metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2,6-Bis(di-tert-butyl­phosphinometh­yl)phenyl-κ3P,C1,P′](tri­fluoro­acetato)palladium(II)

aOrganic Chemistry, Department of Chemistry, Lund University, PO Box 124, S-221 00 Lund, Sweden, and bDepartment of Chemistry, Nanoscience Centre, University of Jyväskylä, PO Box 35, FIN-40014 Jyväskylä, Finland
*Correspondence e-mail: kari.t.rissanen@jyu.fi, ola.wendt@organic.lu.se

(Received 19 March 2010; accepted 14 May 2010; online 19 May 2010)

The PdII atom in the title compound, [Pd(C2F3O2)(C24H43P2)], adopts a distorted square-planar geometry with the P atoms in a trans arrangement, forming two five-membered chelate rings. Four intra­molecular C—H⋯O hydrogen bonds occur. The crystal packing reveals one weak inter­molecular C—H⋯O hydrogen bond, which self-assembles the mol­ecules into infinite chains parallel to the b axis.

Related literature

For synthetic procedures, see: van der Boom et al. (1998[Boom, M. E. van der, Liou, S. Y., Ben-David, Y., Shimon, L. J. W. & Milstein, D. (1998). J. Am. Chem. Soc. 120, 6531-6541.]); Johansson et al. (2005[Johansson, R., Jarenmark, M. & Wendt, O. F. (2005). Organometallics, 24, 4500-4502.]). For a similar complex with two six-membered rings in the framework, see: Ohff et al. (1997[Ohff, M., Ohff, A., van der Boom, M. E. & Milstein, D. (1997). J. Am. Chem. Soc. 119, 11687-11688.]). For a crystallographic analysis of related complexes, see: Johansson et al. (2007[Johansson, R., Öhrström, L. & Wendt, O. F. (2007). Cryst. Growth Des. 7, 1974-1979.]). For similar complexes with ruthenium and nickel, see: Zhang et al. (2005[Zhang, J., Gunnoe, T. B. & Petersen, J. L. (2005). Inorg. Chem. 44, 2895-2907.]) and Boro et al. (2008[Boro, B. J., Dickie, D. A., Duesler, E. N., Goldberg, K. I. & Kemp, R. A. (2008). Acta Cryst. E64, m1402.]), respectively. For reactivity studies of the title compound, see: Johansson & Wendt (2007[Johansson, R. & Wendt, O. F. (2007). Dalton Trans. pp. 488-492.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(C2F3O2)(C24H43P2)]

  • Mr = 612.94

  • Orthorhombic, P b c a

  • a = 11.1239 (1) Å

  • b = 15.7484 (2) Å

  • c = 32.4400 (4) Å

  • V = 5682.96 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 123 K

  • 0.2 × 0.1 × 0.1 mm

Data collection
  • Bruker–Nonius Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.657, Tmax = 0.746

  • 50571 measured reflections

  • 5002 independent reflections

  • 4397 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.135

  • S = 0.98

  • 5002 reflections

  • 313 parameters

  • H-atom parameters constrained

  • Δρmax = 1.91 e Å−3

  • Δρmin = −1.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12C⋯O2 0.98 2.57 3.473 (6) 153
C15—H15B⋯O1 0.98 2.47 3.349 (6) 149
C20—H20B⋯O1 0.98 2.60 3.329 (6) 132
C24—H24C⋯O2 0.98 2.52 3.432 (6) 155
C3—H3⋯O2i 0.95 2.51 3.284 (6) 139
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

The title compound (I) was prepared by cyclometallation of 1,3-[bis(ditertbutylphosphino)methyl]benzene (Johansson et al., 2005). Our research has been directed towards carbon dioxide insertion into a series of compounds where compound (I) acts as a starting material for their synthesis (Johansson et al., 2005; Johansson & Wendt, 2007).

The palladium atom in compound (I) exhibits a distorted square-planar geometry with the phosphorus atom coordinated trans to each other with a P1—Pd—P2 angle of 166.82 (4)° (Fig. 1). Coordination of the (PCP)-tridentate ligand leads to the formation of two five-membered rings. The Pd—O1 bond of 2.143 (3) Å is slightly elongated compared to its palladium acetate analogue with a Pd—O1 distance of 2.128 (2) Å (Johansson et al. 2005). This is as expected for a more electron deficient ligand. The Pd—P distances, Pd—P1 = 2.305 (1) Å and Pd—P2 = 2.317 (1) Å do not differ significantly. The P1—C2—C6—P2 torsion angle of +/-10.9 (3)° is similar to other PCPPd complexes. There are four moderate C–H···O intramolecular hydrogen bonds (Table 1). The angle between the least-squares planes through the trifluoroacetate atoms O1,O2,C25 and C26 and the phenyl ring is 73.5 (2)°. The deviation from the perpendicular orientation is caused by the C3–H3···O2i hydrogen bond (Fig. 2; Table 1), which self-assembles the molecules of (I) into infinite chains parallel to the b axis.

Related literature top

For synthetic procedures, see: van der Boom et al. (1998); Johansson et al. (2005). For a similar complex with two six-membered rings in the framework, see: Ohff et al. (1997). For a crystallographic analysis of related complexes, see: Johansson, Öhrström & Wendt (2007). For similar complexes with ruthenium and nickel, see: Zhang et al. (2005) and Boro et al. (2008), respectively. For other related literature [on what subject?], see: Johansson & Wendt (2007).

Experimental top

The title compound was prepared according to a literature procedure (Johansson et al., 2005).

Refinement top

All hydrogen atoms were included in calculated positions as riding atoms, with C—H = 0.95Å for aromatic hydrogen atoms, 0.98Å for methyl hydrogen atoms and 0.99Å for methylene hydrogen atoms. The hydrogen atom Uiso parameters were set at 1.5Ueq for the methyl hydrogen atoms, and 1.2Ueq for all other hydrogen atoms.

Because of the bias in the data the C25 atom could not be refined anisotropically satisfactorily. Therefore, EADP constraint was applied in the refinement equallizing C25 with C26 atom. This results in high electronic density of 1.912 e Å-3 near C25 probably indicating some disorder or partial occupancy of another atom.

Structure description top

The title compound (I) was prepared by cyclometallation of 1,3-[bis(ditertbutylphosphino)methyl]benzene (Johansson et al., 2005). Our research has been directed towards carbon dioxide insertion into a series of compounds where compound (I) acts as a starting material for their synthesis (Johansson et al., 2005; Johansson & Wendt, 2007).

The palladium atom in compound (I) exhibits a distorted square-planar geometry with the phosphorus atom coordinated trans to each other with a P1—Pd—P2 angle of 166.82 (4)° (Fig. 1). Coordination of the (PCP)-tridentate ligand leads to the formation of two five-membered rings. The Pd—O1 bond of 2.143 (3) Å is slightly elongated compared to its palladium acetate analogue with a Pd—O1 distance of 2.128 (2) Å (Johansson et al. 2005). This is as expected for a more electron deficient ligand. The Pd—P distances, Pd—P1 = 2.305 (1) Å and Pd—P2 = 2.317 (1) Å do not differ significantly. The P1—C2—C6—P2 torsion angle of +/-10.9 (3)° is similar to other PCPPd complexes. There are four moderate C–H···O intramolecular hydrogen bonds (Table 1). The angle between the least-squares planes through the trifluoroacetate atoms O1,O2,C25 and C26 and the phenyl ring is 73.5 (2)°. The deviation from the perpendicular orientation is caused by the C3–H3···O2i hydrogen bond (Fig. 2; Table 1), which self-assembles the molecules of (I) into infinite chains parallel to the b axis.

For synthetic procedures, see: van der Boom et al. (1998); Johansson et al. (2005). For a similar complex with two six-membered rings in the framework, see: Ohff et al. (1997). For a crystallographic analysis of related complexes, see: Johansson, Öhrström & Wendt (2007). For similar complexes with ruthenium and nickel, see: Zhang et al. (2005) and Boro et al. (2008), respectively. For other related literature [on what subject?], see: Johansson & Wendt (2007).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30 % probability level. Intramolecular hydrogen bonds are shown by dashed lines.
[Figure 2] Fig. 2. A crystal packing diagram of (I), viewed down the c axis, showing hydrogen-bonded chains of molecules running parallel to the b axis. Hydrogen bonds are indicated by dashed lines.
[2,6-Bis(di-tert-butylphosphinomethyl)phenyl- κ3P,C1,P'](trifluoroacetato)palladium(II) top
Crystal data top
[Pd(C2F3O2)(C24H43P2)]F(000) = 2544
Mr = 612.94Dx = 1.433 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 7600 reflections
a = 11.1239 (1) Åθ = 0.4–28.3°
b = 15.7484 (2) ŵ = 0.81 mm1
c = 32.4400 (4) ÅT = 123 K
V = 5682.96 (11) Å3Prism, pale brown
Z = 80.2 × 0.1 × 0.1 mm
Data collection top
Bruker–Nonius Kappa APEXII
diffractometer
5002 independent reflections
Radiation source: Enraf–Nonius FR5904397 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.051
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 1.3°
CCD rotation images, thick slices scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
k = 1818
Tmin = 0.657, Tmax = 0.746l = 3838
50571 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.082P)2 + 22.4388P]
where P = (Fo2 + 2Fc2)/3
5002 reflections(Δ/σ)max < 0.001
313 parametersΔρmax = 1.91 e Å3
0 restraintsΔρmin = 1.12 e Å3
Crystal data top
[Pd(C2F3O2)(C24H43P2)]V = 5682.96 (11) Å3
Mr = 612.94Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.1239 (1) ŵ = 0.81 mm1
b = 15.7484 (2) ÅT = 123 K
c = 32.4400 (4) Å0.2 × 0.1 × 0.1 mm
Data collection top
Bruker–Nonius Kappa APEXII
diffractometer
5002 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
4397 reflections with I > 2σ(I)
Tmin = 0.657, Tmax = 0.746Rint = 0.051
50571 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.082P)2 + 22.4388P]
where P = (Fo2 + 2Fc2)/3
5002 reflectionsΔρmax = 1.91 e Å3
313 parametersΔρmin = 1.12 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.92472 (3)0.047957 (19)0.129692 (9)0.01622 (14)
P10.74524 (10)0.04831 (7)0.09415 (3)0.0196 (2)
P21.08972 (9)0.01753 (7)0.17068 (3)0.0175 (2)
F11.0573 (4)0.2240 (2)0.01869 (10)0.0683 (12)
F21.2140 (3)0.2306 (3)0.05453 (13)0.0704 (11)
F31.0899 (4)0.3333 (2)0.05529 (12)0.0714 (12)
O11.0127 (3)0.13118 (19)0.08700 (9)0.0259 (7)
O21.0118 (3)0.2545 (2)0.12135 (10)0.0372 (8)
C10.8431 (4)0.0415 (2)0.16433 (12)0.0183 (8)
C20.7283 (4)0.0729 (3)0.15436 (12)0.0211 (8)
C30.6719 (4)0.1335 (3)0.17900 (13)0.0255 (9)
H30.59280.15180.17250.031*
C40.7300 (4)0.1670 (3)0.21277 (13)0.0284 (10)
H40.69160.20870.22930.034*
C50.8446 (4)0.1395 (3)0.22229 (13)0.0261 (9)
H50.88540.16350.24520.031*
C60.9013 (4)0.0772 (3)0.19889 (12)0.0198 (8)
C70.6679 (4)0.0456 (3)0.11482 (14)0.0259 (10)
H7A0.58240.03200.12020.031*
H7B0.67100.09240.09450.031*
C81.0236 (4)0.0473 (3)0.21179 (13)0.0242 (9)
H8A1.07590.09680.21750.029*
H8B1.01710.01330.23740.029*
C90.6442 (4)0.1402 (3)0.10593 (14)0.0265 (9)
C100.6190 (5)0.1345 (3)0.15268 (16)0.0390 (12)
H10A0.57340.18460.16150.058*
H10B0.69530.13210.16770.058*
H10C0.57210.08320.15850.058*
C110.5250 (4)0.1391 (3)0.08229 (16)0.0387 (12)
H11A0.48710.08330.08530.058*
H11B0.54020.15050.05310.058*
H11C0.47150.18280.09350.058*
C120.7101 (4)0.2240 (3)0.09810 (18)0.0382 (12)
H12A0.65980.27140.10730.057*
H12B0.72650.22990.06860.057*
H12C0.78610.22430.11340.057*
C130.7625 (4)0.0257 (3)0.03776 (13)0.0269 (9)
C140.6481 (5)0.0096 (4)0.01783 (15)0.0397 (12)
H14A0.58670.03490.01690.060*
H14B0.61840.05760.03410.060*
H14C0.66620.02870.01020.060*
C150.8009 (5)0.1061 (3)0.01466 (14)0.0359 (11)
H15A0.82140.09150.01390.054*
H15B0.87110.13110.02830.054*
H15C0.73460.14710.01480.054*
C160.8633 (5)0.0405 (3)0.03433 (16)0.0375 (12)
H16A0.84140.09120.05020.056*
H16B0.93810.01660.04530.056*
H16C0.87480.05590.00530.056*
C171.1956 (4)0.0536 (3)0.14181 (14)0.0256 (9)
C181.1218 (5)0.1331 (3)0.13018 (15)0.0336 (11)
H18A1.17050.17040.11260.050*
H18B1.04930.11580.11520.050*
H18C1.09880.16360.15530.050*
C191.3059 (4)0.0812 (3)0.16619 (15)0.0346 (11)
H19A1.35260.12200.14990.052*
H19B1.28040.10800.19200.052*
H19C1.35580.03150.17240.052*
C201.2322 (4)0.0091 (3)0.10201 (14)0.0337 (11)
H20A1.27430.04390.10860.050*
H20B1.16030.00360.08570.050*
H20C1.28570.04620.08610.050*
C211.1686 (4)0.1037 (3)0.20004 (13)0.0251 (9)
C221.2397 (5)0.0707 (3)0.23723 (14)0.0337 (11)
H22A1.30600.03480.22760.050*
H22B1.18640.03730.25500.050*
H22C1.27200.11880.25280.050*
C231.2516 (4)0.1555 (3)0.17256 (15)0.0359 (11)
H23A1.27720.20680.18730.054*
H23B1.20880.17170.14740.054*
H23C1.32230.12150.16540.054*
C241.0671 (4)0.1621 (3)0.21528 (16)0.0348 (11)
H24A1.10130.20780.23210.052*
H24B1.01020.12910.23190.052*
H24C1.02510.18670.19150.052*
C251.0297 (4)0.2060 (2)0.09397 (12)0.0189 (6)
C261.0960 (3)0.2495 (2)0.05532 (12)0.0189 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0148 (2)0.0174 (2)0.0165 (2)0.00160 (11)0.00134 (11)0.00210 (11)
P10.0166 (5)0.0229 (5)0.0194 (5)0.0025 (4)0.0033 (4)0.0014 (4)
P20.0160 (5)0.0193 (5)0.0172 (5)0.0007 (4)0.0017 (4)0.0004 (4)
F10.103 (3)0.074 (3)0.0280 (17)0.052 (2)0.0003 (17)0.0064 (16)
F20.0307 (17)0.098 (3)0.083 (3)0.0020 (18)0.0170 (17)0.039 (2)
F30.120 (3)0.0301 (17)0.064 (2)0.0164 (19)0.031 (2)0.0090 (16)
O10.0257 (16)0.0282 (17)0.0237 (15)0.0023 (13)0.0002 (12)0.0036 (13)
O20.036 (2)0.038 (2)0.0371 (19)0.0042 (15)0.0066 (14)0.0007 (16)
C10.024 (2)0.0131 (18)0.0175 (19)0.0003 (15)0.0041 (16)0.0008 (15)
C20.022 (2)0.0194 (19)0.022 (2)0.0006 (17)0.0021 (16)0.0042 (17)
C30.027 (2)0.023 (2)0.027 (2)0.0064 (18)0.0076 (18)0.0031 (18)
C40.036 (3)0.020 (2)0.029 (2)0.0036 (19)0.0108 (19)0.0002 (18)
C50.035 (2)0.024 (2)0.019 (2)0.0034 (19)0.0039 (18)0.0033 (17)
C60.024 (2)0.0164 (19)0.019 (2)0.0013 (17)0.0028 (16)0.0003 (16)
C70.025 (2)0.026 (2)0.026 (2)0.0074 (17)0.0013 (19)0.0024 (17)
C80.026 (2)0.028 (2)0.018 (2)0.0027 (18)0.0005 (17)0.0053 (17)
C90.019 (2)0.027 (2)0.034 (2)0.0013 (18)0.0010 (18)0.0007 (19)
C100.032 (3)0.044 (3)0.041 (3)0.008 (2)0.006 (2)0.006 (2)
C110.025 (2)0.046 (3)0.046 (3)0.006 (2)0.008 (2)0.000 (2)
C120.031 (3)0.025 (2)0.059 (3)0.001 (2)0.005 (2)0.001 (2)
C130.025 (2)0.037 (2)0.019 (2)0.0044 (19)0.0059 (17)0.0008 (18)
C140.037 (3)0.055 (3)0.027 (2)0.015 (2)0.008 (2)0.005 (2)
C150.040 (3)0.048 (3)0.019 (2)0.012 (2)0.006 (2)0.005 (2)
C160.041 (3)0.042 (3)0.029 (3)0.002 (2)0.003 (2)0.013 (2)
C170.023 (2)0.029 (2)0.026 (2)0.0079 (18)0.0017 (18)0.0046 (18)
C180.035 (3)0.026 (2)0.039 (3)0.009 (2)0.004 (2)0.012 (2)
C190.026 (2)0.044 (3)0.034 (3)0.014 (2)0.004 (2)0.004 (2)
C200.032 (3)0.044 (3)0.026 (2)0.008 (2)0.0050 (19)0.001 (2)
C210.025 (2)0.024 (2)0.027 (2)0.0019 (17)0.0077 (18)0.0021 (18)
C220.036 (3)0.037 (3)0.028 (2)0.001 (2)0.012 (2)0.004 (2)
C230.030 (2)0.035 (3)0.043 (3)0.011 (2)0.008 (2)0.003 (2)
C240.040 (3)0.027 (2)0.038 (3)0.002 (2)0.008 (2)0.010 (2)
C250.0206 (14)0.0136 (14)0.0227 (15)0.0055 (11)0.0091 (12)0.0003 (12)
C260.0206 (14)0.0136 (14)0.0227 (15)0.0055 (11)0.0091 (12)0.0003 (12)
Geometric parameters (Å, º) top
Pd1—C12.018 (4)C12—H12B0.9800
Pd1—O12.143 (3)C12—H12C0.9800
Pd1—P12.3054 (11)C13—C141.532 (6)
Pd1—P22.3165 (10)C13—C151.531 (6)
P1—C71.838 (4)C13—C161.535 (7)
P1—C91.871 (4)C14—H14A0.9800
P1—C131.874 (4)C14—H14B0.9800
P2—C81.833 (4)C14—H14C0.9800
P2—C171.876 (4)C15—H15A0.9800
P2—C211.876 (4)C15—H15B0.9800
F1—C261.326 (5)C15—H15C0.9800
F2—C261.346 (5)C16—H16A0.9800
F3—C261.323 (5)C16—H16B0.9800
O1—C251.215 (5)C16—H16C0.9800
O2—C251.188 (5)C17—C191.523 (6)
C1—C21.407 (6)C17—C201.524 (6)
C1—C61.411 (6)C17—C181.545 (6)
C2—C31.394 (6)C18—H18A0.9800
C2—C71.510 (6)C18—H18B0.9800
C3—C41.377 (6)C18—H18C0.9800
C3—H30.9500C19—H19A0.9800
C4—C51.381 (7)C19—H19B0.9800
C4—H40.9500C19—H19C0.9800
C5—C61.392 (6)C20—H20A0.9800
C5—H50.9500C20—H20B0.9800
C6—C81.499 (6)C20—H20C0.9800
C7—H7A0.9900C21—C231.521 (6)
C7—H7B0.9900C21—C221.533 (6)
C8—H8A0.9900C21—C241.538 (6)
C8—H8B0.9900C22—H22A0.9800
C9—C121.531 (6)C22—H22B0.9800
C9—C111.532 (6)C22—H22C0.9800
C9—C101.545 (7)C23—H23A0.9800
C10—H10A0.9800C23—H23B0.9800
C10—H10B0.9800C23—H23C0.9800
C10—H10C0.9800C24—H24A0.9800
C11—H11A0.9800C24—H24B0.9800
C11—H11B0.9800C24—H24C0.9800
C11—H11C0.9800C25—C261.607 (6)
C12—H12A0.9800
C1—Pd1—O1172.85 (13)C15—C13—P1110.5 (3)
C1—Pd1—P183.71 (12)C16—C13—P1105.9 (3)
O1—Pd1—P194.06 (8)C13—C14—H14A109.5
C1—Pd1—P283.83 (12)C13—C14—H14B109.5
O1—Pd1—P297.79 (8)H14A—C14—H14B109.5
P1—Pd1—P2166.82 (4)C13—C14—H14C109.5
C7—P1—C9105.5 (2)H14A—C14—H14C109.5
C7—P1—C13104.6 (2)H14B—C14—H14C109.5
C9—P1—C13114.1 (2)C13—C15—H15A109.5
C7—P1—Pd1102.78 (15)C13—C15—H15B109.5
C9—P1—Pd1114.83 (14)H15A—C15—H15B109.5
C13—P1—Pd1113.51 (15)C13—C15—H15C109.5
C8—P2—C17106.4 (2)H15A—C15—H15C109.5
C8—P2—C21102.8 (2)H15B—C15—H15C109.5
C17—P2—C21113.0 (2)C13—C16—H16A109.5
C8—P2—Pd1102.39 (14)C13—C16—H16B109.5
C17—P2—Pd1109.55 (15)H16A—C16—H16B109.5
C21—P2—Pd1120.84 (14)C13—C16—H16C109.5
C25—O1—Pd1123.0 (3)H16A—C16—H16C109.5
C2—C1—C6117.4 (4)H16B—C16—H16C109.5
C2—C1—Pd1121.7 (3)C19—C17—C20110.9 (4)
C6—C1—Pd1120.9 (3)C19—C17—C18108.8 (4)
C3—C2—C1121.1 (4)C20—C17—C18107.9 (4)
C3—C2—C7118.8 (4)C19—C17—P2114.7 (3)
C1—C2—C7120.0 (4)C20—C17—P2108.5 (3)
C4—C3—C2120.5 (4)C18—C17—P2105.8 (3)
C4—C3—H3119.7C17—C18—H18A109.5
C2—C3—H3119.7C17—C18—H18B109.5
C3—C4—C5119.4 (4)H18A—C18—H18B109.5
C3—C4—H4120.3C17—C18—H18C109.5
C5—C4—H4120.3H18A—C18—H18C109.5
C4—C5—C6121.2 (4)H18B—C18—H18C109.5
C4—C5—H5119.4C17—C19—H19A109.5
C6—C5—H5119.4C17—C19—H19B109.5
C5—C6—C1120.4 (4)H19A—C19—H19B109.5
C5—C6—C8118.7 (4)C17—C19—H19C109.5
C1—C6—C8120.9 (4)H19A—C19—H19C109.5
C2—C7—P1109.3 (3)H19B—C19—H19C109.5
C2—C7—H7A109.8C17—C20—H20A109.5
P1—C7—H7A109.8C17—C20—H20B109.5
C2—C7—H7B109.8H20A—C20—H20B109.5
P1—C7—H7B109.8C17—C20—H20C109.5
H7A—C7—H7B108.3H20A—C20—H20C109.5
C6—C8—P2109.6 (3)H20B—C20—H20C109.5
C6—C8—H8A109.7C23—C21—C22109.3 (4)
P2—C8—H8A109.7C23—C21—C24108.2 (4)
C6—C8—H8B109.7C22—C21—C24109.2 (4)
P2—C8—H8B109.7C23—C21—P2112.0 (3)
H8A—C8—H8B108.2C22—C21—P2113.3 (3)
C12—C9—C11109.9 (4)C24—C21—P2104.6 (3)
C12—C9—C10107.4 (4)C21—C22—H22A109.5
C11—C9—C10109.5 (4)C21—C22—H22B109.5
C12—C9—P1110.2 (3)H22A—C22—H22B109.5
C11—C9—P1114.2 (3)C21—C22—H22C109.5
C10—C9—P1105.4 (3)H22A—C22—H22C109.5
C9—C10—H10A109.5H22B—C22—H22C109.5
C9—C10—H10B109.5C21—C23—H23A109.5
H10A—C10—H10B109.5C21—C23—H23B109.5
C9—C10—H10C109.5H23A—C23—H23B109.5
H10A—C10—H10C109.5C21—C23—H23C109.5
H10B—C10—H10C109.5H23A—C23—H23C109.5
C9—C11—H11A109.5H23B—C23—H23C109.5
C9—C11—H11B109.5C21—C24—H24A109.5
H11A—C11—H11B109.5C21—C24—H24B109.5
C9—C11—H11C109.5H24A—C24—H24B109.5
H11A—C11—H11C109.5C21—C24—H24C109.5
H11B—C11—H11C109.5H24A—C24—H24C109.5
C9—C12—H12A109.5H24B—C24—H24C109.5
C9—C12—H12B109.5O2—C25—O1137.4 (4)
H12A—C12—H12B109.5O2—C25—C26112.8 (3)
C9—C12—H12C109.5O1—C25—C26109.8 (3)
H12A—C12—H12C109.5F3—C26—F1106.6 (4)
H12B—C12—H12C109.5F3—C26—F2105.6 (4)
C14—C13—C15109.0 (4)F1—C26—F2103.4 (4)
C14—C13—C16109.2 (4)F3—C26—C25113.7 (4)
C15—C13—C16108.8 (4)F1—C26—C25114.9 (3)
C14—C13—P1113.3 (3)F2—C26—C25111.6 (3)
C1—Pd1—P1—C711.03 (19)C21—P2—C8—C6141.5 (3)
O1—Pd1—P1—C7162.15 (17)Pd1—P2—C8—C615.5 (3)
P2—Pd1—P1—C78.1 (2)C7—P1—C9—C12168.5 (3)
C1—Pd1—P1—C9102.93 (19)C13—P1—C9—C1277.3 (4)
O1—Pd1—P1—C983.89 (18)Pd1—P1—C9—C1256.2 (4)
P2—Pd1—P1—C9122.0 (2)C7—P1—C9—C1167.2 (4)
C1—Pd1—P1—C13123.4 (2)C13—P1—C9—C1146.9 (4)
O1—Pd1—P1—C1349.83 (18)Pd1—P1—C9—C11179.6 (3)
P2—Pd1—P1—C13104.2 (2)C7—P1—C9—C1052.9 (3)
C1—Pd1—P2—C811.61 (18)C13—P1—C9—C10167.1 (3)
O1—Pd1—P2—C8175.40 (17)Pd1—P1—C9—C1059.5 (3)
P1—Pd1—P2—C830.7 (2)C7—P1—C13—C1445.2 (4)
C1—Pd1—P2—C17101.06 (19)C9—P1—C13—C1469.5 (4)
O1—Pd1—P2—C1771.92 (18)Pd1—P1—C13—C14156.4 (3)
P1—Pd1—P2—C1782.0 (2)C7—P1—C13—C15167.7 (3)
C1—Pd1—P2—C21124.9 (2)C9—P1—C13—C1553.1 (4)
O1—Pd1—P2—C2162.15 (19)Pd1—P1—C13—C1581.0 (3)
P1—Pd1—P2—C21144.0 (2)C7—P1—C13—C1674.6 (3)
P1—Pd1—O1—C25102.9 (3)C9—P1—C13—C16170.7 (3)
P2—Pd1—O1—C2582.9 (3)Pd1—P1—C13—C1636.7 (3)
P1—Pd1—C1—C24.9 (3)C8—P2—C17—C1967.6 (4)
P2—Pd1—C1—C2170.8 (3)C21—P2—C17—C1944.4 (4)
P1—Pd1—C1—C6177.3 (3)Pd1—P2—C17—C19177.6 (3)
P2—Pd1—C1—C67.0 (3)C8—P2—C17—C20167.9 (3)
C6—C1—C2—C33.3 (6)C21—P2—C17—C2080.0 (4)
Pd1—C1—C2—C3178.7 (3)Pd1—P2—C17—C2057.9 (3)
C6—C1—C2—C7172.2 (4)C8—P2—C17—C1852.3 (3)
Pd1—C1—C2—C75.7 (5)C21—P2—C17—C18164.4 (3)
C1—C2—C3—C43.0 (6)Pd1—P2—C17—C1857.7 (3)
C7—C2—C3—C4172.6 (4)C8—P2—C21—C23168.4 (3)
C2—C3—C4—C50.6 (6)C17—P2—C21—C2354.1 (4)
C3—C4—C5—C61.4 (6)Pd1—P2—C21—C2378.5 (3)
C4—C5—C6—C11.0 (6)C8—P2—C21—C2244.2 (4)
C4—C5—C6—C8177.5 (4)C17—P2—C21—C2270.1 (4)
C2—C1—C6—C51.4 (6)Pd1—P2—C21—C22157.3 (3)
Pd1—C1—C6—C5179.3 (3)C8—P2—C21—C2474.6 (3)
C2—C1—C6—C8179.8 (4)C17—P2—C21—C24171.1 (3)
Pd1—C1—C6—C82.3 (5)Pd1—P2—C21—C2438.5 (3)
C3—C2—C7—P1168.9 (3)Pd1—O1—C25—O21.7 (7)
C1—C2—C7—P115.4 (5)Pd1—O1—C25—C26179.2 (2)
C9—P1—C7—C2104.4 (3)O2—C25—C26—F317.5 (5)
C13—P1—C7—C2135.1 (3)O1—C25—C26—F3163.2 (4)
Pd1—P1—C7—C216.3 (3)O2—C25—C26—F1140.7 (4)
C5—C6—C8—P2168.6 (3)O1—C25—C26—F139.9 (5)
C1—C6—C8—P213.0 (5)O2—C25—C26—F2101.9 (5)
C17—P2—C8—C699.4 (3)O1—C25—C26—F277.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12C···O20.982.573.473 (6)153
C15—H15B···O10.982.473.349 (6)149
C20—H20B···O10.982.603.329 (6)132
C24—H24C···O20.982.523.432 (6)155
C3—H3···O2i0.952.513.284 (6)139
Symmetry code: (i) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[Pd(C2F3O2)(C24H43P2)]
Mr612.94
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)123
a, b, c (Å)11.1239 (1), 15.7484 (2), 32.4400 (4)
V3)5682.96 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.2 × 0.1 × 0.1
Data collection
DiffractometerBruker–Nonius Kappa APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.657, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
50571, 5002, 4397
Rint0.051
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.135, 0.98
No. of reflections5002
No. of parameters313
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.082P)2 + 22.4388P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.91, 1.12

Computer programs: COLLECT (Hooft, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008b), WinGX (Farrugia, 1999), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12C···O20.982.573.473 (6)153
C15—H15B···O10.982.473.349 (6)149
C20—H20B···O10.982.603.329 (6)132
C24—H24C···O20.982.523.432 (6)155
C3—H3···O2i0.952.513.284 (6)139
Symmetry code: (i) x+3/2, y1/2, z.
 

Acknowledgements

Financial support from the Swedish Research Council (OW) and the Academy of Finland (KR, project No. 212588) is gratefully acknowledged. We also thank the NORDFORSK network for a travel grant to MTJ and OW.

References

First citationBoom, M. E. van der, Liou, S. Y., Ben-David, Y., Shimon, L. J. W. & Milstein, D. (1998). J. Am. Chem. Soc. 120, 6531–6541.  Google Scholar
First citationBoro, B. J., Dickie, D. A., Duesler, E. N., Goldberg, K. I. & Kemp, R. A. (2008). Acta Cryst. E64, m1402.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationJohansson, R., Jarenmark, M. & Wendt, O. F. (2005). Organometallics, 24, 4500–4502.  Web of Science CSD CrossRef CAS Google Scholar
First citationJohansson, R., Öhrström, L. & Wendt, O. F. (2007). Cryst. Growth Des. 7, 1974–1979.  Web of Science CSD CrossRef CAS Google Scholar
First citationJohansson, R. & Wendt, O. F. (2007). Dalton Trans. pp. 488–492.  Web of Science CrossRef Google Scholar
First citationOhff, M., Ohff, A., van der Boom, M. E. & Milstein, D. (1997). J. Am. Chem. Soc. 119, 11687–11688.  CSD CrossRef CAS Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar
First citationZhang, J., Gunnoe, T. B. & Petersen, J. L. (2005). Inorg. Chem. 44, 2895–2907.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds