metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Ferrocenylmeth­yl)di­methyl­ammonium bromide

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: wsp1314@126.com

(Received 11 May 2010; accepted 18 May 2010; online 22 May 2010)

The title compound, [Fe(C5H5)(C8H13N)]Br, is isotypic with the analogous chloride compound. The Fe—C bond lengths are in the range 2.020 (6)–2.048 (7) Å. In the crystal, the cations and bromide anions are connected by N+—H⋯Br hydrogen bonds.

Related literature

For the isotypic chloride compound, see: Winter & Wolmershauser (1998[Winter, R. F. & Wolmershauser, G. (1998). J. Organomet. Chem. 570, 201-218.]). For other structures containing the (N-ferrocenylmeth­yl)dimethyl­ammonium cation, see: Gibbons & Trotter (1971[Gibbons, C. S. & Trotter, J. (1971). J. Chem. Soc. A, pp. 2659-2662.]); Guo (2006[Guo, H.-X. (2006). Acta Cryst. C62, m504-m506.]); Guo, Yang & Zhang (2006[Guo, H.-X., Yang, L.-M. & Zhang, S.-D. (2006). Acta Cryst. E62, m1338-m1339.]); Guo, Zhou et al. (2006[Guo, H.-X., Zhou, X.-J., Lin, Z.-X. & Liu, J.-M. (2006). Acta Cryst. E62, m1770-m1772.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C8H13N)]Br

  • Mr = 324.04

  • Orthorhombic, P n a 21

  • a = 21.393 (4) Å

  • b = 5.9296 (12) Å

  • c = 10.798 (2) Å

  • V = 1369.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.99 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.450, Tmax = 0.468

  • 13217 measured reflections

  • 3117 independent reflections

  • 2638 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.078

  • S = 1.08

  • 3117 reflections

  • 147 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.51 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1474 Friedel pairs

  • Flack parameter: 0.011 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Br1 0.91 2.28 3.172 (3) 165

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

A number of crystal structures containing the (N-ferrocenylmethyl)dimethylammonium cation, [Fe(C5H5)(C8H13N)]+, have been reported, including [Fe(C5H5)(C8H13N)]+Cl-.2H2O (Guo, Zhou et al., 2006), 2[Fe(C5H5)(C8H13N)]+[ZnCl4]2-.H2O (Gibbons & Trotter, 1971), [Fe(C5H5)(C8H13N)]+NO3- (Guo, Yang & Zhang, 2006) and 2[Fe(C5H5)(C8H13N)]+SO42-.5H2O (Guo, 2006). The analogous chloride compound has also been reported (Winter & Wolmershauser, 1998) and the title compound is isomorphous with it.

The asymmetric unit consists of one (N-ferrocenylmethyl)dimethylammonium cation and one bromide anion (Fig. 1). The Fe atom is bonded to the two five-membered carbon rings with Fe—C bond lengths in the range 2.020 (6)-2.048 (7) Å, with mean values of 2.036 and 2.025Å for the unsubstituted and substituted Cp rings, respectively. The Fe···Cp plane distances are 1.638 and 1.651 Å for Cp1 and Cp2, respectively, and the Cp1—Fe—Cp2 angle is 178.58°. These suggest that an interaction may exist between the methyldimethylamine group and the Fe atom, drawing the less electron-rich substituted Cp ligand marginally closer to the metal centre. The two rings, Cp1(C1–C5) and Cp2 (C6–C10), are nearly parallel with a dihedral angle between their mean planes of 1.7°. They exhibit a nearly eclipsed conformation, as is usually found in other ferrocene derivatives (for example, the structures listed above).

In the crystal structure, the cations and bromide ions are connected by N+—H···Br- hydrogen bonds (Fig. 2).

Related literature top

For the isomorphous chloride compound, see: Winter & Wolmershauser (1998). For other structures containing the (N-ferrocenylmethyl)dimethylammonium cation, see: Gibbons & Trotter (1971); Guo (2006); Guo, Yang & Zhang (2006); Guo, Zhou et al. (2006).

Experimental top

(Ferrocenylmethyl)dimethylamine (0.607 g, 2.5 mmol) was dissolved in ethanol (15 ml) and a yellow solid was obtained after adding HBr (0.5 g, 40%). The precipitate was dissolved by adding DMF and single crystals of the title compound suitable for X-ray analysis were obtained on slow evaporation of the solvents over a period of 7 days.

The dielectric constant of the compound as a function of temperature indicates that the permittivity is basically temperature-independent (ε = C/(T—T0)), suggesting that this compound is not ferroelectric or there may be no distinct phase transition occurring within the measured temperature range. Similarly, below the melting point of the compound (184°C), the dielectric constant as a function of temperature goes smoothly, and no dielectric anomaly is observed.

Refinement top

H atoms bound to C atoms were positioned geometrically, with C—H = 0.98, 0.97 and 0.96 Å for those on cyclopentadienyl, methylene and methyl C atoms, respectively, and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq (methyl C). The methyl groups were allowed to rotate about their local threefold axes. Atom H1A was positioned geometrically and allowed to ride on N1, with N—H = 0.91 Å and Uiso(H) = 1.2Ueq(N).

Structure description top

A number of crystal structures containing the (N-ferrocenylmethyl)dimethylammonium cation, [Fe(C5H5)(C8H13N)]+, have been reported, including [Fe(C5H5)(C8H13N)]+Cl-.2H2O (Guo, Zhou et al., 2006), 2[Fe(C5H5)(C8H13N)]+[ZnCl4]2-.H2O (Gibbons & Trotter, 1971), [Fe(C5H5)(C8H13N)]+NO3- (Guo, Yang & Zhang, 2006) and 2[Fe(C5H5)(C8H13N)]+SO42-.5H2O (Guo, 2006). The analogous chloride compound has also been reported (Winter & Wolmershauser, 1998) and the title compound is isomorphous with it.

The asymmetric unit consists of one (N-ferrocenylmethyl)dimethylammonium cation and one bromide anion (Fig. 1). The Fe atom is bonded to the two five-membered carbon rings with Fe—C bond lengths in the range 2.020 (6)-2.048 (7) Å, with mean values of 2.036 and 2.025Å for the unsubstituted and substituted Cp rings, respectively. The Fe···Cp plane distances are 1.638 and 1.651 Å for Cp1 and Cp2, respectively, and the Cp1—Fe—Cp2 angle is 178.58°. These suggest that an interaction may exist between the methyldimethylamine group and the Fe atom, drawing the less electron-rich substituted Cp ligand marginally closer to the metal centre. The two rings, Cp1(C1–C5) and Cp2 (C6–C10), are nearly parallel with a dihedral angle between their mean planes of 1.7°. They exhibit a nearly eclipsed conformation, as is usually found in other ferrocene derivatives (for example, the structures listed above).

In the crystal structure, the cations and bromide ions are connected by N+—H···Br- hydrogen bonds (Fig. 2).

For the isomorphous chloride compound, see: Winter & Wolmershauser (1998). For other structures containing the (N-ferrocenylmethyl)dimethylammonium cation, see: Gibbons & Trotter (1971); Guo (2006); Guo, Yang & Zhang (2006); Guo, Zhou et al. (2006).

Computing details top

Data collection: CrystalClear (Rigaku 2005); cell refinement: CrystalClear (Rigaku 2005); data reduction: CrystalClear (Rigaku 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms on C have been omitted for clarity.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the a axis showing the N+—H···Br- interactions (dotted line). Short C—H···Br- contacts are also indicated.
(Ferrocenylmethyl)dimethylammonium bromide top
Crystal data top
[Fe(C5H5)(C8H13N)]BrDx = 1.571 Mg m3
Mr = 324.04Melting point: 457 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 6130 reflections
a = 21.393 (4) Åθ = 3.4–27.6°
b = 5.9296 (12) ŵ = 3.99 mm1
c = 10.798 (2) ÅT = 298 K
V = 1369.7 (5) Å3Prism, yellow
Z = 40.20 × 0.20 × 0.20 mm
F(000) = 656
Data collection top
Rigaku SCXmini
diffractometer
3117 independent reflections
Radiation source: fine-focus sealed tube2638 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ω scansθmax = 27.5°, θmin = 3.6°
Absorption correction: multi-scan
CrystalClear (Rigaku, 2005)
h = 2727
Tmin = 0.450, Tmax = 0.468k = 77
13217 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0233P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3117 reflectionsΔρmax = 0.28 e Å3
147 parametersΔρmin = 0.51 e Å3
1 restraintAbsolute structure: Flack (1983), 1474 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.011 (12)
Crystal data top
[Fe(C5H5)(C8H13N)]BrV = 1369.7 (5) Å3
Mr = 324.04Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 21.393 (4) ŵ = 3.99 mm1
b = 5.9296 (12) ÅT = 298 K
c = 10.798 (2) Å0.20 × 0.20 × 0.20 mm
Data collection top
Rigaku SCXmini
diffractometer
3117 independent reflections
Absorption correction: multi-scan
CrystalClear (Rigaku, 2005)
2638 reflections with I > 2σ(I)
Tmin = 0.450, Tmax = 0.468Rint = 0.056
13217 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.078Δρmax = 0.28 e Å3
S = 1.08Δρmin = 0.51 e Å3
3117 reflectionsAbsolute structure: Flack (1983), 1474 Friedel pairs
147 parametersAbsolute structure parameter: 0.011 (12)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.56302 (2)0.12331 (6)0.47649 (4)0.05861 (15)
Fe10.31150 (2)0.40436 (7)0.28011 (5)0.03551 (13)
N10.51727 (12)0.3869 (4)0.2374 (3)0.0333 (7)
H1A0.52300.30240.30690.040*
C10.40534 (14)0.4348 (5)0.2980 (3)0.0309 (7)
C20.38089 (16)0.2954 (6)0.3942 (3)0.0383 (8)
H2A0.39220.13790.41030.046*
C30.33669 (18)0.4253 (7)0.4615 (4)0.0472 (10)
H3A0.31190.37270.53210.057*
C40.33448 (18)0.6430 (6)0.4089 (4)0.0462 (10)
H4A0.30780.76770.43640.055*
C50.37663 (15)0.6481 (5)0.3083 (3)0.0351 (8)
H5A0.38430.77770.25410.042*
C60.22327 (19)0.2783 (10)0.2675 (5)0.0724 (14)
H6A0.19590.24120.33750.087*
C70.22629 (19)0.4831 (8)0.2085 (4)0.0591 (12)
H7A0.20160.61660.23020.071*
C80.2691 (2)0.4729 (9)0.1167 (4)0.0666 (13)
H8A0.28010.59620.06030.080*
C90.2945 (2)0.2549 (12)0.1143 (6)0.0845 (19)
H9A0.32580.19780.05600.101*
C100.2658 (3)0.1322 (7)0.2113 (7)0.090 (2)
H10A0.27320.02620.23280.108*
C110.44972 (15)0.3637 (6)0.2002 (4)0.0357 (9)
H11A0.44240.45380.12660.043*
H11B0.44150.20740.17900.043*
C120.55769 (16)0.2923 (9)0.1398 (4)0.0611 (12)
H12A0.54560.13930.12350.092*
H12B0.60040.29600.16680.092*
H12C0.55330.38020.06570.092*
C130.5351 (2)0.6194 (5)0.2675 (5)0.0614 (12)
H13A0.57860.62420.28930.092*
H13B0.51040.67200.33600.092*
H13C0.52780.71430.19690.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0834 (3)0.0501 (2)0.0424 (2)0.0079 (2)0.0100 (2)0.0080 (2)
Fe10.0313 (2)0.0357 (3)0.0395 (3)0.00206 (18)0.0070 (3)0.0036 (3)
N10.0348 (16)0.0343 (16)0.0308 (16)0.0011 (11)0.0007 (12)0.0048 (12)
C10.0279 (15)0.0322 (16)0.032 (2)0.0026 (13)0.0029 (15)0.0051 (15)
C20.036 (2)0.039 (2)0.040 (2)0.0068 (16)0.0095 (17)0.0043 (17)
C30.037 (2)0.072 (3)0.033 (2)0.0095 (18)0.0045 (18)0.000 (2)
C40.037 (2)0.051 (3)0.050 (2)0.0009 (16)0.0006 (19)0.0205 (19)
C50.0353 (18)0.0278 (18)0.042 (2)0.0027 (12)0.0022 (16)0.0036 (15)
C60.040 (2)0.103 (4)0.074 (4)0.030 (3)0.024 (3)0.007 (3)
C70.046 (2)0.063 (3)0.068 (3)0.013 (2)0.023 (2)0.007 (3)
C80.068 (3)0.080 (4)0.051 (3)0.008 (3)0.024 (2)0.008 (3)
C90.049 (3)0.128 (5)0.076 (4)0.016 (3)0.031 (3)0.064 (4)
C100.091 (4)0.034 (3)0.145 (6)0.013 (3)0.078 (4)0.002 (3)
C110.0324 (19)0.040 (2)0.035 (2)0.0025 (14)0.0033 (15)0.0050 (15)
C120.042 (2)0.089 (3)0.053 (3)0.000 (2)0.016 (2)0.001 (3)
C130.054 (2)0.054 (3)0.077 (4)0.0162 (17)0.010 (3)0.003 (3)
Geometric parameters (Å, º) top
Fe1—C12.025 (3)C4—C51.412 (5)
Fe1—C82.025 (4)C4—H4A0.980
Fe1—C102.029 (4)C5—H5A0.980
Fe1—C52.031 (3)C6—C71.373 (7)
Fe1—C92.031 (5)C6—C101.395 (8)
Fe1—C72.034 (4)C6—H6A0.980
Fe1—C22.034 (3)C7—C81.351 (6)
Fe1—C62.035 (4)C7—H7A0.980
Fe1—C32.035 (4)C8—C91.402 (7)
Fe1—C42.044 (4)C8—H8A0.980
N1—C131.467 (4)C9—C101.416 (8)
N1—C121.474 (5)C9—H9A0.980
N1—C111.506 (4)C10—H10A0.980
N1—H1A0.910C11—H11A0.970
C1—C51.410 (4)C11—H11B0.970
C1—C21.427 (5)C12—H12A0.960
C1—C111.482 (5)C12—H12B0.960
C2—C31.420 (5)C12—H12C0.960
C2—H2A0.980C13—H13A0.960
C3—C41.411 (5)C13—H13B0.960
C3—H3A0.980C13—H13C0.960
C1—Fe1—C8120.62 (19)C2—C3—Fe169.5 (2)
C1—Fe1—C10125.8 (2)C4—C3—H3A125.9
C8—Fe1—C1067.9 (2)C2—C3—H3A125.9
C1—Fe1—C540.70 (12)Fe1—C3—H3A125.9
C8—Fe1—C5107.17 (17)C3—C4—C5107.9 (3)
C10—Fe1—C5162.2 (3)C3—C4—Fe169.4 (2)
C1—Fe1—C9107.51 (17)C5—C4—Fe169.2 (2)
C8—Fe1—C940.4 (2)C3—C4—H4A126.0
C10—Fe1—C940.8 (2)C5—C4—H4A126.0
C5—Fe1—C9124.5 (2)Fe1—C4—H4A126.0
C1—Fe1—C7154.72 (18)C1—C5—C4108.6 (3)
C8—Fe1—C738.89 (18)C1—C5—Fe169.44 (16)
C10—Fe1—C767.12 (19)C4—C5—Fe170.24 (19)
C5—Fe1—C7120.56 (16)C1—C5—H5A125.7
C9—Fe1—C766.71 (19)C4—C5—H5A125.7
C1—Fe1—C241.15 (14)Fe1—C5—H5A125.7
C8—Fe1—C2156.64 (19)C7—C6—C10108.5 (5)
C10—Fe1—C2108.73 (17)C7—C6—Fe170.3 (2)
C5—Fe1—C268.57 (13)C10—C6—Fe169.7 (2)
C9—Fe1—C2121.73 (19)C7—C6—H6A125.8
C7—Fe1—C2163.11 (19)C10—C6—H6A125.8
C1—Fe1—C6163.51 (19)Fe1—C6—H6A125.8
C8—Fe1—C666.4 (2)C8—C7—C6109.4 (5)
C10—Fe1—C640.2 (2)C8—C7—Fe170.2 (2)
C5—Fe1—C6155.2 (2)C6—C7—Fe170.3 (2)
C9—Fe1—C667.3 (2)C8—C7—H7A125.3
C7—Fe1—C639.44 (19)C6—C7—H7A125.3
C2—Fe1—C6126.91 (19)Fe1—C7—H7A125.3
C1—Fe1—C368.90 (15)C7—C8—C9108.5 (5)
C8—Fe1—C3160.9 (2)C7—C8—Fe170.9 (3)
C10—Fe1—C3121.9 (2)C9—C8—Fe170.0 (3)
C5—Fe1—C368.31 (15)C7—C8—H8A125.7
C9—Fe1—C3157.3 (2)C9—C8—H8A125.7
C7—Fe1—C3126.08 (18)Fe1—C8—H8A125.7
C2—Fe1—C340.84 (15)C8—C9—C10107.0 (5)
C6—Fe1—C3109.4 (2)C8—C9—Fe169.6 (3)
C1—Fe1—C468.57 (14)C10—C9—Fe169.5 (3)
C8—Fe1—C4124.18 (19)C8—C9—H9A126.5
C10—Fe1—C4156.4 (3)C10—C9—H9A126.5
C5—Fe1—C440.55 (15)Fe1—C9—H9A126.5
C9—Fe1—C4160.9 (3)C6—C10—C9106.6 (4)
C7—Fe1—C4108.37 (17)C6—C10—Fe170.1 (3)
C2—Fe1—C468.43 (15)C9—C10—Fe169.7 (2)
C6—Fe1—C4121.5 (2)C6—C10—H10A126.7
C3—Fe1—C440.46 (15)C9—C10—H10A126.7
C13—N1—C12111.3 (3)Fe1—C10—H10A126.7
C13—N1—C11113.2 (3)C1—C11—N1113.4 (3)
C12—N1—C11109.7 (3)C1—C11—H11A108.9
C13—N1—H1A107.5N1—C11—H11A108.9
C12—N1—H1A107.5C1—C11—H11B108.9
C11—N1—H1A107.5N1—C11—H11B108.9
C5—C1—C2107.6 (3)H11A—C11—H11B107.7
C5—C1—C11126.2 (3)N1—C12—H12A109.5
C2—C1—C11126.1 (3)N1—C12—H12B109.5
C5—C1—Fe169.86 (18)H12A—C12—H12B109.5
C2—C1—Fe169.78 (18)N1—C12—H12C109.5
C11—C1—Fe1122.8 (2)H12A—C12—H12C109.5
C3—C2—C1107.6 (3)H12B—C12—H12C109.5
C3—C2—Fe169.6 (2)N1—C13—H13A109.5
C1—C2—Fe169.07 (19)N1—C13—H13B109.5
C3—C2—H2A126.2H13A—C13—H13B109.5
C1—C2—H2A126.2N1—C13—H13C109.5
Fe1—C2—H2A126.2H13A—C13—H13C109.5
C4—C3—C2108.2 (3)H13B—C13—H13C109.5
C4—C3—Fe170.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br10.912.283.172 (3)165

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C8H13N)]Br
Mr324.04
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)298
a, b, c (Å)21.393 (4), 5.9296 (12), 10.798 (2)
V3)1369.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)3.99
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
CrystalClear (Rigaku, 2005)
Tmin, Tmax0.450, 0.468
No. of measured, independent and
observed [I > 2σ(I)] reflections
13217, 3117, 2638
Rint0.056
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.078, 1.08
No. of reflections3117
No. of parameters147
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.51
Absolute structureFlack (1983), 1474 Friedel pairs
Absolute structure parameter0.011 (12)

Computer programs: CrystalClear (Rigaku 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br10.912.283.172 (3)165.4
 

Acknowledgements

The authors are grateful to the starter fund of Southeast University for financial support to purchase the X-ray diffractometer.

References

First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGibbons, C. S. & Trotter, J. (1971). J. Chem. Soc. A, pp. 2659–2662.  CSD CrossRef Web of Science Google Scholar
First citationGuo, H.-X. (2006). Acta Cryst. C62, m504–m506.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGuo, H.-X., Yang, L.-M. & Zhang, S.-D. (2006). Acta Cryst. E62, m1338–m1339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuo, H.-X., Zhou, X.-J., Lin, Z.-X. & Liu, J.-M. (2006). Acta Cryst. E62, m1770–m1772.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWinter, R. F. & Wolmershauser, G. (1998). J. Organomet. Chem. 570, 201–218.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds