organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­chloro­quinoline

aDepartment of Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Nám. T.G. Masaryka 275, Zlín,762 72, Czech Republic, and bDepartment of Chemistry, Faculty of Science, Masaryk University in Brno, Kamenice 5, Brno-Bohunice, 625 00, Czech Republic
*Correspondence e-mail: rvicha@ft.utb.cz

(Received 8 April 2010; accepted 28 April 2010; online 8 May 2010)

The asymmetric unit of the title compound, C9H5Cl2N, consists of two crystallographically independent mol­ecules. In both mol­ecules the quinoline ring system is essentially planar [maximum deviations from the best plane of 0.0232 (13) 0.0089 (15) Å]. The angle between these planes is 22.40 (3)°. Conformers A and B are arranged face-to-face along the c axis, forming alternating pairs in the order AABB. The inter­planar distances AA, AB and BB are 3.3166 (11), 3.2771 (11) and 3.3935 (11) Å, respectively. The crystal packing is stabilized by weak C—H⋯Cl and C—H⋯N inter­actions.

Related literature

For previous syntheses of title compound, see: Baeyer & Bloem (1882[Baeyer, A. & Bloem, F. (1882). Ber. Dtsch. Chem. Ges. 15, 2147-2155.]); Steinschifter & Stadlbauer (1994[Steinschifter, W. & Stadlbauer, W. (1994). J. Prakt. Chem. 336, 311-318.]). For the use of the title compound in organic synthesis, see: Buchmann & Hamilton (1942[Buchmann, F. J. & Hamilton, C. S. (1942). J. Am. Chem. Soc. 64, 1357-1360.]).

[Scheme 1]

Experimental

Crystal data
  • C9H5Cl2N

  • Mr = 198.04

  • Monoclinic, P 21 /n

  • a = 10.3689 (3) Å

  • b = 11.9215 (3) Å

  • c = 13.6380 (5) Å

  • β = 98.937 (3)°

  • V = 1665.37 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.71 mm−1

  • T = 120 K

  • 0.40 × 0.40 × 0.30 mm

Data collection
  • Kuma KM-4-CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.]) Tmin = 0.60, Tmax = 0.81

  • 13224 measured reflections

  • 2927 independent reflections

  • 2504 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.066

  • S = 1.08

  • 2927 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯Cl4 0.95 2.88 3.7197 (14) 148
C17—H17A⋯N1i 0.95 2.60 3.5111 (19) 162
C18—H18A⋯Cl1i 0.95 2.95 3.7290 (15) 141
Symmetry code: (i) x, y+1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Although the 2,4-dichloroquinoline is well known for more than hundred years (Baeyer & Bloem, 1882) and has been widely used in quinoline chemistry (Buchmann & Hamilton, 1942; Steinschifter & Stadlbauer, 1994), no structure data has been published so far.

The title compound (Fig. 1) crystallises with two crystallographical independent molecules in asymmetric unit. Conformers A and B differ very little in geometrical parameters. Both of them consist of essentially planar quinoline ring with maximum deviations from the best planes being 0.0232 (13) Å for atom C2 (conformer A) and 0.0089 (15) Å for atom C17 (conformer B). The angle between these quinoline best planes is 22.40 (3)°. Chlorine atoms lay almost in the ring best planes with the deviations 0.0035 (4) Å for atom Cl1 and -0.0011 (4) for atom Cl2 (conformer A) and -0.0081 (4) Å for atom Cl3 and 0.0121 (4) Å for atom Cl4 (conformer B). Pairs of conformers are stacked along the c axes in AABB arrangement stabilised via offset ππ interactions. The distances between AA, AB and BB planes calculated as a distance of nitrogen atom from adjacent ring plane are 3.3166 (11), 3.2771 (11) and 3.3935 (11) Å, respectively. Molecular packing is stabilised by C—H···Cl and C—H···N weak interactions (Fig. 2, Table 1).

Related literature top

For previous syntheses of title compound, see: Baeyer & Bloem (1882); Steinschifter & Stadlbauer (1994). For the use of the title compound in organic synthesis, see: Buchmann & Hamilton (1942).

Experimental top

4-Hydroxyquinolin-2-one (322 mg, 2 mmol) and POCl3 (2 ml) were treated for 15 min. at 100°C. Reaction mixture was poured onto finely crushed ice to decompose an excess of POCl3. Basicity was adjusted to pH =8 using Na2CO3 and resulting precipitate was filtered off. The solid on the filter was washed with water and dried at room temperature to yield 292 mg (74%) of title compound.The single crystal used for data collection was obtained by crystallisation from diethyl ether at room temperature.

Structure description top

Although the 2,4-dichloroquinoline is well known for more than hundred years (Baeyer & Bloem, 1882) and has been widely used in quinoline chemistry (Buchmann & Hamilton, 1942; Steinschifter & Stadlbauer, 1994), no structure data has been published so far.

The title compound (Fig. 1) crystallises with two crystallographical independent molecules in asymmetric unit. Conformers A and B differ very little in geometrical parameters. Both of them consist of essentially planar quinoline ring with maximum deviations from the best planes being 0.0232 (13) Å for atom C2 (conformer A) and 0.0089 (15) Å for atom C17 (conformer B). The angle between these quinoline best planes is 22.40 (3)°. Chlorine atoms lay almost in the ring best planes with the deviations 0.0035 (4) Å for atom Cl1 and -0.0011 (4) for atom Cl2 (conformer A) and -0.0081 (4) Å for atom Cl3 and 0.0121 (4) Å for atom Cl4 (conformer B). Pairs of conformers are stacked along the c axes in AABB arrangement stabilised via offset ππ interactions. The distances between AA, AB and BB planes calculated as a distance of nitrogen atom from adjacent ring plane are 3.3166 (11), 3.2771 (11) and 3.3935 (11) Å, respectively. Molecular packing is stabilised by C—H···Cl and C—H···N weak interactions (Fig. 2, Table 1).

For previous syntheses of title compound, see: Baeyer & Bloem (1882); Steinschifter & Stadlbauer (1994). For the use of the title compound in organic synthesis, see: Buchmann & Hamilton (1942).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Ellipsoid plot of the asymmetric unit with atoms represented as 50% probability ellipsoids.
[Figure 2] Fig. 2. Eight molecules lying around an inversion centre and viewed along the c axis are coloured by symmetry equivalence. The H-bond cross-linkage framework is drawn in the front layer by dotted lines.Hydrogen atoms are omitted except for those participating in H-bonds. Symmetry codes: (i) -x+0.5, y+0.5,-z+0.5; (ii) -x+0.5, y-0.5, -z+0.5.
2,4-Dichloroquinoline top
Crystal data top
C9H5Cl2NF(000) = 800
Mr = 198.04Dx = 1.580 Mg m3
Monoclinic, P21/nMelting point: 335(1) K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 10.3689 (3) ÅCell parameters from 14773 reflections
b = 11.9215 (3) Åθ = 2.9–27.1°
c = 13.6380 (5) ŵ = 0.71 mm1
β = 98.937 (3)°T = 120 K
V = 1665.37 (9) Å3Block, yellow
Z = 80.40 × 0.40 × 0.30 mm
Data collection top
Kuma KM-4-CCD
diffractometer
2927 independent reflections
Radiation source: fine-focus sealed tube2504 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
ω scanθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
h = 1212
Tmin = 0.60, Tmax = 0.81k = 1414
13224 measured reflectionsl = 1613
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.041P)2 + 0.2572P]
where P = (Fo2 + 2Fc2)/3
2927 reflections(Δ/σ)max = 0.005
217 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C9H5Cl2NV = 1665.37 (9) Å3
Mr = 198.04Z = 8
Monoclinic, P21/nMo Kα radiation
a = 10.3689 (3) ŵ = 0.71 mm1
b = 11.9215 (3) ÅT = 120 K
c = 13.6380 (5) Å0.40 × 0.40 × 0.30 mm
β = 98.937 (3)°
Data collection top
Kuma KM-4-CCD
diffractometer
2927 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
2504 reflections with I > 2σ(I)
Tmin = 0.60, Tmax = 0.81Rint = 0.012
13224 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.08Δρmax = 0.25 e Å3
2927 reflectionsΔρmin = 0.22 e Å3
217 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.13384 (3)0.03305 (3)0.08803 (3)0.02540 (11)
Cl20.52857 (3)0.32412 (3)0.17438 (3)0.02529 (11)
Cl30.36457 (3)0.59016 (3)0.06753 (3)0.02745 (11)
Cl40.02870 (3)0.30160 (3)0.16841 (3)0.02323 (11)
C10.30194 (13)0.05798 (11)0.10998 (10)0.0179 (3)
C20.34206 (13)0.16982 (11)0.12943 (10)0.0184 (3)
H2A0.28080.22900.12970.022*
C30.47285 (13)0.18864 (11)0.14782 (10)0.0170 (3)
C40.56380 (13)0.09974 (11)0.14534 (9)0.0174 (3)
C50.70140 (13)0.11242 (12)0.16231 (10)0.0218 (3)
H5A0.73890.18420.17790.026*
C60.78035 (14)0.02124 (13)0.15621 (11)0.0262 (3)
H6A0.87250.03030.16770.031*
C70.72627 (14)0.08561 (13)0.13307 (10)0.0252 (3)
H7A0.78210.14790.12850.030*
C80.59391 (14)0.10019 (12)0.11718 (10)0.0217 (3)
H8A0.55850.17280.10210.026*
C90.50939 (13)0.00843 (11)0.12290 (9)0.0171 (3)
N10.37727 (11)0.02819 (9)0.10649 (8)0.0178 (3)
C110.19672 (13)0.56562 (11)0.09168 (10)0.0185 (3)
C120.15678 (13)0.45494 (11)0.11711 (10)0.0179 (3)
H12A0.21820.39640.12040.022*
C130.02595 (13)0.43615 (11)0.13660 (9)0.0165 (3)
C140.06551 (13)0.52382 (11)0.13046 (9)0.0175 (3)
C150.20256 (13)0.51151 (12)0.14938 (10)0.0217 (3)
H15A0.24000.44060.16840.026*
C160.28175 (14)0.60210 (13)0.14029 (11)0.0274 (3)
H16A0.37390.59310.15300.033*
C170.22853 (15)0.70773 (13)0.11250 (11)0.0281 (4)
H17A0.28470.76940.10630.034*
C180.09590 (15)0.72227 (12)0.09421 (10)0.0248 (3)
H18A0.06070.79410.07560.030*
C190.01108 (13)0.63129 (11)0.10277 (10)0.0183 (3)
N20.12097 (11)0.65102 (9)0.08387 (8)0.0200 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01550 (19)0.0246 (2)0.0355 (2)0.00423 (13)0.00217 (15)0.00300 (15)
Cl20.0226 (2)0.01604 (18)0.0354 (2)0.00448 (13)0.00113 (16)0.00104 (14)
Cl30.0184 (2)0.0270 (2)0.0358 (2)0.00475 (14)0.00067 (15)0.00256 (16)
Cl40.0236 (2)0.01571 (18)0.0307 (2)0.00392 (13)0.00519 (15)0.00299 (13)
C10.0150 (7)0.0223 (7)0.0163 (7)0.0019 (5)0.0016 (6)0.0001 (5)
C20.0180 (7)0.0169 (7)0.0202 (7)0.0016 (5)0.0027 (6)0.0009 (5)
C30.0210 (7)0.0151 (7)0.0145 (7)0.0023 (5)0.0011 (6)0.0006 (5)
C40.0188 (7)0.0208 (7)0.0122 (7)0.0017 (5)0.0016 (5)0.0024 (5)
C50.0175 (7)0.0274 (8)0.0203 (7)0.0019 (6)0.0021 (6)0.0027 (6)
C60.0165 (7)0.0394 (9)0.0225 (8)0.0053 (6)0.0020 (6)0.0050 (7)
C70.0258 (8)0.0320 (8)0.0179 (8)0.0129 (6)0.0038 (6)0.0032 (6)
C80.0294 (8)0.0197 (7)0.0162 (7)0.0053 (6)0.0043 (6)0.0007 (6)
C90.0201 (7)0.0202 (7)0.0108 (7)0.0016 (6)0.0019 (5)0.0022 (5)
N10.0198 (6)0.0172 (6)0.0161 (6)0.0011 (5)0.0018 (5)0.0001 (5)
C110.0183 (7)0.0204 (7)0.0167 (7)0.0016 (5)0.0023 (6)0.0016 (5)
C120.0195 (7)0.0175 (7)0.0174 (7)0.0023 (5)0.0047 (6)0.0007 (5)
C130.0212 (7)0.0149 (7)0.0134 (7)0.0020 (5)0.0033 (6)0.0004 (5)
C140.0205 (7)0.0195 (7)0.0131 (7)0.0012 (6)0.0041 (6)0.0033 (5)
C150.0192 (7)0.0259 (8)0.0201 (7)0.0003 (6)0.0037 (6)0.0035 (6)
C160.0198 (8)0.0365 (9)0.0263 (8)0.0075 (6)0.0048 (6)0.0073 (7)
C170.0292 (9)0.0296 (8)0.0261 (8)0.0146 (7)0.0060 (7)0.0049 (7)
C180.0336 (9)0.0177 (7)0.0234 (8)0.0061 (6)0.0060 (6)0.0029 (6)
C190.0228 (7)0.0186 (7)0.0138 (7)0.0017 (6)0.0039 (6)0.0035 (5)
N20.0239 (7)0.0165 (6)0.0198 (6)0.0008 (5)0.0040 (5)0.0006 (5)
Geometric parameters (Å, º) top
Cl1—C11.7475 (13)C8—H8A0.9500
Cl2—C31.7345 (13)C9—N11.3738 (17)
Cl3—C111.7450 (14)C11—N21.3003 (18)
Cl4—C131.7338 (13)C11—C121.4100 (18)
C1—N11.2959 (17)C12—C131.3598 (19)
C1—C21.4096 (18)C12—H12A0.9500
C2—C31.3589 (19)C13—C141.4225 (19)
C2—H2A0.9500C14—C151.4120 (19)
C3—C41.4225 (18)C14—C191.4270 (19)
C4—C51.4175 (19)C15—C161.374 (2)
C4—C91.4217 (19)C15—H15A0.9500
C5—C61.371 (2)C16—C171.403 (2)
C5—H5A0.9500C16—H16A0.9500
C6—C71.408 (2)C17—C181.370 (2)
C6—H6A0.9500C17—H17A0.9500
C7—C81.367 (2)C18—C191.4126 (19)
C7—H7A0.9500C18—H18A0.9500
C8—C91.4114 (19)C19—N21.3736 (18)
N1—C1—C2126.50 (12)N2—C11—C12126.50 (13)
N1—C1—Cl1116.73 (10)N2—C11—Cl3116.78 (10)
C2—C1—Cl1116.77 (10)C12—C11—Cl3116.72 (10)
C3—C2—C1116.60 (12)C13—C12—C11116.62 (12)
C3—C2—H2A121.7C13—C12—H12A121.7
C1—C2—H2A121.7C11—C12—H12A121.7
C2—C3—C4121.26 (12)C12—C13—C14121.43 (12)
C2—C3—Cl2118.87 (10)C12—C13—Cl4118.60 (10)
C4—C3—Cl2119.88 (10)C14—C13—Cl4119.97 (10)
C5—C4—C3124.81 (12)C15—C14—C13125.04 (13)
C5—C4—C9119.18 (12)C15—C14—C19119.15 (12)
C3—C4—C9116.01 (12)C13—C14—C19115.81 (12)
C6—C5—C4120.06 (13)C16—C15—C14120.03 (14)
C6—C5—H5A120.0C16—C15—H15A120.0
C4—C5—H5A120.0C14—C15—H15A120.0
C5—C6—C7120.67 (13)C15—C16—C17120.95 (14)
C5—C6—H6A119.7C15—C16—H16A119.5
C7—C6—H6A119.7C17—C16—H16A119.5
C8—C7—C6120.38 (13)C18—C17—C16120.28 (13)
C8—C7—H7A119.8C18—C17—H17A119.9
C6—C7—H7A119.8C16—C17—H17A119.9
C7—C8—C9120.63 (13)C17—C18—C19120.54 (14)
C7—C8—H8A119.7C17—C18—H18A119.7
C9—C8—H8A119.7C19—C18—H18A119.7
N1—C9—C8118.04 (12)N2—C19—C18117.92 (12)
N1—C9—C4122.89 (12)N2—C19—C14123.03 (12)
C8—C9—C4119.07 (12)C18—C19—C14119.04 (12)
C1—N1—C9116.71 (11)C11—N2—C19116.59 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···Cl40.952.883.7197 (14)148
C17—H17A···N1i0.952.603.5111 (19)162
C18—H18A···Cl1i0.952.953.7290 (15)141
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC9H5Cl2N
Mr198.04
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)10.3689 (3), 11.9215 (3), 13.6380 (5)
β (°) 98.937 (3)
V3)1665.37 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.71
Crystal size (mm)0.40 × 0.40 × 0.30
Data collection
DiffractometerKuma KM-4-CCD
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.60, 0.81
No. of measured, independent and
observed [I > 2σ(I)] reflections
13224, 2927, 2504
Rint0.012
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.066, 1.08
No. of reflections2927
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.22

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···Cl40.952.883.7197 (14)148.3
C17—H17A···N1i0.952.603.5111 (19)162.0
C18—H18A···Cl1i0.952.953.7290 (15)140.5
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The financial support of this work by the Czech Ministry of Education, project No. MSM 7088352101, and the Tomas Bata Foundation is gratefully acknowledged.

References

First citationBaeyer, A. & Bloem, F. (1882). Ber. Dtsch. Chem. Ges. 15, 2147–2155.  CrossRef Google Scholar
First citationBuchmann, F. J. & Hamilton, C. S. (1942). J. Am. Chem. Soc. 64, 1357–1360.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteinschifter, W. & Stadlbauer, W. (1994). J. Prakt. Chem. 336, 311–318.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds