organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Decyl­indoline-2,3-dione

aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, bCNRST Division UATRS, Angle Allal Fassi/FAR, BP 8027 Hay Riad, Rabat, Morocco, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 15 May 2010; accepted 17 May 2010; online 22 May 2010)

In the title N-alkyl isatin, C18H25NO2, the isatin moiety is almost planar (r.m.s. deviation = 0.03 Å). C—C—C—C torsion angles of the decyl substituent indicate an all-antiperiplanar conformation.

Related literature

For background to N-substituted isatins and their derivatives, see: Bouhfid et al. (2008[Bouhfid, R., Joly, N., Ohmani, F., Essassi, E. M., Massoui, M. & Martin, P. (2008). Lett. Org. Chem. pp. 3-7.]). For the crystal structures of two N-alkyl isatins, see: see: Miehe et al. (2003[Miehe, G., Süsse, P., Kupcik, V., Egert, E., Nieger, M., Kunz, G., Gerke, R., Knieriem, B., Niemeyer, M. & Lüttke, W. (2003). Angew. Chem. Int. Ed. Engl. 30, 964-967.]); Naumov et al. (2002[Naumov, P., Anastasova, F., Drew, M. G. B. & Ng, S. W. (2002). Bull. Chem. Technol. Macedon. 21, 165-169.]).

[Scheme 1]

Experimental

Crystal data
  • C18H25NO2

  • Mr = 287.39

  • Monoclinic, P 21 /c

  • a = 22.7208 (3) Å

  • b = 4.7189 (1) Å

  • c = 15.8254 (1) Å

  • β = 106.827 (1)°

  • V = 1624.10 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 200 K

  • 0.27 × 0.18 × 0.15 mm

Data collection
  • Bruker X8 APEXII diffractometer

  • 24714 measured reflections

  • 5240 independent reflections

  • 3869 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.154

  • S = 1.03

  • 5240 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

N-Substituted isatins (Bouhfid et al., 2008) represent a large family of heterocyclic compounds reported to show a wide range of useful medicinal activities. These are readily synthesized by the reaction of isatin and an alkyl halide in the presence of a catalyst. The title decyl derivative (Scheme I, Fig. 1) has a particarly long hydrocarbon chain; the chain adopts a extended zigzag conformation.

The crystal structures of only few N-substituted isatins have been reported; these have only short hydrocarbon chains, e.g., methyl isatin (Miehe et al., 2003) and ethyl isatin (Naumov et al., 2002).

Related literature top

For background to N-substituted isatins and their derivatives, see: Bouhfid et al. (2008). For the crystal structures of two N-alkyl isatins, see: see: Miehe et al. (2003); Naumov et al. (2002).

Experimental top

To a solution of isatin (1 g, 6.8 mmol) dissolved in DMF(50 ml) was added 1-bromodecane (1.50 g, 6.8 mmol), potassium carbonate (1 g, 7.4 mmol) and a catalytic quantity of tetra-n-butylammonium bromide.The mixture was stirred for 48 h; the reaction was monitored by thin layer chromatography. The mixture was filtered and the solvent removed under vacuum. The solid that was obtained was recrystallized from ethanol to afford the title compound as orange crystals in 80% yield.

Refinement top

H-atoms were placed in calculated positions (C–H 0.95–0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5Ueq(C).

Structure description top

N-Substituted isatins (Bouhfid et al., 2008) represent a large family of heterocyclic compounds reported to show a wide range of useful medicinal activities. These are readily synthesized by the reaction of isatin and an alkyl halide in the presence of a catalyst. The title decyl derivative (Scheme I, Fig. 1) has a particarly long hydrocarbon chain; the chain adopts a extended zigzag conformation.

The crystal structures of only few N-substituted isatins have been reported; these have only short hydrocarbon chains, e.g., methyl isatin (Miehe et al., 2003) and ethyl isatin (Naumov et al., 2002).

For background to N-substituted isatins and their derivatives, see: Bouhfid et al. (2008). For the crystal structures of two N-alkyl isatins, see: see: Miehe et al. (2003); Naumov et al. (2002).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of the title compound at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
1-Decylindoline-2,3-dione top
Crystal data top
C18H25NO2F(000) = 624
Mr = 287.39Dx = 1.175 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7695 reflections
a = 22.7208 (3) Åθ = 2.6–30.8°
b = 4.7189 (1) ŵ = 0.08 mm1
c = 15.8254 (1) ÅT = 200 K
β = 106.827 (1)°Prism, orange
V = 1624.10 (4) Å30.27 × 0.18 × 0.15 mm
Z = 4
Data collection top
Bruker X8 APEXII
diffractometer
3869 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 31.2°, θmin = 2.7°
φ and ω scansh = 3133
24714 measured reflectionsk = 66
5240 independent reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0928P)2 + 0.1263P]
where P = (Fo2 + 2Fc2)/3
5240 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C18H25NO2V = 1624.10 (4) Å3
Mr = 287.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 22.7208 (3) ŵ = 0.08 mm1
b = 4.7189 (1) ÅT = 200 K
c = 15.8254 (1) Å0.27 × 0.18 × 0.15 mm
β = 106.827 (1)°
Data collection top
Bruker X8 APEXII
diffractometer
3869 reflections with I > 2σ(I)
24714 measured reflectionsRint = 0.028
5240 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.03Δρmax = 0.29 e Å3
5240 reflectionsΔρmin = 0.20 e Å3
190 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.45133 (4)1.1915 (2)0.42722 (6)0.0500 (2)
O20.35296 (4)0.7723 (2)0.35480 (5)0.0532 (3)
N10.34580 (4)0.78714 (18)0.49718 (5)0.03110 (19)
C10.37349 (4)0.94803 (19)0.57377 (6)0.02594 (19)
C20.36083 (4)0.9424 (2)0.65378 (6)0.0307 (2)
H20.33070.81800.66400.037*
C30.39391 (5)1.1265 (2)0.71908 (7)0.0344 (2)
H30.38591.12750.77480.041*
C40.43815 (5)1.3082 (2)0.70538 (7)0.0361 (2)
H40.45961.43220.75120.043*
C50.45126 (4)1.3101 (2)0.62509 (7)0.0334 (2)
H50.48201.43200.61550.040*
C60.41840 (4)1.1295 (2)0.55931 (6)0.0276 (2)
C70.42008 (4)1.0850 (2)0.46877 (6)0.0337 (2)
C80.36942 (5)0.8606 (2)0.42990 (7)0.0353 (2)
C90.29367 (4)0.5981 (2)0.48624 (8)0.0352 (2)
H9A0.29960.48410.54060.042*
H9B0.29180.46610.43690.042*
C100.23300 (4)0.7587 (2)0.46748 (8)0.0358 (2)
H10A0.23290.87110.52020.043*
H10B0.22990.89260.41820.043*
C110.17722 (5)0.5653 (2)0.44377 (8)0.0357 (2)
H11A0.18060.42940.49260.043*
H11B0.17690.45510.39040.043*
C120.11684 (4)0.7268 (2)0.42654 (8)0.0368 (2)
H12A0.11630.82680.48130.044*
H12B0.11510.87200.38070.044*
C130.05984 (4)0.5417 (2)0.39672 (8)0.0375 (2)
H13A0.06140.39630.44240.045*
H13B0.06010.44210.34180.045*
C140.00008 (4)0.7073 (2)0.38011 (8)0.0385 (2)
H14A0.00030.80470.43530.046*
H14B0.00110.85470.33520.046*
C150.05752 (5)0.5260 (3)0.34891 (8)0.0387 (2)
H15A0.05730.42880.29360.046*
H15B0.05650.37840.39380.046*
C160.11691 (5)0.6935 (3)0.33263 (8)0.0395 (3)
H16A0.11710.78980.38810.047*
H16B0.11770.84180.28810.047*
C170.17475 (5)0.5154 (3)0.30097 (8)0.0447 (3)
H17A0.17480.42040.24520.054*
H17B0.17390.36620.34530.054*
C180.23353 (5)0.6849 (3)0.28575 (10)0.0566 (4)
H18A0.26900.55810.26570.085*
H18B0.23530.82990.24070.085*
H18C0.23430.77640.34100.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0417 (5)0.0751 (6)0.0390 (4)0.0036 (4)0.0209 (4)0.0194 (4)
O20.0543 (5)0.0716 (6)0.0319 (4)0.0113 (5)0.0098 (4)0.0109 (4)
N10.0264 (4)0.0362 (4)0.0297 (4)0.0000 (3)0.0065 (3)0.0030 (3)
C10.0214 (4)0.0288 (4)0.0270 (4)0.0035 (3)0.0061 (3)0.0038 (3)
C20.0274 (4)0.0361 (5)0.0309 (5)0.0008 (4)0.0122 (4)0.0047 (4)
C30.0352 (5)0.0422 (5)0.0269 (5)0.0028 (4)0.0106 (4)0.0015 (4)
C40.0332 (5)0.0385 (5)0.0337 (5)0.0015 (4)0.0050 (4)0.0031 (4)
C50.0262 (4)0.0347 (5)0.0378 (5)0.0025 (4)0.0072 (4)0.0055 (4)
C60.0220 (4)0.0328 (5)0.0290 (4)0.0038 (3)0.0089 (3)0.0071 (3)
C70.0277 (4)0.0452 (6)0.0298 (5)0.0099 (4)0.0107 (4)0.0108 (4)
C80.0312 (5)0.0453 (6)0.0291 (5)0.0121 (4)0.0085 (4)0.0007 (4)
C90.0259 (4)0.0311 (5)0.0447 (6)0.0003 (4)0.0040 (4)0.0051 (4)
C100.0260 (5)0.0313 (5)0.0464 (6)0.0014 (4)0.0045 (4)0.0027 (4)
C110.0260 (4)0.0335 (5)0.0442 (6)0.0002 (4)0.0047 (4)0.0039 (4)
C120.0260 (5)0.0362 (5)0.0454 (6)0.0002 (4)0.0057 (4)0.0029 (4)
C130.0257 (5)0.0385 (5)0.0457 (6)0.0002 (4)0.0064 (4)0.0040 (4)
C140.0253 (5)0.0405 (6)0.0471 (6)0.0003 (4)0.0064 (4)0.0017 (5)
C150.0264 (5)0.0429 (6)0.0447 (6)0.0003 (4)0.0068 (4)0.0052 (5)
C160.0264 (5)0.0451 (6)0.0451 (6)0.0005 (4)0.0072 (4)0.0012 (5)
C170.0295 (5)0.0528 (7)0.0494 (7)0.0040 (5)0.0076 (5)0.0083 (5)
C180.0265 (5)0.0727 (9)0.0673 (9)0.0007 (6)0.0081 (5)0.0007 (7)
Geometric parameters (Å, º) top
O1—C71.2080 (12)C11—H11A0.9900
O2—C81.2118 (13)C11—H11B0.9900
N1—C81.3684 (13)C12—C131.5196 (15)
N1—C11.4142 (12)C12—H12A0.9900
N1—C91.4525 (13)C12—H12B0.9900
C1—C21.3774 (13)C13—C141.5222 (14)
C1—C61.4007 (13)C13—H13A0.9900
C2—C31.3919 (15)C13—H13B0.9900
C2—H20.9500C14—C151.5213 (14)
C3—C41.3852 (15)C14—H14A0.9900
C3—H30.9500C14—H14B0.9900
C4—C51.3865 (15)C15—C161.5201 (15)
C4—H40.9500C15—H15A0.9900
C5—C61.3846 (14)C15—H15B0.9900
C5—H50.9500C16—C171.5173 (15)
C6—C71.4596 (13)C16—H16A0.9900
C7—C81.5540 (17)C16—H16B0.9900
C9—C101.5248 (14)C17—C181.5151 (17)
C9—H9A0.9900C17—H17A0.9900
C9—H9B0.9900C17—H17B0.9900
C10—C111.5181 (14)C18—H18A0.9800
C10—H10A0.9900C18—H18B0.9800
C10—H10B0.9900C18—H18C0.9800
C11—C121.5233 (14)
C8—N1—C1110.70 (8)H11A—C11—H11B107.8
C8—N1—C9123.56 (9)C13—C12—C11114.23 (9)
C1—N1—C9125.23 (8)C13—C12—H12A108.7
C2—C1—C6121.18 (9)C11—C12—H12A108.7
C2—C1—N1128.18 (9)C13—C12—H12B108.7
C6—C1—N1110.65 (8)C11—C12—H12B108.7
C1—C2—C3117.32 (9)H12A—C12—H12B107.6
C1—C2—H2121.3C12—C13—C14113.32 (9)
C3—C2—H2121.3C12—C13—H13A108.9
C4—C3—C2122.03 (9)C14—C13—H13A108.9
C4—C3—H3119.0C12—C13—H13B108.9
C2—C3—H3119.0C14—C13—H13B108.9
C3—C4—C5120.36 (10)H13A—C13—H13B107.7
C3—C4—H4119.8C15—C14—C13114.06 (9)
C5—C4—H4119.8C15—C14—H14A108.7
C6—C5—C4118.22 (9)C13—C14—H14A108.7
C6—C5—H5120.9C15—C14—H14B108.7
C4—C5—H5120.9C13—C14—H14B108.7
C5—C6—C1120.88 (9)H14A—C14—H14B107.6
C5—C6—C7131.68 (9)C16—C15—C14113.61 (9)
C1—C6—C7107.44 (9)C16—C15—H15A108.8
O1—C7—C6131.37 (11)C14—C15—H15A108.8
O1—C7—C8123.56 (10)C16—C15—H15B108.8
C6—C7—C8105.05 (8)C14—C15—H15B108.8
O2—C8—N1126.65 (11)H15A—C15—H15B107.7
O2—C8—C7127.25 (10)C17—C16—C15114.17 (10)
N1—C8—C7106.08 (8)C17—C16—H16A108.7
N1—C9—C10112.21 (8)C15—C16—H16A108.7
N1—C9—H9A109.2C17—C16—H16B108.7
C10—C9—H9A109.2C15—C16—H16B108.7
N1—C9—H9B109.2H16A—C16—H16B107.6
C10—C9—H9B109.2C18—C17—C16113.55 (11)
H9A—C9—H9B107.9C18—C17—H17A108.9
C11—C10—C9113.10 (8)C16—C17—H17A108.9
C11—C10—H10A109.0C18—C17—H17B108.9
C9—C10—H10A109.0C16—C17—H17B108.9
C11—C10—H10B109.0H17A—C17—H17B107.7
C9—C10—H10B109.0C17—C18—H18A109.5
H10A—C10—H10B107.8C17—C18—H18B109.5
C10—C11—C12112.81 (8)H18A—C18—H18B109.5
C10—C11—H11A109.0C17—C18—H18C109.5
C12—C11—H11A109.0H18A—C18—H18C109.5
C10—C11—H11B109.0H18B—C18—H18C109.5
C12—C11—H11B109.0
C8—N1—C1—C2177.81 (9)C1—N1—C8—O2175.80 (10)
C9—N1—C1—C25.74 (15)C9—N1—C8—O23.58 (17)
C8—N1—C1—C61.83 (11)C1—N1—C8—C72.68 (10)
C9—N1—C1—C6173.90 (9)C9—N1—C8—C7174.90 (8)
C6—C1—C2—C30.75 (14)O1—C7—C8—O23.09 (17)
N1—C1—C2—C3178.85 (9)C6—C7—C8—O2175.90 (10)
C1—C2—C3—C40.33 (15)O1—C7—C8—N1178.44 (10)
C2—C3—C4—C50.54 (16)C6—C7—C8—N12.57 (10)
C3—C4—C5—C60.97 (15)C8—N1—C9—C1093.70 (12)
C4—C5—C6—C10.55 (14)C1—N1—C9—C1077.39 (12)
C4—C5—C6—C7178.57 (10)N1—C9—C10—C11172.33 (9)
C2—C1—C6—C50.32 (14)C9—C10—C11—C12179.09 (9)
N1—C1—C6—C5179.35 (8)C10—C11—C12—C13176.17 (10)
C2—C1—C6—C7179.63 (8)C11—C12—C13—C14179.87 (9)
N1—C1—C6—C70.04 (10)C12—C13—C14—C15179.16 (10)
C5—C6—C7—O11.18 (19)C13—C14—C15—C16179.93 (10)
C1—C6—C7—O1179.61 (11)C14—C15—C16—C17179.67 (10)
C5—C6—C7—C8177.70 (10)C15—C16—C17—C18179.53 (11)
C1—C6—C7—C81.50 (10)

Experimental details

Crystal data
Chemical formulaC18H25NO2
Mr287.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)22.7208 (3), 4.7189 (1), 15.8254 (1)
β (°) 106.827 (1)
V3)1624.10 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.27 × 0.18 × 0.15
Data collection
DiffractometerBruker X8 APEXII
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
24714, 5240, 3869
Rint0.028
(sin θ/λ)max1)0.729
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.154, 1.03
No. of reflections5240
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.20

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank Université Mohammed V-Agdal and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBouhfid, R., Joly, N., Ohmani, F., Essassi, E. M., Massoui, M. & Martin, P. (2008). Lett. Org. Chem. pp. 3–7.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMiehe, G., Süsse, P., Kupcik, V., Egert, E., Nieger, M., Kunz, G., Gerke, R., Knieriem, B., Niemeyer, M. & Lüttke, W. (2003). Angew. Chem. Int. Ed. Engl. 30, 964–967.  CSD CrossRef Web of Science Google Scholar
First citationNaumov, P., Anastasova, F., Drew, M. G. B. & Ng, S. W. (2002). Bull. Chem. Technol. Macedon. 21, 165–169.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds