—C8—H8116.8C14—N1—H1B120.0
C7—C8—H8116.8H1A—N1—H1B120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N1i0.862.423.235 (3)158
N1—H1B···O1ii0.862.453.162 (3)140
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H12F3NO
Mr291.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)18.835 (3), 4.7866 (8), 15.177 (3)
β (°) 101.108 (3)
V3)1342.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.43 × 0.28 × 0.22
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.951, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
6607, 2360, 1700
Rint0.130
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.185, 1.00
No. of reflections2360
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.25

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N1i0.862.423.235 (3)157.5
N1—H1B···O1ii0.862.453.162 (3)140.4
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+3/2, z1/2.
 

Acknowledgements

This work was supported by the Zhejiang Province Extreme­ly Key Subject Building Funding (Pharmacology and Biochemical Pharmaceutics 2008), the Department of Education of Zhejiang Province (No. 20070907) and the Wenzhou Administration of Science and Technology project (No. Y20080016).

References

First citationAchanta, G., Modzelewska, A., Feng, L., Khan, S. R. & Huang, P. (2006). Mol. Pharmacol. 70, 426–433.  Web of Science PubMed CAS Google Scholar
First citationBruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1150.  Web of Science PubMed CAS Google Scholar
First citationHeidari, M. R., Foroumadi, A., Noroozi, H., Samzadeh-Kermani, A. & Azimzadeh, B. S. (2009). Pak. J. Pharm. Sci. 22, 395–401.  Web of Science PubMed CAS Google Scholar
First citationKamal, A., Shankaraiah, N., Prabhakar, S., Reddy, C. R., Markandeya, N., Reddy, K. L. & Devaiah, V. (2008). Bioorg. Med. Chem. Lett. 18, 2434–2439.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiang, G., Shao, L. L., Wang, Y., Zhao, C. G., Chu, Y. H., Xiao, J., Zhao, Y., Li, X. K. & Yang, S. L. (2009). Bioorg. Med. Chem. 17, 2623–2631.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiang, G., Tian, J.-L., Zhao, C.-G. & Li, X.-K. (2007a). Acta Cryst. E63, o3630.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiang, G., Yang, S.-L., Wang, X.-H., Li, Y.-R. & Li, X.-K. (2007b). Acta Cryst. E63, o4118.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLow, J. N., Cobo, J., Nogueras, M., Sánchez, A., Albornoz, A. & Abonia, R. (2002). Acta Cryst. C58, o42–o45.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMojzis, J., Varinska, L., Mojzisova, G., Kostova, I. & Mirossay, L. (2008). Pharmacol. Res. 57, 259–265.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNarender T., Reddy K.P., Shweta, Srivastava K., Mishra D.K., Puri S.K. (2007). Org Lett. 9, 5369–5372.  Google Scholar
First citationNielsen, S. F., Larsen, M., Boesen, T., Schonning, K. & Kromann, H. (2005). J. Med. Chem. 48, 2667–2677.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuwunwong, T., Chantrapromma, S., Pakdeevanich, P. & Fun, H.-K. (2009). Acta Cryst. E65, o1575-o1576.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWu, J. Z., Zhang, L., Wang, J., Yang, S. L. & Li, X. K. (2009). Acta Cryst. E65, o2805.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYathirajan, H. S., Sarojini, B. K., Narayana, B., Bindya, S. & Bolte, M. (2006). Acta Cryst. E62, o3629–o3630.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, C. G., Yang, J., Wang, Y., Liang, D. L., Yang, X. Y., Li, X. X., Wu, J. Z., Wu, X. P., Yang, S. L., Li, X. K. & Liang, G. (2010). Bioorg. Med. Chem. 18, 2388–2393.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds