organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[Bis(benzylamino)phosphoryl]-2,2,2-tri­chloroacetamide

aNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01033 Kyiv, Ukraine
*Correspondence e-mail: ovchynnikov@univ.kiev.ua

(Received 31 March 2010; accepted 14 May 2010; online 22 May 2010)

In the title compound, C16H17Cl3N3O2P, the P atom has a slightly distorted tetra­hedral configuration. The conformations of the carbonyl and phosphoryl groups are anti to each other. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into infinite chains parallel to the b axis.

Related literature

For the use of carbacyl­amido­phosphates as potential new ligands, see: Skopenko et al. (1996[Skopenko, V. V., Amirkhanov, V. M., Ovchinnikov, V. A. & Turov, A. V. (1996). Russ. J. Inorg. Chem. 41, 611-616.]); Ovchynnikov et al. (1998[Ovchynnikov, V. A., Amirkhanov, V. M., Kapshuk, A. A., Sliva, T. Yu., Glowiak, T. & Kozlowski, H. (1998). Z. Naturforsch. Teil B, 53, 836-840.]); Znovjak et al. (2009[Znovjak, K. O., Moroz, O. V., Ovchynnikov, V. A., Sliva, T. Yu., Shishkina, S. V. & Amirkhanov, V. M. (2009). Polyhedron, 28, 3731-3738.]); Gubina et al. (2009[Gubina, K. E., Maslov, O. A., Trush, E. A., Trush, V. A., Ovchynnikov, V. A., Shishkina, S. V. & Amirkhanov, V. M. (2009). Polyhedron, 28, 2661-2666.]); Gowda et al. (2010[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66, o747.]); Amirkhanov et al. (1997a[Amirkhanov, V. M., Ovchynnikov, V. A., Turov, A. V. & Skopenko, V. V. (1997a). Zh. Obshch. Khim. 23, 139-142.]); Safin et al. (2009[Safin, D. A., Bolte, M., Shakirova, E. R. & Babashkina, M. G. (2009). Polyhedron, 28, 501-504.]). For their biological activity, see: Amirkhanov et al. (1996[Amirkhanov, V., Ovchynnikov, V., Legendziewicz, J., Graczyk, A., Hanuza, J. & Macalik, L. (1996). Acta Phys. Pol. 90, 455-460.]); Rebrova et al. (1982[Rebrova, O. H., Biyushkin, V. N., Malinovskiy, T. I., Procenko, L. D. & Dneprova, T. N. (1982). Dokl. Akad. Nauk SSSR, 266, 1391-1395.]). For P=O bond lengths, see: Amirkhanov et al. (1997b[Amirkhanov, V. M., Ovchynnikov, V. A., Glowiak, T. & Kozlowski, H. (1997b). Z. Naturforsch. Teil B, 52, 1331-1336.]). For the synthesis of the title compound, see: Kirsanov & Derkach (1956[Kirsanov, A. & Derkach, G. (1956). Zh. Obshch. Khim. 28, 2247-2250.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17Cl3N3O2P

  • Mr = 420.65

  • Triclinic, [P \overline 1]

  • a = 9.116 Å

  • b = 10.3586 (2) Å

  • c = 11.7713 (2) Å

  • α = 68.320 (1)°

  • β = 67.762 (1)°

  • γ = 86.469 (1)°

  • V = 952.13 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.893, Tmax = 0.893

  • 4976 measured reflections

  • 3286 independent reflections

  • 3069 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.103

  • S = 1.05

  • 3286 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 1.95 2.790 (2) 167
N2—H2⋯O2ii 0.86 2.23 3.055 (2) 161
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Carbacylamidophosphates of the general formula RC(O)NHP(O)R2 are potential new ligands for metal ions (Skopenko et al., 1996; Ovchynnikov et al., 1998; Znovjak et al., 2009; Gubina et al., 2009; Amirkhanov et al., 1997a; Gowda et al., 2010; Safin et al., 2009). Many of these compounds also show biological activity, including anticancer activity (Amirkhanov et al., 1996; Rebrova et al., 1982). This work reports the structure of N,N'-dibenzyl-N"-trichloroacetylphosphortriamide (HDBA).

In the title compound, the phosphorus atom has a slightly distorted tetrahedral configuration (Fig.1). The average values of the angles OPN in the molecule are larger than tetrahedral, while the N – P – N angles are smaller, with the exception O1 – P1– N1 106.85 (7) ° and N(1) – P1– N(2) 112.32 (7) °, which can be rationalized by the influence of the hydrogen bonds. The environment of the nitrogen atoms is practically planar with only slight deviations from the mean planes.

The bond length P O (1.479 (1) Å is longer than in the compounds with alkyl amide substituents (the range of bond length d(P O) 1.475 - 1.478 Å) (Amirkhanov et al., 1997b). In the structure the carbonyl and phosphoryl groups are anti to each other as in most carbacylamidophosphates.

The fragment including the atoms O(2), N(1), C(1), C(2) is virtually planar, with only slight deviations from the mean plane. The phosphorus and oxygen atom of the phosphoryl group do not fit into this plane. Close enough to this plane lie the hydrogen H(1 N) and one of the chlorine atoms Cl(3). The carbonyl oxygen-phosphorus distance 3.023 (1) Å is considerably shorter than the sum of Van der Waals radii (3.3 Å).

Molecules are linked by hydrogen bonds of the phosphorylic oxygen atoms and the hydrogen atoms of the C(O)N(H)P(O) groups of neighboring molecules. The N—H···O intermolecular hydrogen bonds pack the molecules into infinite chains parallel to the b axis (Table 1, Fig.2).

Related literature top

For the use of carbacylamidophosphates as potential new ligands, see: Skopenko et al. (1996); Ovchynnikov et al. (1998); Znovjak et al. (2009); Gubina et al. (2009); Gowda et al. (2010); Amirkhanov et al. (1997a); Safin et al. (2009). For their biological activity, see: Amirkhanov et al. (1996); Rebrova et al. (1982). For PO bond lengths, see: Amirkhanov et al. (1997b). For the synthesis of the ligand, see: Kirsanov & Derkach (1956).

Experimental top

The solution of benzylamine (26.8 g, 0.25 mol) in 30 ml of chloroform was cooled to 10 °C and a solution of the dichloride of trichloroacetylamidophosphoric acid (14 g, 0.047 mol) in 150 ml of chloroform was added slowly with stirring. The temperature was not allowed to rise above 15 °C. Stirring was continued for about 40 min. The resulting mixture, containing HL, H2NCH2C6H5*HCl and excess dibenzylamine, was filtered from the precipitate (H2NCH2C6H5*HCl). Then the solution was evaporated and the residue was treated with aqueous HCl; the product precipitated as a yellow crystalline powder (90 % yield) (Kirsanov & Derkach, 1956). A colourless crystalline compound was obtained after recristallization from acetone. The compound is air stable, soluble in alcohols and hot acetone, insoluble in non-polar aprotic solvents and water, M.p. = 144 °C. Anal. Calc.: C 45.68,H 4.07, N 9.99; Found: C 45.73, H 3.95, N 9.85. IR (KBr pellet, cm-1): 1709 (s, CO) and 1250 (s, PO).

Refinement top

All hydrogen atoms were located from electron density difference maps and included in the refinement in the riding motion approximation with Uiso constrained to be 1.2 times Ueq of the carrier atom.

Structure description top

Carbacylamidophosphates of the general formula RC(O)NHP(O)R2 are potential new ligands for metal ions (Skopenko et al., 1996; Ovchynnikov et al., 1998; Znovjak et al., 2009; Gubina et al., 2009; Amirkhanov et al., 1997a; Gowda et al., 2010; Safin et al., 2009). Many of these compounds also show biological activity, including anticancer activity (Amirkhanov et al., 1996; Rebrova et al., 1982). This work reports the structure of N,N'-dibenzyl-N"-trichloroacetylphosphortriamide (HDBA).

In the title compound, the phosphorus atom has a slightly distorted tetrahedral configuration (Fig.1). The average values of the angles OPN in the molecule are larger than tetrahedral, while the N – P – N angles are smaller, with the exception O1 – P1– N1 106.85 (7) ° and N(1) – P1– N(2) 112.32 (7) °, which can be rationalized by the influence of the hydrogen bonds. The environment of the nitrogen atoms is practically planar with only slight deviations from the mean planes.

The bond length P O (1.479 (1) Å is longer than in the compounds with alkyl amide substituents (the range of bond length d(P O) 1.475 - 1.478 Å) (Amirkhanov et al., 1997b). In the structure the carbonyl and phosphoryl groups are anti to each other as in most carbacylamidophosphates.

The fragment including the atoms O(2), N(1), C(1), C(2) is virtually planar, with only slight deviations from the mean plane. The phosphorus and oxygen atom of the phosphoryl group do not fit into this plane. Close enough to this plane lie the hydrogen H(1 N) and one of the chlorine atoms Cl(3). The carbonyl oxygen-phosphorus distance 3.023 (1) Å is considerably shorter than the sum of Van der Waals radii (3.3 Å).

Molecules are linked by hydrogen bonds of the phosphorylic oxygen atoms and the hydrogen atoms of the C(O)N(H)P(O) groups of neighboring molecules. The N—H···O intermolecular hydrogen bonds pack the molecules into infinite chains parallel to the b axis (Table 1, Fig.2).

For the use of carbacylamidophosphates as potential new ligands, see: Skopenko et al. (1996); Ovchynnikov et al. (1998); Znovjak et al. (2009); Gubina et al. (2009); Gowda et al. (2010); Amirkhanov et al. (1997a); Safin et al. (2009). For their biological activity, see: Amirkhanov et al. (1996); Rebrova et al. (1982). For PO bond lengths, see: Amirkhanov et al. (1997b). For the synthesis of the ligand, see: Kirsanov & Derkach (1956).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom labeling scheme. Ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view showing the hydrogen bonds pattern. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z+1]
N-[Bis(benzylamino)phosphoryl]-2,2,2-trichloroacetamide top
Crystal data top
C16H17Cl3N3O2PZ = 2
Mr = 420.65F(000) = 432
Triclinic, P1Dx = 1.467 Mg m3
Hall symbol: -P 1Melting point: 417 K
a = 9.116 ÅMo Kα radiation, λ = 0.71073 Å
b = 10.3586 (2) ÅCell parameters from 3594 reflections
c = 11.7713 (2) Åθ = 2.0–27.1°
α = 68.320 (1)°µ = 0.58 mm1
β = 67.762 (1)°T = 293 K
γ = 86.469 (1)°Block, colorless
V = 952.13 (3) Å30.20 × 0.20 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur3
diffractometer
3286 independent reflections
Radiation source: Enhance (Mo) X-ray Source3069 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 16.1827 pixels mm-1θmax = 25.0°, θmin = 2.0°
ω scansh = 810
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 1012
Tmin = 0.893, Tmax = 0.893l = 1313
4976 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0496P)2 + 0.7601P]
where P = (Fo2 + 2Fc2)/3
3286 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C16H17Cl3N3O2Pγ = 86.469 (1)°
Mr = 420.65V = 952.13 (3) Å3
Triclinic, P1Z = 2
a = 9.116 ÅMo Kα radiation
b = 10.3586 (2) ŵ = 0.58 mm1
c = 11.7713 (2) ÅT = 293 K
α = 68.320 (1)°0.20 × 0.20 × 0.20 mm
β = 67.762 (1)°
Data collection top
Oxford Diffraction Xcalibur3
diffractometer
3286 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
3069 reflections with I > 2σ(I)
Tmin = 0.893, Tmax = 0.893Rint = 0.016
4976 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.05Δρmax = 0.62 e Å3
3286 reflectionsΔρmin = 0.41 e Å3
226 parameters
Special details top

Experimental. CrysAlis RED, (Oxford Diffraction Ltd., 2007) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.82223 (7)0.78475 (7)0.14155 (6)0.04467 (17)
Cl20.49492 (8)0.81971 (8)0.16751 (6)0.0545 (2)
Cl30.70636 (11)1.05737 (6)0.09763 (7)0.0681 (3)
P10.47348 (6)0.66397 (5)0.59367 (5)0.02713 (15)
O10.4132 (2)0.51582 (15)0.64581 (15)0.0401 (4)
O20.6029 (2)0.94775 (15)0.37756 (16)0.0434 (4)
N10.5631 (2)0.71538 (17)0.42584 (16)0.0305 (4)
H10.58280.65230.39210.037*
N20.3308 (2)0.75943 (18)0.63801 (17)0.0304 (4)
H20.35310.83090.65110.036*
N30.6122 (2)0.7072 (2)0.63210 (18)0.0362 (4)
H30.70590.73490.57140.043*
C10.6048 (2)0.8506 (2)0.3430 (2)0.0292 (4)
C20.6555 (3)0.8776 (2)0.1924 (2)0.0331 (5)
C30.1656 (3)0.7297 (3)0.6568 (2)0.0411 (5)
H3B0.09550.76940.71850.049*
H3C0.13960.62940.69710.049*
C40.1320 (2)0.7852 (2)0.5313 (2)0.0351 (5)
C50.0480 (3)0.6995 (3)0.5043 (2)0.0449 (6)
H5A0.01780.60690.56140.054*
C60.0088 (3)0.7505 (3)0.3932 (3)0.0522 (7)
H6A0.04720.69210.37670.063*
C70.0533 (3)0.8878 (3)0.3073 (3)0.0513 (7)
H7A0.02640.92240.23340.062*
C80.1382 (3)0.9738 (3)0.3321 (3)0.0502 (6)
H8A0.16901.06610.27420.060*
C90.1776 (3)0.9228 (3)0.4432 (2)0.0434 (6)
H9A0.23500.98130.45850.052*
C100.5851 (3)0.7012 (2)0.7652 (2)0.0363 (5)
H10A0.47260.67750.81960.044*
H10B0.61300.79320.75870.044*
C110.6781 (2)0.5975 (2)0.8338 (2)0.0302 (4)
C120.7278 (3)0.4795 (2)0.8055 (2)0.0358 (5)
H12A0.70760.46420.73950.043*
C130.8075 (3)0.3841 (2)0.8745 (2)0.0404 (5)
H13A0.84040.30580.85420.049*
C140.8382 (3)0.4048 (2)0.9736 (2)0.0423 (5)
H14A0.89180.34091.01950.051*
C150.7883 (3)0.5215 (3)1.0035 (2)0.0433 (6)
H15A0.80750.53551.07040.052*
C160.7100 (3)0.6174 (2)0.9342 (2)0.0371 (5)
H16A0.67800.69590.95440.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0426 (3)0.0533 (4)0.0418 (3)0.0090 (3)0.0124 (3)0.0263 (3)
Cl20.0497 (4)0.0798 (5)0.0460 (4)0.0072 (3)0.0276 (3)0.0271 (3)
Cl30.1147 (7)0.0268 (3)0.0370 (3)0.0035 (3)0.0111 (4)0.0010 (3)
P10.0396 (3)0.0197 (3)0.0240 (3)0.0032 (2)0.0134 (2)0.0091 (2)
O10.0658 (11)0.0215 (7)0.0291 (8)0.0007 (7)0.0131 (7)0.0099 (6)
O20.0678 (11)0.0236 (8)0.0377 (9)0.0044 (7)0.0141 (8)0.0151 (7)
N10.0488 (10)0.0193 (8)0.0246 (9)0.0026 (7)0.0129 (8)0.0107 (7)
N20.0368 (9)0.0262 (9)0.0341 (9)0.0033 (7)0.0160 (8)0.0152 (7)
N30.0347 (10)0.0469 (11)0.0271 (9)0.0040 (8)0.0122 (8)0.0135 (8)
C10.0365 (11)0.0224 (10)0.0286 (10)0.0015 (8)0.0121 (9)0.0098 (8)
C20.0457 (12)0.0254 (10)0.0264 (10)0.0015 (9)0.0130 (9)0.0083 (8)
C30.0354 (12)0.0466 (13)0.0325 (12)0.0013 (10)0.0095 (9)0.0083 (10)
C40.0267 (10)0.0426 (12)0.0342 (11)0.0029 (9)0.0092 (9)0.0147 (10)
C50.0396 (12)0.0473 (14)0.0432 (13)0.0063 (10)0.0106 (11)0.0157 (11)
C60.0446 (14)0.0704 (18)0.0490 (15)0.0061 (12)0.0166 (12)0.0298 (14)
C70.0426 (13)0.0755 (19)0.0417 (14)0.0074 (13)0.0215 (11)0.0230 (13)
C80.0509 (15)0.0487 (15)0.0487 (15)0.0046 (12)0.0256 (12)0.0091 (12)
C90.0460 (13)0.0406 (13)0.0484 (14)0.0012 (10)0.0255 (11)0.0138 (11)
C100.0413 (12)0.0419 (12)0.0343 (12)0.0056 (10)0.0176 (10)0.0205 (10)
C110.0308 (10)0.0335 (11)0.0243 (10)0.0047 (8)0.0079 (8)0.0104 (8)
C120.0470 (12)0.0352 (11)0.0259 (10)0.0025 (9)0.0126 (9)0.0126 (9)
C130.0503 (13)0.0304 (11)0.0333 (12)0.0023 (10)0.0104 (10)0.0096 (9)
C140.0462 (13)0.0383 (13)0.0347 (12)0.0011 (10)0.0177 (10)0.0029 (10)
C150.0568 (14)0.0461 (13)0.0322 (12)0.0040 (11)0.0239 (11)0.0118 (10)
C160.0465 (13)0.0384 (12)0.0323 (11)0.0004 (10)0.0166 (10)0.0174 (10)
Geometric parameters (Å, º) top
Cl1—C21.775 (2)C6—C71.381 (4)
Cl2—C21.775 (2)C6—H6A0.9300
Cl3—C21.763 (2)C7—C81.388 (4)
P1—O11.4787 (15)C7—H7A0.9300
P1—N21.6282 (17)C8—C91.392 (4)
P1—N31.6296 (19)C8—H8A0.9300
P1—N11.7055 (17)C9—H9A0.9300
O2—C11.213 (2)C10—C111.514 (3)
N1—C11.354 (3)C10—H10A0.9700
N1—H10.8600C10—H10B0.9700
N2—C31.472 (3)C11—C121.389 (3)
N2—H20.8600C11—C161.404 (3)
N3—C101.469 (3)C12—C131.389 (3)
N3—H30.8600C12—H12A0.9300
C1—C21.570 (3)C13—C141.387 (3)
C3—C41.516 (3)C13—H13A0.9300
C3—H3B0.9700C14—C151.385 (4)
C3—H3C0.9700C14—H14A0.9300
C4—C91.391 (3)C15—C161.384 (3)
C4—C51.398 (3)C15—H15A0.9300
C5—C61.391 (4)C16—H16A0.9300
C5—H5A0.9300
O1—P1—N2111.32 (10)C7—C6—C5120.0 (2)
O1—P1—N3119.71 (10)C7—C6—H6A120.0
N2—P1—N3104.09 (9)C5—C6—H6A120.0
O1—P1—N1106.89 (8)C6—C7—C8119.5 (2)
N2—P1—N1112.12 (9)C6—C7—H7A120.2
N3—P1—N1102.49 (9)C8—C7—H7A120.2
C1—N1—P1123.22 (14)C7—C8—C9120.5 (3)
C1—N1—H1118.4C7—C8—H8A119.8
P1—N1—H1118.4C9—C8—H8A119.8
C3—N2—P1123.37 (15)C4—C9—C8120.6 (2)
C3—N2—H2118.3C4—C9—H9A119.7
P1—N2—H2118.3C8—C9—H9A119.7
C10—N3—P1123.29 (15)N3—C10—C11114.51 (18)
C10—N3—H3118.4N3—C10—H10A108.6
P1—N3—H3118.4C11—C10—H10A108.6
O2—C1—N1124.99 (19)N3—C10—H10B108.6
O2—C1—C2120.05 (18)C11—C10—H10B108.6
N1—C1—C2114.96 (17)H10A—C10—H10B107.6
C1—C2—Cl3109.68 (14)C12—C11—C16118.3 (2)
C1—C2—Cl1109.66 (14)C12—C11—C10122.64 (18)
Cl3—C2—Cl1109.28 (12)C16—C11—C10119.02 (19)
C1—C2—Cl2109.45 (15)C11—C12—C13120.7 (2)
Cl3—C2—Cl2109.43 (12)C11—C12—H12A119.6
Cl1—C2—Cl2109.32 (11)C13—C12—H12A119.6
N2—C3—C4114.92 (18)C14—C13—C12120.5 (2)
N2—C3—H3B108.5C14—C13—H13A119.8
C4—C3—H3B108.5C12—C13—H13A119.8
N2—C3—H3C108.5C15—C14—C13119.4 (2)
C4—C3—H3C108.5C15—C14—H14A120.3
H3B—C3—H3C107.5C13—C14—H14A120.3
C9—C4—C5118.2 (2)C16—C15—C14120.3 (2)
C9—C4—C3121.5 (2)C16—C15—H15A119.8
C5—C4—C3120.2 (2)C14—C15—H15A119.8
C6—C5—C4121.1 (2)C15—C16—C11120.8 (2)
C6—C5—H5A119.4C15—C16—H16A119.6
C4—C5—H5A119.4C11—C16—H16A119.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.952.790 (2)167
N2—H2···O2ii0.862.233.055 (2)161
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC16H17Cl3N3O2P
Mr420.65
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.116, 10.3586 (2), 11.7713 (2)
α, β, γ (°)68.320 (1), 67.762 (1), 86.469 (1)
V3)952.13 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur3
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.893, 0.893
No. of measured, independent and
observed [I > 2σ(I)] reflections
4976, 3286, 3069
Rint0.016
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.103, 1.05
No. of reflections3286
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.41

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.952.790 (2)166.6
N2—H2···O2ii0.862.233.055 (2)160.7
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1.
 

Acknowledgements

The author thanks Professor Joachim Sieler for his help with the data collection.

References

First citationAmirkhanov, V. M., Ovchynnikov, V. A., Glowiak, T. & Kozlowski, H. (1997b). Z. Naturforsch. Teil B, 52, 1331–1336.  CAS Google Scholar
First citationAmirkhanov, V., Ovchynnikov, V., Legendziewicz, J., Graczyk, A., Hanuza, J. & Macalik, L. (1996). Acta Phys. Pol. 90, 455–460.  CAS Google Scholar
First citationAmirkhanov, V. M., Ovchynnikov, V. A., Turov, A. V. & Skopenko, V. V. (1997a). Zh. Obshch. Khim. 23, 139–142.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66, o747.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGubina, K. E., Maslov, O. A., Trush, E. A., Trush, V. A., Ovchynnikov, V. A., Shishkina, S. V. & Amirkhanov, V. M. (2009). Polyhedron, 28, 2661–2666.  Web of Science CSD CrossRef CAS Google Scholar
First citationKirsanov, A. & Derkach, G. (1956). Zh. Obshch. Khim. 28, 2247–2250.  Google Scholar
First citationOvchynnikov, V. A., Amirkhanov, V. M., Kapshuk, A. A., Sliva, T. Yu., Glowiak, T. & Kozlowski, H. (1998). Z. Naturforsch. Teil B, 53, 836–840.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRebrova, O. H., Biyushkin, V. N., Malinovskiy, T. I., Procenko, L. D. & Dneprova, T. N. (1982). Dokl. Akad. Nauk SSSR, 266, 1391–1395.  CAS Google Scholar
First citationSafin, D. A., Bolte, M., Shakirova, E. R. & Babashkina, M. G. (2009). Polyhedron, 28, 501–504.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkopenko, V. V., Amirkhanov, V. M., Ovchinnikov, V. A. & Turov, A. V. (1996). Russ. J. Inorg. Chem. 41, 611–616.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZnovjak, K. O., Moroz, O. V., Ovchynnikov, V. A., Sliva, T. Yu., Shishkina, S. V. & Amirkhanov, V. M. (2009). Polyhedron, 28, 3731–3738.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds