metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{1,3-Bis[(di­phenyl­phosphanyl-κP)­­oxy]propane}di­carbonyl­iron(0)

aSchool of Chemistry and Chemical Engineering, Shandong University, Shanda Nanlu 27, Jinan 250100, People's Republic of China
*Correspondence e-mail: xli63@sdu.edu.cn

(Received 15 March 2010; accepted 14 April 2010; online 21 April 2010)

The structure of the title compound, [Fe(C27H26O2P2)(CO)2], exhibits a distorted tetra­hedral coordination [bond angle range = 96.31 (12)–119.37 (4)°], comprising two P-atom donors from the chelating 1,3-bis­[(diphenyl­phosphan­yl)­oxy]propane ligand [Fe—P = 2.1414 (10) and 2.1462 (10) Å] and two carbonyl ligands [Fe—C = 1.763 (4) and 1.765 (3) Å].

Related literature

For a related carbonyl­ation reaction, see: Klein et al. (2003[Klein, H. F., Beck, R., Flörke, U. & Haupt, H. J. (2003). Eur. J. Inorg. Chem. pp. 853-862.]). For general background to metal complexes with the 1,3-bis­[(diphenyl­phosphino)­oxy]propane ligand, see: Pandarus et al. (2008[Pandarus, V., Castonguay, A. & Zargarian, D. (2008). Dalton Trans. pp. 4756-4761.]); Xu et al. (2009[Xu, G., Sun, H. & Li, X. (2009). Organometallics, 28, 6090-6095.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C27H26O2P2)(CO)2]

  • Mr = 556.29

  • Monoclinic, P 21 /n

  • a = 12.589 (3) Å

  • b = 15.191 (3) Å

  • c = 14.384 (3) Å

  • β = 106.14 (3)°

  • V = 2642.4 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.73 mm−1

  • T = 293 K

  • 0.27 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). University of Göttingen, Germany.]) Tmin = 0.828, Tmax = 0.899

  • 17176 measured reflections

  • 5590 independent reflections

  • 3864 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.094

  • S = 0.99

  • 5590 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, the three-coordinated phosphine-based pincer (PCP) ligands with an aliphatic backbone have attracted much attention (Pandarus et al., 2008). Sometimes the ligand backbone has been found to be too flexibile to be metallated. We have reported that the central sp3 C—H bond of (Ph2POCH2)2CH2 could be activated by Fe(PMe3)4Me2 to afford metallated PCP pincer compounds at room temperature (Xu et al., 2009). When a solution of (Ph2POCH2)2CH2 was mixed with Fe(PMe3)4, and then placed under an atmosphere of CO at 273 K, the title compound [1,3-bis((diphenylphosphino)oxy)propane]bis(carbonyl)iron(0) (I) was formed. In this, the PMe3 ligands were replaced by CO. A similar carbonylation reaction was reported by Klein et al. (2003).

The molecular structure of the title compound is shown in Fig. 1. The Fe is coordinated by two phosphane P atoms from the chelating (Ph2POCH2)2CH2 ligand and two carbonyl C atoms, the complex exhibiting a distorted tetrahedral stereochemistry [Fe–P, 2.1414 (10), 2.1462 (10) Å; Fe–C, 1.763 (4), 1.765 (3) Å; bond angle range, 96.31 (12)–119.37 (4)°].

Related literature top

For a related carbonylation reaction, see: Klein et al. (2003). For general background to metal complexes with the 1,3-bis[(diphenylphosphino)oxy]propane ligand, see: Pandarus et al. (2008); Xu et al. (2009).

Experimental top

Standard vacuum techniques were used in manipulations of volatile and air sensitive material. The title compound was synthesized by combining a solution of (Ph2POCH2)2CH2 (406 mg, 0.90 mmol) in 20 ml of diethylether with Fe(PMe3)4 (324 mg, 0.90 mmol) in 20 ml of diethylether at 273 K, at which time the color changed from yellow to red. After stirring for 12 h, the solution was placed under an atmosphere of CO at 273 K for a further 12 h, resulting in a color change back to yellow, after which the solution was concentrated and filtered. Yellow crystals (310 mg, 62% yield) were obtained by recrystallization from a diethylether solution maintained at 253 K.

Refinement top

Hydrogen atoms were included in the refinement at calculated positions (C–Haromatic = 0.93 Å; C–Haliphatic = 0.97 Å) and treated as riding models, with Uiso(H) = 1.2 (1.5 for alkyl groups) times Ueq(C).

Structure description top

In recent years, the three-coordinated phosphine-based pincer (PCP) ligands with an aliphatic backbone have attracted much attention (Pandarus et al., 2008). Sometimes the ligand backbone has been found to be too flexibile to be metallated. We have reported that the central sp3 C—H bond of (Ph2POCH2)2CH2 could be activated by Fe(PMe3)4Me2 to afford metallated PCP pincer compounds at room temperature (Xu et al., 2009). When a solution of (Ph2POCH2)2CH2 was mixed with Fe(PMe3)4, and then placed under an atmosphere of CO at 273 K, the title compound [1,3-bis((diphenylphosphino)oxy)propane]bis(carbonyl)iron(0) (I) was formed. In this, the PMe3 ligands were replaced by CO. A similar carbonylation reaction was reported by Klein et al. (2003).

The molecular structure of the title compound is shown in Fig. 1. The Fe is coordinated by two phosphane P atoms from the chelating (Ph2POCH2)2CH2 ligand and two carbonyl C atoms, the complex exhibiting a distorted tetrahedral stereochemistry [Fe–P, 2.1414 (10), 2.1462 (10) Å; Fe–C, 1.763 (4), 1.765 (3) Å; bond angle range, 96.31 (12)–119.37 (4)°].

For a related carbonylation reaction, see: Klein et al. (2003). For general background to metal complexes with the 1,3-bis[(diphenylphosphino)oxy]propane ligand, see: Pandarus et al. (2008); Xu et al. (2009).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Atom numbering scheme for (I) with non-H atoms shown as 30% probability displacement ellipsoids.
{1,3-Bis[(diphenylphosphanyl-κP)oxy]propane}dicarbonyliron(0) top
Crystal data top
[Fe(C27H26O2P2)(CO)2]F(000) = 1152
Mr = 556.29Dx = 1.398 Mg m3
Monoclinic, P21/nMelting point: 385 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 12.589 (3) ÅCell parameters from 17176 reflections
b = 15.191 (3) Åθ = 1.9–26.8°
c = 14.384 (3) ŵ = 0.73 mm1
β = 106.14 (3)°T = 293 K
V = 2642.4 (11) Å3Block, yellow
Z = 40.27 × 0.20 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5590 independent reflections
Radiation source: fine-focus sealed tube3864 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
φ and ω scansθmax = 26.8°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1514
Tmin = 0.828, Tmax = 0.899k = 1915
17176 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.035P)2]
where P = (Fo2 + 2Fc2)/3
5590 reflections(Δ/σ)max = 0.001
325 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Fe(C27H26O2P2)(CO)2]V = 2642.4 (11) Å3
Mr = 556.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.589 (3) ŵ = 0.73 mm1
b = 15.191 (3) ÅT = 293 K
c = 14.384 (3) Å0.27 × 0.20 × 0.15 mm
β = 106.14 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5590 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3864 reflections with I > 2σ(I)
Tmin = 0.828, Tmax = 0.899Rint = 0.080
17176 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 0.99Δρmax = 0.55 e Å3
5590 reflectionsΔρmin = 0.30 e Å3
325 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.86496 (4)0.14441 (3)0.60132 (3)0.01955 (11)
P10.80915 (7)0.11051 (5)0.72478 (5)0.02269 (17)
P20.94395 (6)0.26876 (5)0.59809 (5)0.02229 (17)
C10.6609 (3)0.1013 (2)0.7101 (2)0.0233 (6)
C20.5887 (3)0.0808 (2)0.6205 (2)0.0310 (7)
H20.61570.07500.56690.037*
C30.4769 (3)0.0689 (3)0.6105 (2)0.0363 (8)
H30.42960.05450.55030.044*
C40.4353 (3)0.0783 (2)0.6893 (2)0.0337 (8)
H40.36030.07020.68250.040*
C50.5061 (3)0.0997 (2)0.7781 (2)0.0314 (7)
H50.47820.10690.83110.038*
C60.6177 (3)0.1107 (2)0.7895 (2)0.0281 (7)
H60.66450.12450.85010.034*
C70.8558 (3)0.0063 (2)0.7873 (2)0.0262 (7)
C80.8773 (3)0.0665 (2)0.7358 (2)0.0310 (7)
H80.87350.06050.67060.037*
C90.9041 (3)0.1472 (2)0.7806 (2)0.0361 (8)
H90.91920.19490.74580.043*
C100.9086 (3)0.1566 (2)0.8773 (2)0.0356 (8)
H100.92500.21120.90710.043*
C110.8887 (3)0.0852 (2)0.9300 (2)0.0342 (8)
H110.89270.09160.99520.041*
C120.8629 (3)0.0040 (2)0.8852 (2)0.0290 (7)
H120.85020.04400.92080.035*
C140.9435 (3)0.2174 (2)0.8523 (2)0.0280 (7)
H14A0.99130.19690.81430.034*
H14B0.97490.19850.91880.034*
C150.9355 (3)0.3167 (2)0.8480 (2)0.0276 (7)
H15A0.88590.33620.88470.033*
H15B1.00790.34160.87790.033*
C160.8941 (3)0.3508 (2)0.7457 (2)0.0267 (6)
H16A0.82380.32360.71350.032*
H16B0.88340.41400.74640.032*
C180.8717 (2)0.3468 (2)0.5048 (2)0.0246 (6)
C190.8872 (3)0.4367 (2)0.5213 (2)0.0295 (7)
H190.93620.45640.57850.035*
C200.8308 (3)0.4973 (2)0.4537 (2)0.0347 (8)
H200.84090.55720.46620.042*
C210.7590 (3)0.4685 (2)0.3673 (2)0.0350 (8)
H210.72130.50900.32150.042*
C220.7440 (3)0.3796 (3)0.3498 (2)0.0352 (8)
H220.69650.36020.29180.042*
C230.7994 (3)0.3186 (2)0.4183 (2)0.0294 (7)
H230.78810.25870.40620.035*
C241.0822 (3)0.2664 (2)0.5825 (2)0.0241 (6)
C251.1746 (3)0.2932 (2)0.6554 (2)0.0309 (7)
H251.16580.31470.71340.037*
C261.2795 (3)0.2883 (3)0.6426 (3)0.0376 (8)
H261.34080.30580.69200.045*
C271.2931 (3)0.2572 (3)0.5554 (3)0.0401 (9)
H271.36320.25450.54600.048*
C281.2025 (3)0.2307 (3)0.4837 (2)0.0412 (9)
H281.21150.20970.42560.049*
C291.0982 (3)0.2345 (3)0.4964 (2)0.0365 (8)
H291.03770.21560.44710.044*
C300.7896 (3)0.1023 (2)0.4877 (2)0.0328 (8)
C310.9862 (3)0.0802 (2)0.6249 (2)0.0351 (8)
O10.7392 (2)0.0776 (2)0.41268 (18)0.0520 (7)
O21.0661 (2)0.0395 (2)0.6391 (2)0.0513 (7)
O30.83459 (18)0.18051 (15)0.81476 (13)0.0262 (5)
O40.97462 (18)0.33011 (14)0.69448 (14)0.0261 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0221 (2)0.0190 (2)0.02022 (18)0.0018 (2)0.01025 (15)0.00077 (17)
P10.0277 (4)0.0196 (4)0.0234 (3)0.0002 (3)0.0115 (3)0.0013 (3)
P20.0239 (4)0.0228 (4)0.0225 (3)0.0020 (3)0.0104 (3)0.0002 (3)
C10.0275 (17)0.0175 (15)0.0284 (14)0.0019 (13)0.0136 (12)0.0040 (12)
C20.0341 (19)0.0316 (18)0.0306 (15)0.0026 (15)0.0145 (13)0.0005 (13)
C30.033 (2)0.039 (2)0.0369 (17)0.0055 (16)0.0100 (14)0.0038 (15)
C40.0288 (19)0.0318 (19)0.0442 (18)0.0003 (15)0.0163 (14)0.0019 (15)
C50.0348 (19)0.0283 (18)0.0369 (16)0.0054 (15)0.0198 (14)0.0042 (14)
C60.0331 (18)0.0277 (17)0.0263 (14)0.0038 (15)0.0130 (13)0.0050 (12)
C70.0248 (17)0.0256 (17)0.0292 (15)0.0013 (14)0.0094 (12)0.0011 (12)
C80.0336 (19)0.0287 (19)0.0332 (16)0.0018 (15)0.0132 (14)0.0005 (13)
C90.0334 (19)0.0242 (17)0.0494 (18)0.0038 (16)0.0095 (15)0.0026 (16)
C100.0270 (18)0.030 (2)0.0446 (18)0.0009 (15)0.0011 (14)0.0128 (15)
C110.0318 (19)0.035 (2)0.0344 (16)0.0019 (16)0.0061 (14)0.0073 (14)
C120.0289 (18)0.0275 (18)0.0310 (15)0.0014 (14)0.0090 (13)0.0025 (13)
C140.0313 (17)0.0315 (18)0.0215 (13)0.0009 (15)0.0079 (12)0.0011 (12)
C150.0315 (18)0.0294 (17)0.0242 (14)0.0069 (14)0.0113 (12)0.0064 (12)
C160.0303 (17)0.0236 (16)0.0300 (14)0.0009 (15)0.0144 (12)0.0033 (13)
C180.0249 (16)0.0243 (16)0.0281 (14)0.0008 (14)0.0131 (12)0.0022 (12)
C190.0320 (19)0.0294 (18)0.0294 (15)0.0067 (14)0.0121 (13)0.0010 (13)
C200.045 (2)0.0235 (17)0.0374 (17)0.0017 (16)0.0145 (15)0.0024 (14)
C210.038 (2)0.032 (2)0.0370 (17)0.0044 (16)0.0142 (15)0.0112 (15)
C220.0351 (19)0.041 (2)0.0287 (15)0.0011 (16)0.0078 (13)0.0003 (13)
C230.0353 (19)0.0239 (16)0.0292 (15)0.0013 (14)0.0094 (13)0.0004 (12)
C240.0267 (16)0.0215 (15)0.0277 (14)0.0013 (13)0.0137 (12)0.0072 (12)
C250.0308 (18)0.0331 (19)0.0283 (15)0.0019 (15)0.0075 (13)0.0037 (13)
C260.0234 (17)0.040 (2)0.0465 (19)0.0029 (16)0.0047 (14)0.0070 (16)
C270.0310 (19)0.045 (2)0.051 (2)0.0065 (17)0.0230 (16)0.0102 (17)
C280.036 (2)0.056 (3)0.0379 (18)0.0045 (19)0.0204 (15)0.0033 (16)
C290.0315 (19)0.048 (2)0.0340 (16)0.0007 (17)0.0149 (14)0.0026 (15)
C300.0326 (19)0.0322 (19)0.0375 (17)0.0062 (16)0.0164 (14)0.0004 (14)
C310.035 (2)0.0329 (19)0.0398 (17)0.0043 (17)0.0143 (15)0.0019 (14)
O10.0560 (18)0.0581 (19)0.0394 (14)0.0176 (15)0.0092 (12)0.0174 (13)
O20.0384 (16)0.0501 (18)0.0686 (18)0.0134 (14)0.0201 (13)0.0018 (14)
O30.0305 (12)0.0251 (11)0.0260 (10)0.0031 (10)0.0126 (9)0.0013 (8)
O40.0270 (11)0.0290 (13)0.0264 (10)0.0060 (9)0.0141 (8)0.0047 (8)
Geometric parameters (Å, º) top
Fe1—C311.763 (4)C14—C151.513 (5)
Fe1—C301.765 (3)C14—H14A0.9700
Fe1—P22.1414 (10)C14—H14B0.9700
Fe1—P12.1462 (10)C15—C161.509 (4)
P1—O31.636 (2)C15—H15A0.9700
P1—C11.824 (3)C15—H15B0.9700
P1—C71.834 (3)C16—O41.443 (4)
P2—O41.625 (2)C16—H16A0.9700
P2—C241.816 (3)C16—H16B0.9700
P2—C181.832 (3)C18—C231.389 (4)
C1—C21.390 (4)C18—C191.390 (5)
C1—C61.402 (4)C19—C201.382 (5)
C2—C31.387 (5)C19—H190.9300
C2—H20.9300C20—C211.389 (5)
C3—C41.382 (5)C20—H200.9300
C3—H30.9300C21—C221.377 (5)
C4—C51.378 (5)C21—H210.9300
C4—H40.9300C22—C231.391 (5)
C5—C61.378 (5)C22—H220.9300
C5—H50.9300C23—H230.9300
C6—H60.9300C24—C251.394 (4)
C7—C121.395 (4)C24—C291.395 (4)
C7—C81.399 (5)C25—C261.386 (5)
C8—C91.382 (5)C25—H250.9300
C8—H80.9300C26—C271.395 (5)
C9—C101.385 (5)C26—H260.9300
C9—H90.9300C27—C281.369 (5)
C10—C111.385 (5)C27—H270.9300
C10—H100.9300C28—C291.377 (5)
C11—C121.387 (5)C28—H280.9300
C11—H110.9300C29—H290.9300
C12—H120.9300C30—O11.152 (4)
C14—O31.440 (4)C31—O21.150 (4)
C31—Fe1—C30101.01 (16)C15—C14—H14A109.9
C31—Fe1—P296.31 (12)O3—C14—H14B109.9
C30—Fe1—P2115.62 (12)C15—C14—H14B109.9
C31—Fe1—P199.98 (12)H14A—C14—H14B108.3
C30—Fe1—P1117.64 (11)C16—C15—C14112.6 (2)
P2—Fe1—P1119.37 (4)C16—C15—H15A109.1
O3—P1—C196.34 (13)C14—C15—H15A109.1
O3—P1—C7101.98 (13)C16—C15—H15B109.1
C1—P1—C799.68 (14)C14—C15—H15B109.1
O3—P1—Fe1117.47 (9)H15A—C15—H15B107.8
C1—P1—Fe1118.84 (10)O4—C16—C15108.8 (2)
C7—P1—Fe1118.60 (11)O4—C16—H16A109.9
O4—P2—C2496.22 (13)C15—C16—H16A109.9
O4—P2—C18101.85 (13)O4—C16—H16B109.9
C24—P2—C18102.69 (14)C15—C16—H16B109.9
O4—P2—Fe1119.27 (9)H16A—C16—H16B108.3
C24—P2—Fe1116.88 (11)C23—C18—C19118.8 (3)
C18—P2—Fe1116.62 (11)C23—C18—P2121.6 (3)
C2—C1—C6118.4 (3)C19—C18—P2119.6 (2)
C2—C1—P1120.6 (2)C20—C19—C18120.9 (3)
C6—C1—P1120.9 (2)C20—C19—H19119.6
C3—C2—C1120.6 (3)C18—C19—H19119.6
C3—C2—H2119.7C19—C20—C21119.9 (3)
C1—C2—H2119.7C19—C20—H20120.0
C4—C3—C2120.4 (3)C21—C20—H20120.0
C4—C3—H3119.8C22—C21—C20119.6 (3)
C2—C3—H3119.8C22—C21—H21120.2
C5—C4—C3119.3 (3)C20—C21—H21120.2
C5—C4—H4120.4C21—C22—C23120.5 (3)
C3—C4—H4120.4C21—C22—H22119.7
C6—C5—C4121.0 (3)C23—C22—H22119.7
C6—C5—H5119.5C18—C23—C22120.2 (3)
C4—C5—H5119.5C18—C23—H23119.9
C5—C6—C1120.3 (3)C22—C23—H23119.9
C5—C6—H6119.9C25—C24—C29118.3 (3)
C1—C6—H6119.9C25—C24—P2122.0 (2)
C12—C7—C8118.5 (3)C29—C24—P2119.8 (2)
C12—C7—P1120.9 (3)C26—C25—C24120.7 (3)
C8—C7—P1120.4 (2)C26—C25—H25119.6
C9—C8—C7120.9 (3)C24—C25—H25119.6
C9—C8—H8119.6C25—C26—C27119.9 (3)
C7—C8—H8119.6C25—C26—H26120.1
C8—C9—C10119.8 (3)C27—C26—H26120.1
C8—C9—H9120.1C28—C27—C26119.5 (3)
C10—C9—H9120.1C28—C27—H27120.3
C9—C10—C11120.3 (3)C26—C27—H27120.3
C9—C10—H10119.8C27—C28—C29120.9 (3)
C11—C10—H10119.8C27—C28—H28119.5
C10—C11—C12119.8 (3)C29—C28—H28119.5
C10—C11—H11120.1C28—C29—C24120.7 (3)
C12—C11—H11120.1C28—C29—H29119.6
C11—C12—C7120.6 (3)C24—C29—H29119.6
C11—C12—H12119.7O1—C30—Fe1177.8 (3)
C7—C12—H12119.7O2—C31—Fe1178.6 (3)
O3—C14—C15109.1 (3)C14—O3—P1120.4 (2)
O3—C14—H14A109.9C16—O4—P2121.75 (19)

Experimental details

Crystal data
Chemical formula[Fe(C27H26O2P2)(CO)2]
Mr556.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)12.589 (3), 15.191 (3), 14.384 (3)
β (°) 106.14 (3)
V3)2642.4 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.27 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.828, 0.899
No. of measured, independent and
observed [I > 2σ(I)] reflections
17176, 5590, 3864
Rint0.080
(sin θ/λ)max1)0.634
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.094, 0.99
No. of reflections5590
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.30

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We gratefully acknowledge support by NSF China (No. 20872080/20772072).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKlein, H. F., Beck, R., Flörke, U. & Haupt, H. J. (2003). Eur. J. Inorg. Chem. pp. 853–862.  CSD CrossRef Google Scholar
First citationPandarus, V., Castonguay, A. & Zargarian, D. (2008). Dalton Trans. pp. 4756–4761.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, G., Sun, H. & Li, X. (2009). Organometallics, 28, 6090–6095.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds