organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-(4-Chloro­benzyl­­idene)-4-(4-chloro­phen­yl)-2-phenyl-5,6,7,8-tetra­hydro­quinoline

aNew Materials & Function Coordination Chemistry Laboratory, Qingdao University of Science & Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: ffj2003@163169.net

(Received 17 March 2010; accepted 14 May 2010; online 22 May 2010)

In the crystal structure of the title compound, C28H21Cl2N, ππ inter­actions link pairs of mol­ecules into centrosymmetric dimers with a distance of 3.756 (3) Å between the centroids of the pyridine rings. Weak inter­molecular C—H⋯Cl hydrogen bonds further link these dimers into chains propagating along [[\overline{1}]01]. The pyridine ring forms dihedral angles of 21.52 (1) and 55.87 (2)°, respectively, with the phenyl ring and the 4-chlorophenyl ring.

Related literature

For applications of pyridyl-containing compounds, see: Yan et al. (2007[Yan, C. G., Cai, X. M., Wang, Q. F., Wang, T. Y. & Zheng, M. (2007). Nat. Prop. Liais. Coord. Paris, 5, 945-947.]); Barton & Ollis (1979[Barton, D. & Ollis, D. (1979). Comprehensive Organic Chemistry, Vol. 4, pp. 468-469. Oxford, New York: Pergamon Press.]); Katritzky & Marson (1984[Katritzky, A. R. & Marson, C. M. (1984). Angew. Chem. Int. Ed. Engl. 23, 420-429.]); Constable et al. (1994[Constable, E. C., Martínez-Máňez, R., Chargill Thompson, A. M. W. & Walker, J. V. (1994). J. Chem. Soc. pp. 1585-1594.]); Eryazici et al. (2006[Eryazici, I., Moorefield, C. N., Durmus, S. & Newkome, G. R. (2006). J. Org. Chem. 71, 1009-1014.]).

[Scheme 1]

Experimental

Crystal data
  • C28H21Cl2N

  • Mr = 442.36

  • Triclinic, [P \overline 1]

  • a = 10.0583 (10) Å

  • b = 10.6483 (10) Å

  • c = 10.8792 (10) Å

  • α = 82.028 (2)°

  • β = 89.345 (1)°

  • γ = 71.335 (2)°

  • V = 1092.53 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 295 K

  • 0.23 × 0.20 × 0.19 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 5765 measured reflections

  • 3810 independent reflections

  • 3211 reflections with I > 2σ(I)

  • Rint = 0.014

  • 3 standard reflections every 100 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.102

  • S = 1.06

  • 3810 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20A⋯Cl1i 0.93 2.80 3.476 (2) 130
Symmetry code: (i) x-1, y, z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The pyridyl heterocyclic core occurs in many natural products (Barton & Ollis, 1979; Katritzky & Marson, 1984). It also plays an important role in various coordinating ligands (Constable et al., 1994; Eryazici et al., 2006)˙ Recently, the structure of 5,6,7,8-tetrahydroquinoline derivative has been reported (Yan et al., 2007). Herein, we report the crystal structure of the title compound.

In (I) (Fig. 1), the bond lengths and angles are in a good agreement with those reported previously (Yan et al., 2007). Rings N1/C13/C12/C22/C21/C14 (p1), C15-C20 (p2), C23-C28 (p3) and C1-C6 (p4) form the following dihedral angles - p1/p2 21.52 (1)°, p1/p3 55.87 (2)°, p1/p4 33.74 (1)°, p2/p3 67.85 (1)°, p2/p4 44.53 (2)° and p3/p4 81.57 (1)°.

The crystal packing is stabilized by hydrogen bonds and π-π interactions. π-π interaction link two molecules into centrosymmetric dimer with the distance of 3.756 (3) Å between the centroids of pyridine rings. Weak intermolecular C—H···Cl hydrogen bonds (Table 1) link further these dimers into chains propagated in direction [-101].

Related literature top

For applications of pyridyl-containing compounds, see: Yan et al. (2007); Barton & Ollis (1979); Katritzky & Marson (1984); Constable et al. (1994); Eryazici et al. (2006).

Experimental top

The title compound was synthesized by reaction of (Z)-2,6-dibenzylidenecyclohexanone (0.343 g, 1 mmol),ammonium acetate (3.0 g, 0.039 mol) and N-phenacylpyridinium bromide (0.280 g, 1.2 mmol) in refluxing methanol (15 ml) under stirring for 7 h. Single crystals suitable for x-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement top

C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93-0.97 Å and Uiso(H)=1.2-1.5Ueq(C).

Structure description top

The pyridyl heterocyclic core occurs in many natural products (Barton & Ollis, 1979; Katritzky & Marson, 1984). It also plays an important role in various coordinating ligands (Constable et al., 1994; Eryazici et al., 2006)˙ Recently, the structure of 5,6,7,8-tetrahydroquinoline derivative has been reported (Yan et al., 2007). Herein, we report the crystal structure of the title compound.

In (I) (Fig. 1), the bond lengths and angles are in a good agreement with those reported previously (Yan et al., 2007). Rings N1/C13/C12/C22/C21/C14 (p1), C15-C20 (p2), C23-C28 (p3) and C1-C6 (p4) form the following dihedral angles - p1/p2 21.52 (1)°, p1/p3 55.87 (2)°, p1/p4 33.74 (1)°, p2/p3 67.85 (1)°, p2/p4 44.53 (2)° and p3/p4 81.57 (1)°.

The crystal packing is stabilized by hydrogen bonds and π-π interactions. π-π interaction link two molecules into centrosymmetric dimer with the distance of 3.756 (3) Å between the centroids of pyridine rings. Weak intermolecular C—H···Cl hydrogen bonds (Table 1) link further these dimers into chains propagated in direction [-101].

For applications of pyridyl-containing compounds, see: Yan et al. (2007); Barton & Ollis (1979); Katritzky & Marson (1984); Constable et al. (1994); Eryazici et al. (2006).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
8-(4-Chlorobenzylidene)-4-(4-chlorophenyl)-2-phenyl-5,6,7,8-tetrahydroquinoline top
Crystal data top
C28H21Cl2NZ = 2
Mr = 442.36F(000) = 460
Triclinic, P1Dx = 1.345 Mg m3
Hall symbol: -P 1Melting point: 446 K
a = 10.0583 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6483 (10) ÅCell parameters from 25 reflections
c = 10.8792 (10) Åθ = 4–14°
α = 82.028 (2)°µ = 0.31 mm1
β = 89.345 (1)°T = 295 K
γ = 71.335 (2)°Block, colorless
V = 1092.53 (18) Å30.23 × 0.20 × 0.19 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.014
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 1.9°
Graphite monochromatorh = 1011
ω scansk = 1012
5765 measured reflectionsl = 1212
3810 independent reflections3 standard reflections every 100 reflections
3211 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.049P)2 + 0.2862P]
where P = (Fo2 + 2Fc2)/3
3810 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C28H21Cl2Nγ = 71.335 (2)°
Mr = 442.36V = 1092.53 (18) Å3
Triclinic, P1Z = 2
a = 10.0583 (10) ÅMo Kα radiation
b = 10.6483 (10) ŵ = 0.31 mm1
c = 10.8792 (10) ÅT = 295 K
α = 82.028 (2)°0.23 × 0.20 × 0.19 mm
β = 89.345 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.014
5765 measured reflections3 standard reflections every 100 reflections
3810 independent reflections intensity decay: none
3211 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.06Δρmax = 0.20 e Å3
3810 reflectionsΔρmin = 0.30 e Å3
280 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.76136 (6)0.12681 (6)0.49616 (5)0.06911 (19)
Cl20.44155 (6)0.60618 (5)0.38242 (6)0.0742 (2)
N10.17509 (14)0.06763 (13)0.09541 (12)0.0368 (3)
C10.45331 (19)0.14359 (18)0.27005 (16)0.0451 (4)
H1B0.39830.19890.25220.054*
C20.5506 (2)0.17024 (19)0.36113 (17)0.0489 (4)
H2A0.56000.24150.40490.059*
C30.63328 (18)0.09032 (19)0.38617 (16)0.0458 (4)
C40.61789 (19)0.0167 (2)0.32375 (17)0.0499 (5)
H4A0.67400.07100.34200.060*
C50.51923 (19)0.04352 (18)0.23411 (16)0.0451 (4)
H5A0.50890.11670.19280.054*
C60.43443 (17)0.03640 (16)0.20368 (15)0.0374 (4)
C70.33130 (17)0.02208 (16)0.10601 (15)0.0379 (4)
H7A0.29860.09480.08810.045*
C80.27524 (16)0.07649 (16)0.03750 (15)0.0350 (4)
C90.30828 (19)0.20661 (17)0.04971 (16)0.0416 (4)
H9A0.28200.25350.13330.050*
H9B0.40880.18630.03800.050*
C100.23390 (19)0.29860 (17)0.04218 (17)0.0441 (4)
H10A0.28000.26520.12350.053*
H10B0.24050.38730.01660.053*
C110.08054 (18)0.30767 (16)0.05054 (16)0.0424 (4)
H11A0.03440.36940.10730.051*
H11B0.03360.34050.03050.051*
C120.07233 (17)0.17042 (16)0.09631 (14)0.0355 (4)
C130.17015 (16)0.05872 (16)0.05496 (14)0.0345 (4)
C140.08518 (17)0.08920 (16)0.18078 (15)0.0369 (4)
C150.09818 (18)0.23138 (16)0.22446 (15)0.0386 (4)
C160.2229 (2)0.33247 (17)0.21094 (17)0.0473 (4)
H16A0.29780.31080.17350.057*
C170.2370 (2)0.46471 (19)0.25232 (19)0.0578 (5)
H17A0.32110.53130.24260.069*
C180.1272 (3)0.4986 (2)0.30786 (19)0.0610 (6)
H18A0.13700.58770.33610.073*
C190.0030 (2)0.3998 (2)0.32122 (18)0.0578 (5)
H19A0.07160.42230.35850.069*
C200.0120 (2)0.26712 (18)0.27962 (16)0.0469 (4)
H20A0.09680.20110.28870.056*
C210.01285 (18)0.01573 (17)0.22810 (15)0.0399 (4)
H21A0.07280.00210.28870.048*
C220.02151 (17)0.14700 (16)0.18517 (15)0.0369 (4)
C230.12942 (17)0.25829 (16)0.23450 (15)0.0380 (4)
C240.13747 (19)0.26296 (18)0.36124 (16)0.0460 (4)
H24A0.07630.19440.41580.055*
C250.2349 (2)0.3679 (2)0.40779 (18)0.0513 (5)
H25A0.23890.37060.49290.062*
C260.32574 (19)0.46814 (18)0.32692 (18)0.0467 (4)
C270.32402 (19)0.46397 (18)0.20151 (17)0.0472 (4)
H27A0.38840.53070.14780.057*
C280.22516 (19)0.35909 (18)0.15609 (16)0.0444 (4)
H28A0.22300.35630.07100.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0586 (3)0.0873 (4)0.0505 (3)0.0087 (3)0.0250 (2)0.0108 (3)
Cl20.0743 (4)0.0533 (3)0.0875 (4)0.0030 (3)0.0244 (3)0.0288 (3)
N10.0408 (8)0.0361 (7)0.0351 (7)0.0139 (6)0.0084 (6)0.0076 (6)
C10.0467 (10)0.0434 (10)0.0459 (10)0.0140 (8)0.0093 (8)0.0106 (8)
C20.0527 (11)0.0490 (11)0.0418 (10)0.0086 (9)0.0090 (8)0.0146 (8)
C30.0396 (9)0.0550 (11)0.0329 (9)0.0034 (8)0.0076 (7)0.0024 (8)
C40.0466 (10)0.0575 (11)0.0476 (10)0.0201 (9)0.0113 (8)0.0067 (9)
C50.0487 (10)0.0481 (10)0.0433 (10)0.0199 (8)0.0123 (8)0.0129 (8)
C60.0365 (9)0.0383 (9)0.0341 (8)0.0079 (7)0.0044 (7)0.0047 (7)
C70.0384 (9)0.0370 (9)0.0394 (9)0.0139 (7)0.0063 (7)0.0058 (7)
C80.0359 (8)0.0346 (8)0.0340 (8)0.0112 (7)0.0044 (7)0.0043 (7)
C90.0459 (10)0.0403 (9)0.0420 (9)0.0179 (8)0.0111 (8)0.0083 (7)
C100.0540 (11)0.0386 (9)0.0459 (10)0.0221 (8)0.0124 (8)0.0107 (8)
C110.0495 (10)0.0340 (9)0.0435 (10)0.0126 (8)0.0118 (8)0.0075 (7)
C120.0390 (9)0.0358 (8)0.0335 (8)0.0138 (7)0.0046 (7)0.0068 (7)
C130.0375 (8)0.0347 (8)0.0324 (8)0.0128 (7)0.0042 (7)0.0061 (7)
C140.0412 (9)0.0366 (9)0.0341 (8)0.0140 (7)0.0048 (7)0.0060 (7)
C150.0501 (10)0.0369 (9)0.0318 (8)0.0172 (8)0.0051 (7)0.0079 (7)
C160.0546 (11)0.0410 (10)0.0474 (10)0.0159 (9)0.0080 (8)0.0092 (8)
C170.0697 (13)0.0384 (10)0.0611 (12)0.0105 (10)0.0032 (10)0.0101 (9)
C180.0920 (16)0.0391 (10)0.0557 (12)0.0284 (11)0.0012 (11)0.0016 (9)
C190.0783 (14)0.0561 (12)0.0498 (11)0.0386 (11)0.0104 (10)0.0032 (9)
C200.0570 (11)0.0467 (10)0.0413 (10)0.0223 (9)0.0104 (8)0.0075 (8)
C210.0427 (9)0.0415 (9)0.0376 (9)0.0163 (8)0.0123 (7)0.0071 (7)
C220.0380 (9)0.0380 (9)0.0351 (9)0.0116 (7)0.0053 (7)0.0081 (7)
C230.0385 (9)0.0375 (9)0.0413 (9)0.0156 (7)0.0098 (7)0.0089 (7)
C240.0453 (10)0.0474 (10)0.0414 (10)0.0088 (8)0.0056 (8)0.0087 (8)
C250.0536 (11)0.0579 (12)0.0438 (10)0.0153 (9)0.0106 (9)0.0192 (9)
C260.0459 (10)0.0398 (10)0.0579 (11)0.0161 (8)0.0174 (9)0.0149 (8)
C270.0452 (10)0.0391 (10)0.0522 (11)0.0094 (8)0.0067 (8)0.0004 (8)
C280.0490 (10)0.0446 (10)0.0387 (9)0.0144 (8)0.0093 (8)0.0049 (8)
Geometric parameters (Å, º) top
Cl1—C31.7366 (17)C12—C221.397 (2)
Cl2—C261.7367 (17)C12—C131.405 (2)
N1—C141.337 (2)C14—C211.389 (2)
N1—C131.342 (2)C14—C151.487 (2)
C1—C21.378 (2)C15—C201.387 (2)
C1—C61.395 (2)C15—C161.389 (2)
C1—H1B0.9300C16—C171.380 (3)
C2—C31.368 (3)C16—H16A0.9300
C2—H2A0.9300C17—C181.376 (3)
C3—C41.373 (3)C17—H17A0.9300
C4—C51.375 (2)C18—C191.373 (3)
C4—H4A0.9300C18—H18A0.9300
C5—C61.393 (2)C19—C201.383 (3)
C5—H5A0.9300C19—H19A0.9300
C6—C71.465 (2)C20—H20A0.9300
C7—C81.343 (2)C21—C221.386 (2)
C7—H7A0.9300C21—H21A0.9300
C8—C131.489 (2)C22—C231.487 (2)
C8—C91.513 (2)C23—C281.382 (2)
C9—C101.518 (2)C23—C241.387 (2)
C9—H9A0.9700C24—C251.382 (2)
C9—H9B0.9700C24—H24A0.9300
C10—C111.517 (2)C25—C261.372 (3)
C10—H10A0.9700C25—H25A0.9300
C10—H10B0.9700C26—C271.371 (3)
C11—C121.505 (2)C27—C281.382 (2)
C11—H11A0.9700C27—H27A0.9300
C11—H11B0.9700C28—H28A0.9300
C14—N1—C13118.91 (14)N1—C13—C8116.56 (13)
C2—C1—C6122.23 (17)C12—C13—C8120.52 (14)
C2—C1—H1B118.9N1—C14—C21121.64 (15)
C6—C1—H1B118.9N1—C14—C15116.46 (14)
C3—C2—C1119.02 (17)C21—C14—C15121.88 (14)
C3—C2—H2A120.5C20—C15—C16118.21 (16)
C1—C2—H2A120.5C20—C15—C14121.62 (16)
C2—C3—C4120.79 (16)C16—C15—C14120.16 (15)
C2—C3—Cl1119.54 (14)C17—C16—C15120.80 (18)
C4—C3—Cl1119.66 (15)C17—C16—H16A119.6
C3—C4—C5119.74 (18)C15—C16—H16A119.6
C3—C4—H4A120.1C18—C17—C16120.35 (19)
C5—C4—H4A120.1C18—C17—H17A119.8
C4—C5—C6121.59 (17)C16—C17—H17A119.8
C4—C5—H5A119.2C19—C18—C17119.53 (18)
C6—C5—H5A119.2C19—C18—H18A120.2
C5—C6—C1116.61 (15)C17—C18—H18A120.2
C5—C6—C7126.52 (15)C18—C19—C20120.41 (19)
C1—C6—C7116.83 (15)C18—C19—H19A119.8
C8—C7—C6131.97 (16)C20—C19—H19A119.8
C8—C7—H7A114.0C19—C20—C15120.70 (19)
C6—C7—H7A114.0C19—C20—H20A119.7
C7—C8—C13117.97 (14)C15—C20—H20A119.7
C7—C8—C9124.69 (14)C22—C21—C14120.16 (15)
C13—C8—C9117.31 (13)C22—C21—H21A119.9
C8—C9—C10113.80 (13)C14—C21—H21A119.9
C8—C9—H9A108.8C21—C22—C12118.56 (15)
C10—C9—H9A108.8C21—C22—C23119.49 (14)
C8—C9—H9B108.8C12—C22—C23121.95 (14)
C10—C9—H9B108.8C28—C23—C24118.10 (16)
H9A—C9—H9B107.7C28—C23—C22121.24 (15)
C11—C10—C9111.40 (14)C24—C23—C22120.66 (16)
C11—C10—H10A109.3C25—C24—C23121.08 (17)
C9—C10—H10A109.3C25—C24—H24A119.5
C11—C10—H10B109.3C23—C24—H24A119.5
C9—C10—H10B109.3C26—C25—C24119.17 (17)
H10A—C10—H10B108.0C26—C25—H25A120.4
C12—C11—C10108.64 (14)C24—C25—H25A120.4
C12—C11—H11A110.0C27—C26—C25121.19 (17)
C10—C11—H11A110.0C27—C26—Cl2118.83 (15)
C12—C11—H11B110.0C25—C26—Cl2119.95 (15)
C10—C11—H11B110.0C26—C27—C28119.02 (17)
H11A—C11—H11B108.3C26—C27—H27A120.5
C22—C12—C13117.77 (14)C28—C27—H27A120.5
C22—C12—C11123.25 (14)C23—C28—C27121.37 (16)
C13—C12—C11118.81 (14)C23—C28—H28A119.3
N1—C13—C12122.92 (14)C27—C28—H28A119.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···N10.932.342.760 (2)107
C20—H20A···Cl1i0.932.803.476 (2)130
Symmetry code: (i) x1, y, z+1.

Experimental details

Crystal data
Chemical formulaC28H21Cl2N
Mr442.36
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)10.0583 (10), 10.6483 (10), 10.8792 (10)
α, β, γ (°)82.028 (2), 89.345 (1), 71.335 (2)
V3)1092.53 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.23 × 0.20 × 0.19
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5765, 3810, 3211
Rint0.014
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.102, 1.06
No. of reflections3810
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.30

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20A···Cl1i0.932.803.476 (2)130
Symmetry code: (i) x1, y, z+1.
 

Acknowledgements

The authors thank the Natural Science Foundation of Shandong Province (grant Nos. Y2006B08 & Z2007B01).

References

First citationBarton, D. & Ollis, D. (1979). Comprehensive Organic Chemistry, Vol. 4, pp. 468–469. Oxford, New York: Pergamon Press.  Google Scholar
First citationConstable, E. C., Martínez-Máňez, R., Chargill Thompson, A. M. W. & Walker, J. V. (1994). J. Chem. Soc. pp. 1585–1594.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationEryazici, I., Moorefield, C. N., Durmus, S. & Newkome, G. R. (2006). J. Org. Chem. 71, 1009–1014.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKatritzky, A. R. & Marson, C. M. (1984). Angew. Chem. Int. Ed. Engl. 23, 420–429.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan, C. G., Cai, X. M., Wang, Q. F., Wang, T. Y. & Zheng, M. (2007). Nat. Prop. Liais. Coord. Paris, 5, 945–947.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds