organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Ethyl­sulfinyl-2-(4-fluoro­phen­yl)-5,6-methyl­enedi­­oxy-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 20 April 2010; accepted 3 May 2010; online 8 May 2010)

In the title compound, C17H13FO4S, the 4-fluoro­phenyl ring makes a dihedral angle of 4.92 (4)° with the plane of the 5,6-methyl­enedi­oxy-1-benzofuran fragment. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯O and C—H⋯F hydrogen bonds.

Related literature

For the crystal structures of similar 2-aryl-5,6-methyl­enedi­oxy-3-methyl­sulfinyl-1-benzofuran derivatives, see: Choi et al. (2007[Choi, H. D., Seo, P. J., Lee, H. K., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o519-o520.], 2010[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o605.]). For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006[Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214-4226.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13FO4S

  • Mr = 332.33

  • Triclinic, [P \overline 1]

  • a = 7.1081 (9) Å

  • b = 9.631 (1) Å

  • c = 10.708 (1) Å

  • α = 93.201 (2)°

  • β = 95.510 (2)°

  • γ = 105.423 (2)°

  • V = 700.85 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 173 K

  • 0.40 × 0.36 × 0.28 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.610, Tmax = 0.746

  • 6872 measured reflections

  • 3194 independent reflections

  • 2955 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.093

  • S = 1.03

  • 3194 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O4i 0.93 2.62 3.380 (2) 140
C16—H16A⋯Fii 0.97 2.56 3.2090 (17) 125
C17—H17B⋯O4iii 0.96 2.61 3.469 (2) 149
Symmetry codes: (i) -x, -y, -z+1; (ii) x, y, z+1; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Compounds involving a benzofuran skeleton show various pharmacological activities such as antifungal (Aslam et al.., 2006), antitumor and antiviral (Galal et al.., 2009), and antimicrobial (Khan et al.., 2005). These compounds occur widely in nature (Akgul & Anil, 2003; Soekamto et al.., 2003). As a part of our ongoing studies of the effect of side chain substituents on the solid state structures of 2-aryl-5,6-methylenedioxy-3-methylsulfinyl-1-benzofuran analogues (Choi et al., 2007, 2010), we report the crystal structure of the title compound (Fig. 1). The structure shows both intermolecular C-H···O and C–H···F hydrogen bonds, whereas aromatic π···π interactions were found in 5,6-methylenedioxy-3-methylsulfinyl-2-phenylbenzofuran (Choi et al., 2007) and only intermolecular C–H···O hydrogen bonds were observed in 2-(4-fluorophenyl)-5,6-methylenedioxy-3-methylsulfinyl-1-benzofuran (Choi et al., 2010).

The 5,6-(methylenedioxy)benzofuran unit is essentially planar, with a mean deviation of 0.013 (1) Å from the least-squares plane defined by the twelve constituent atoms. The dihedral angle formed by this plane and the 4-fluorophenyl ring is 4.92 (4)°. The molecular packing (Fig. 2) is stabilized by intermolecular C–H···O hydrogen bonds; the first one between the 4-fluorophenyl H atom and the oxygen of the SO unit, with a C12–H12···O4i, the second one between the methyl H atom of ethyl group and the oxygen of the SO unit, with a C17–H17B···O4iii, respectively (Table 1). The crystal packing (Fig. 2) is further stabilized by intermolecular C–H···F hydrogen bonds between the methylene H atom of ethyl group and the fluorine, with a C16–H16A···Fii (Table 1).

Related literature top

For the crystal structures of similar 2-aryl-5,6-methylenedioxy-3-methylsulfinyl-1-benzofuran derivatives, see: Choi et al. (2007, 2010). For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003).

Experimental top

77% 3-Chloroperoxybenzoic acid (202 mg, 0.9 mmol) was added in small portions to a stirred solution of 3-ethylsulfanyl-2-(4-fluorophenyl)-5,6-methylenedioxy-1-benzofuran (253 mg, 0.8 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (silica gel, ethyl acetate) to afford the title compound as a colorless solid [yield 79%, m.p. 449-450 K; Rf = 0.61 (ethyl acetate)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in chloroform at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 Å for aryl, 0.97 Å for methylene, and 0.96 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and methylene H atoms, and 1.5Ueq(C) for methyl H atoms.

Structure description top

Compounds involving a benzofuran skeleton show various pharmacological activities such as antifungal (Aslam et al.., 2006), antitumor and antiviral (Galal et al.., 2009), and antimicrobial (Khan et al.., 2005). These compounds occur widely in nature (Akgul & Anil, 2003; Soekamto et al.., 2003). As a part of our ongoing studies of the effect of side chain substituents on the solid state structures of 2-aryl-5,6-methylenedioxy-3-methylsulfinyl-1-benzofuran analogues (Choi et al., 2007, 2010), we report the crystal structure of the title compound (Fig. 1). The structure shows both intermolecular C-H···O and C–H···F hydrogen bonds, whereas aromatic π···π interactions were found in 5,6-methylenedioxy-3-methylsulfinyl-2-phenylbenzofuran (Choi et al., 2007) and only intermolecular C–H···O hydrogen bonds were observed in 2-(4-fluorophenyl)-5,6-methylenedioxy-3-methylsulfinyl-1-benzofuran (Choi et al., 2010).

The 5,6-(methylenedioxy)benzofuran unit is essentially planar, with a mean deviation of 0.013 (1) Å from the least-squares plane defined by the twelve constituent atoms. The dihedral angle formed by this plane and the 4-fluorophenyl ring is 4.92 (4)°. The molecular packing (Fig. 2) is stabilized by intermolecular C–H···O hydrogen bonds; the first one between the 4-fluorophenyl H atom and the oxygen of the SO unit, with a C12–H12···O4i, the second one between the methyl H atom of ethyl group and the oxygen of the SO unit, with a C17–H17B···O4iii, respectively (Table 1). The crystal packing (Fig. 2) is further stabilized by intermolecular C–H···F hydrogen bonds between the methylene H atom of ethyl group and the fluorine, with a C16–H16A···Fii (Table 1).

For the crystal structures of similar 2-aryl-5,6-methylenedioxy-3-methylsulfinyl-1-benzofuran derivatives, see: Choi et al. (2007, 2010). For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. C–H···O and C–H···F interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) - x, - y, - z + 1; (ii) x, y, z + 1; (iii) x + 1, y, z; (iv) - x, - y, - z + 1; (v) x, y, z -1 ; (vi) x - 1, y, z.]
3-Ethylsulfinyl-2-(4-fluorophenyl)-5,6-methylenedioxy-1-benzofuran top
Crystal data top
C17H13FO4SZ = 2
Mr = 332.33F(000) = 344
Triclinic, P1Dx = 1.575 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1081 (9) ÅCell parameters from 4697 reflections
b = 9.631 (1) Åθ = 2.2–27.5°
c = 10.708 (1) ŵ = 0.26 mm1
α = 93.201 (2)°T = 173 K
β = 95.510 (2)°Block, colourless
γ = 105.423 (2)°0.40 × 0.36 × 0.28 mm
V = 700.85 (13) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3194 independent reflections
Radiation source: rotating anode2955 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.021
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 1.9°
φ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1112
Tmin = 0.610, Tmax = 0.746l = 1313
6872 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: difference Fourier map
wR(F2) = 0.093H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0462P)2 + 0.3499P]
where P = (Fo2 + 2Fc2)/3
3194 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C17H13FO4Sγ = 105.423 (2)°
Mr = 332.33V = 700.85 (13) Å3
Triclinic, P1Z = 2
a = 7.1081 (9) ÅMo Kα radiation
b = 9.631 (1) ŵ = 0.26 mm1
c = 10.708 (1) ÅT = 173 K
α = 93.201 (2)°0.40 × 0.36 × 0.28 mm
β = 95.510 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3194 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2955 reflections with I > 2σ(I)
Tmin = 0.610, Tmax = 0.746Rint = 0.021
6872 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.03Δρmax = 0.35 e Å3
3194 reflectionsΔρmin = 0.34 e Å3
209 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.03741 (5)0.18237 (3)0.61999 (3)0.02096 (11)
F0.26284 (17)0.20685 (12)0.00053 (8)0.0408 (3)
O10.28566 (14)0.56937 (10)0.50825 (8)0.0191 (2)
O20.19966 (18)0.67938 (11)0.99731 (9)0.0294 (2)
O30.33831 (17)0.87862 (11)0.89214 (10)0.0291 (2)
O40.10317 (16)0.18196 (12)0.71512 (11)0.0311 (3)
C10.14785 (19)0.36484 (14)0.59545 (12)0.0173 (3)
C20.18385 (19)0.48389 (14)0.69123 (12)0.0174 (3)
C30.15149 (19)0.49635 (14)0.81894 (12)0.0192 (3)
H30.09490.41720.86180.023*
C40.2106 (2)0.63511 (15)0.87430 (12)0.0204 (3)
C50.2704 (3)0.83253 (17)1.00884 (14)0.0312 (3)
H5A0.37700.86371.07660.037*
H5B0.16600.87491.02810.037*
C60.2941 (2)0.75576 (15)0.81127 (13)0.0209 (3)
C70.3259 (2)0.74755 (14)0.68725 (13)0.0209 (3)
H70.38040.82770.64490.025*
C80.26789 (19)0.60610 (14)0.63121 (12)0.0176 (3)
C90.21082 (19)0.42130 (14)0.48737 (12)0.0176 (3)
C100.22097 (19)0.36334 (15)0.35978 (12)0.0189 (3)
C110.1684 (2)0.21477 (15)0.32548 (13)0.0234 (3)
H110.12460.15050.38490.028*
C120.1803 (2)0.16148 (17)0.20450 (14)0.0273 (3)
H120.14370.06260.18170.033*
C130.2479 (2)0.25910 (18)0.11899 (13)0.0265 (3)
C140.3012 (2)0.40604 (17)0.14766 (13)0.0266 (3)
H140.34620.46900.08750.032*
C150.2863 (2)0.45824 (15)0.26865 (13)0.0225 (3)
H150.32010.55750.28960.027*
C160.2528 (2)0.14580 (16)0.70193 (13)0.0248 (3)
H16A0.31200.22260.76780.030*
H16B0.21290.05600.74140.030*
C170.4039 (2)0.13464 (17)0.61352 (15)0.0276 (3)
H17A0.34730.05630.55010.041*
H17B0.51630.11730.66040.041*
H17C0.44350.22330.57410.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.02154 (18)0.01632 (17)0.02366 (18)0.00116 (13)0.00638 (13)0.00332 (12)
F0.0605 (7)0.0474 (6)0.0187 (4)0.0201 (5)0.0118 (4)0.0023 (4)
O10.0233 (5)0.0164 (5)0.0176 (4)0.0042 (4)0.0053 (4)0.0030 (3)
O20.0455 (7)0.0222 (5)0.0197 (5)0.0063 (5)0.0095 (4)0.0014 (4)
O30.0437 (6)0.0185 (5)0.0237 (5)0.0060 (4)0.0059 (4)0.0024 (4)
O40.0287 (6)0.0290 (6)0.0365 (6)0.0040 (4)0.0162 (5)0.0079 (5)
C10.0169 (6)0.0165 (6)0.0184 (6)0.0038 (5)0.0036 (5)0.0018 (5)
C20.0157 (6)0.0171 (6)0.0194 (6)0.0043 (5)0.0028 (5)0.0021 (5)
C30.0202 (6)0.0189 (6)0.0186 (6)0.0039 (5)0.0046 (5)0.0036 (5)
C40.0212 (6)0.0232 (7)0.0178 (6)0.0072 (5)0.0043 (5)0.0017 (5)
C50.0412 (9)0.0237 (7)0.0253 (7)0.0030 (6)0.0080 (6)0.0045 (6)
C60.0220 (6)0.0171 (6)0.0233 (7)0.0060 (5)0.0015 (5)0.0008 (5)
C70.0237 (7)0.0164 (6)0.0229 (6)0.0048 (5)0.0044 (5)0.0041 (5)
C80.0179 (6)0.0192 (6)0.0168 (6)0.0058 (5)0.0037 (5)0.0029 (5)
C90.0179 (6)0.0153 (6)0.0199 (6)0.0046 (5)0.0027 (5)0.0021 (5)
C100.0168 (6)0.0227 (7)0.0176 (6)0.0060 (5)0.0022 (5)0.0020 (5)
C110.0266 (7)0.0234 (7)0.0198 (6)0.0048 (6)0.0063 (5)0.0020 (5)
C120.0313 (8)0.0259 (7)0.0238 (7)0.0068 (6)0.0046 (6)0.0028 (6)
C130.0290 (7)0.0376 (8)0.0158 (6)0.0139 (6)0.0048 (5)0.0004 (6)
C140.0287 (7)0.0349 (8)0.0196 (7)0.0120 (6)0.0062 (5)0.0090 (6)
C150.0240 (7)0.0231 (7)0.0211 (6)0.0070 (5)0.0039 (5)0.0042 (5)
C160.0295 (7)0.0231 (7)0.0242 (7)0.0093 (6)0.0055 (6)0.0078 (5)
C170.0261 (7)0.0252 (7)0.0339 (8)0.0092 (6)0.0072 (6)0.0050 (6)
Geometric parameters (Å, º) top
S—O41.493 (1)C7—C81.396 (2)
S—C11.770 (1)C7—H70.9300
S—C161.817 (2)C9—C101.462 (2)
F—C131.363 (2)C10—C111.397 (2)
O1—C81.371 (2)C10—C151.401 (2)
O1—C91.380 (2)C11—C121.385 (2)
O2—C41.378 (2)C11—H110.9300
O2—C51.420 (2)C12—C131.376 (2)
O3—C61.373 (2)C12—H120.9300
O3—C51.434 (2)C13—C141.373 (2)
C1—C91.370 (2)C14—C151.387 (2)
C1—C21.447 (2)C14—H140.9300
C2—C81.393 (2)C15—H150.9300
C2—C31.412 (2)C16—C171.519 (2)
C3—C41.371 (2)C16—H16A0.9700
C3—H30.9300C16—H16B0.9700
C4—C61.399 (2)C17—H17A0.9600
C5—H5A0.9700C17—H17B0.9600
C5—H5B0.9700C17—H17C0.9600
C6—C71.370 (2)
O4—S—C1107.47 (6)C1—C9—O1109.89 (11)
O4—S—C16106.53 (7)C1—C9—C10135.89 (12)
C1—S—C1697.30 (7)O1—C9—C10114.21 (11)
C8—O1—C9107.08 (10)C11—C10—C15118.46 (12)
C4—O2—C5106.39 (11)C11—C10—C9121.86 (12)
C6—O3—C5105.79 (11)C15—C10—C9119.68 (12)
C9—C1—C2107.48 (11)C12—C11—C10121.19 (13)
C9—C1—S128.49 (10)C12—C11—H11119.4
C2—C1—S124.02 (10)C10—C11—H11119.4
C8—C2—C3120.58 (12)C13—C12—C11118.09 (14)
C8—C2—C1104.70 (11)C13—C12—H12121.0
C3—C2—C1134.72 (12)C11—C12—H12121.0
C4—C3—C2114.24 (12)F—C13—C14118.71 (13)
C4—C3—H3122.9F—C13—C12118.20 (14)
C2—C3—H3122.9C14—C13—C12123.09 (13)
C3—C4—O2127.02 (13)C13—C14—C15118.31 (14)
C3—C4—C6123.81 (13)C13—C14—H14120.8
O2—C4—C6109.17 (12)C15—C14—H14120.8
O2—C5—O3108.58 (11)C14—C15—C10120.84 (13)
O2—C5—H5A110.0C14—C15—H15119.6
O3—C5—H5A110.0C10—C15—H15119.6
O2—C5—H5B110.0C17—C16—S111.94 (10)
O3—C5—H5B110.0C17—C16—H16A109.2
H5A—C5—H5B108.4S—C16—H16A109.2
C7—C6—O3126.72 (13)C17—C16—H16B109.2
C7—C6—C4123.41 (13)S—C16—H16B109.2
O3—C6—C4109.87 (12)H16A—C16—H16B107.9
C6—C7—C8112.81 (12)C16—C17—H17A109.5
C6—C7—H7123.6C16—C17—H17B109.5
C8—C7—H7123.6H17A—C17—H17B109.5
O1—C8—C2110.85 (11)C16—C17—H17C109.5
O1—C8—C7124.01 (12)H17A—C17—H17C109.5
C2—C8—C7125.15 (12)H17B—C17—H17C109.5
O4—S—C1—C9147.47 (12)C1—C2—C8—O10.34 (14)
C16—S—C1—C9102.60 (13)C3—C2—C8—C70.3 (2)
O4—S—C1—C231.24 (13)C1—C2—C8—C7179.35 (13)
C16—S—C1—C278.69 (12)C6—C7—C8—O1179.57 (12)
C9—C1—C2—C80.08 (14)C6—C7—C8—C20.8 (2)
S—C1—C2—C8178.86 (10)C2—C1—C9—O10.20 (15)
C9—C1—C2—C3179.64 (14)S—C1—C9—O1179.08 (9)
S—C1—C2—C30.7 (2)C2—C1—C9—C10178.68 (14)
C8—C2—C3—C40.45 (19)S—C1—C9—C102.4 (2)
C1—C2—C3—C4179.95 (14)C8—O1—C9—C10.41 (14)
C2—C3—C4—O2179.10 (13)C8—O1—C9—C10179.25 (10)
C2—C3—C4—C60.7 (2)C1—C9—C10—C114.3 (2)
C5—O2—C4—C3177.56 (14)O1—C9—C10—C11174.11 (12)
C5—O2—C4—C62.65 (16)C1—C9—C10—C15176.13 (15)
C4—O2—C5—O34.39 (17)O1—C9—C10—C155.45 (17)
C6—O3—C5—O24.45 (17)C15—C10—C11—C120.1 (2)
C5—O3—C6—C7177.68 (14)C9—C10—C11—C12179.47 (13)
C5—O3—C6—C42.82 (16)C10—C11—C12—C130.8 (2)
C3—C4—C6—C70.1 (2)C11—C12—C13—F178.92 (13)
O2—C4—C6—C7179.65 (13)C11—C12—C13—C140.9 (2)
C3—C4—C6—O3179.66 (13)F—C13—C14—C15179.73 (13)
O2—C4—C6—O30.13 (16)C12—C13—C14—C150.1 (2)
O3—C6—C7—C8178.87 (13)C13—C14—C15—C100.9 (2)
C4—C6—C7—C80.6 (2)C11—C10—C15—C140.9 (2)
C9—O1—C8—C20.47 (14)C9—C10—C15—C14178.64 (13)
C9—O1—C8—C7179.23 (12)O4—S—C16—C17176.72 (10)
C3—C2—C8—O1179.97 (11)C1—S—C16—C1772.56 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O4i0.932.623.380 (2)140
C16—H16A···Fii0.972.563.2090 (17)125
C17—H17B···O4iii0.962.613.469 (2)149
Symmetry codes: (i) x, y, z+1; (ii) x, y, z+1; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC17H13FO4S
Mr332.33
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.1081 (9), 9.631 (1), 10.708 (1)
α, β, γ (°)93.201 (2), 95.510 (2), 105.423 (2)
V3)700.85 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.40 × 0.36 × 0.28
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.610, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
6872, 3194, 2955
Rint0.021
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.093, 1.03
No. of reflections3194
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.34

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O4i0.932.623.380 (2)139.9
C16—H16A···Fii0.972.563.2090 (17)124.7
C17—H17B···O4iii0.962.613.469 (2)149.2
Symmetry codes: (i) x, y, z+1; (ii) x, y, z+1; (iii) x+1, y, z.
 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Lee, H. K., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o519–o520.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o605.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds