organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-5-[(1,5-Di­methyl-3-oxo-2-phenyl-2,3-di­hydro-1H-pyrazol-4-yl)imino­meth­yl]-2-meth­oxy­phenyl 4-bromo­benzene­sulfonate

aCollege of Sciences, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
*Correspondence e-mail: yao_jingxia@163.com

(Received 10 May 2010; accepted 11 May 2010; online 15 May 2010)

In the title compound, C25H22BrN3O5S, the central benzene ring makes dihedral angles of 32.02 (14), 37.49 (18) and 80.52 (13)°, respectively, with the pyrazolone ring, the bromo­benzene ring and the terminal phenyl ring. This conformation features a short intramolecular C—H⋯O contact that generates an S(6) ring. In the crystal, inversion dimers linked by pairs of C—H⋯O=C hydrogen bonds occur.

Related literature

For general background to Schiff bases, see: Santos et al. (2001[Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.]). For related structures, see: Chen & Yu (2006[Chen, X. & Yu, M. (2006). Acta Cryst. E62, o4592-o4593.]); Zhang et al. (2006[Zhang, Q.-Z., Zhao, Y.-L., Chen, X. & Yu, M. (2006). Acta Cryst. E62, o5252-o5254.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C25H22BrN3O5S

  • Mr = 556.43

  • Monoclinic, P 21 /c

  • a = 11.102 (2) Å

  • b = 10.336 (2) Å

  • c = 22.160 (4) Å

  • β = 98.81 (3)°

  • V = 2512.9 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.76 mm−1

  • T = 294 K

  • 0.24 × 0.20 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.628, Tmax = 0.810

  • 12656 measured reflections

  • 4431 independent reflections

  • 2007 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.163

  • S = 1.00

  • 4431 reflections

  • 320 parameters

  • H-atom parameters constrained

  • Δρmax = 0.98 e Å−3

  • Δρmin = −0.82 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O5 0.93 2.36 3.046 (7) 130
C9—H9⋯O5i 0.93 2.45 3.238 (6) 143
Symmetry code: (i) -x+1, -y, -z.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There has been steady growth of interest in the synthesis, structure, and reactivity of Schiff bases due to their potentially biological activities such as protein and enzyme mimics (Santos et al., 2001). Among the large number of compounds, 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one forms a variety of Schiff bases with aldehydes, and the synthesis and crystal structures of some of them, such as (E)-5-(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro- 1H-pyrazol-4-yliminomethyl)-2-methoxyphenyl benzenesulfonate (Chen & Yu, 2006) and (E)-4-(2-(4-Chlorobenzyloxy)benzylideneamino) -2,3-dimethyl-1-phenyl-1,2-dihydropyrazol-5-one (Zhang et al., 2006) have been reported.

Structural information is useful when investigating the coordination properties of Schiff bases functioning as ligands. We report here the synthesis and molecular structure of the title Schiff base compound, (I), (Fig. 1)

In the title molecule (Fig. 1), bond lengths and angles are within normal ranges (Allen et al., 1987). The pyrazolone ring (C15—C17/N1—N3/O5) is almost planar, with an r.m.s. deviation for fitted atoms of 0.0331 Å. It makes a dihedral angle of 51.63 (17)° with the attached phenyl ring (C20—C25). The central benzene ring (C7—C12/C14/O3/O4) is nearly planar, with an r.m.s. deviation for fitted atoms of 0.0371 Å. This group makes dihedral angles of 32.02 (14)°, 37.49 (18)° and 80.52 (13)°, respectively, with the the pyrazolone ring (C15—C17/N1—N3/O5), the bromobenzene ring (C1—C6) and the terminal phenyl ring (C20—C25).

An intramolecular C14—H14···O5C16 hydrogen bond is found in (I) (Table 1), which helps to stabilize the conformation of the molecule. Packing is stabilised by weak, non-classical intermolecular C9—H9···O5C16 hydrogen bonds that form inversion related dimers (Table 1, Fig. 2).

Related literature top

For general background to Schiff bases, see: Santos et al. (2001). For related structures, see: Chen & Yu (2006); Zhang et al. (2006). For reference structural data, see: Allen et al. (1987).

Experimental top

An anhydrous ethanol solution (50 ml) of 5-formyl-2-methoxyphenyl 4-bromobenzenesulfonate (3.71 g, 10 mmol) was added to an anhydrous ethanol solution (50 ml) of 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one (2.03 g, 10 mmol) and the mixture stirred at 350 K for 3 h under N2, giving a yellow precipitate. The product was isolated, recrystallized from acetonitrile, and then dried in a vacuum to give pure compound (I) in 83% yield. Yellow blocks of (I) were obtained by slow evaporation of an acetonitrile solution.

Refinement top

The H atoms were included in calculated positions and refined using a riding model approximation. Constrained C—H bond lengths and isotropic U parameters: 0.93 Å and Uiso(H) = 1.2Ueq(C) for Csp2—H; 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl C—H.

Structure description top

There has been steady growth of interest in the synthesis, structure, and reactivity of Schiff bases due to their potentially biological activities such as protein and enzyme mimics (Santos et al., 2001). Among the large number of compounds, 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one forms a variety of Schiff bases with aldehydes, and the synthesis and crystal structures of some of them, such as (E)-5-(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro- 1H-pyrazol-4-yliminomethyl)-2-methoxyphenyl benzenesulfonate (Chen & Yu, 2006) and (E)-4-(2-(4-Chlorobenzyloxy)benzylideneamino) -2,3-dimethyl-1-phenyl-1,2-dihydropyrazol-5-one (Zhang et al., 2006) have been reported.

Structural information is useful when investigating the coordination properties of Schiff bases functioning as ligands. We report here the synthesis and molecular structure of the title Schiff base compound, (I), (Fig. 1)

In the title molecule (Fig. 1), bond lengths and angles are within normal ranges (Allen et al., 1987). The pyrazolone ring (C15—C17/N1—N3/O5) is almost planar, with an r.m.s. deviation for fitted atoms of 0.0331 Å. It makes a dihedral angle of 51.63 (17)° with the attached phenyl ring (C20—C25). The central benzene ring (C7—C12/C14/O3/O4) is nearly planar, with an r.m.s. deviation for fitted atoms of 0.0371 Å. This group makes dihedral angles of 32.02 (14)°, 37.49 (18)° and 80.52 (13)°, respectively, with the the pyrazolone ring (C15—C17/N1—N3/O5), the bromobenzene ring (C1—C6) and the terminal phenyl ring (C20—C25).

An intramolecular C14—H14···O5C16 hydrogen bond is found in (I) (Table 1), which helps to stabilize the conformation of the molecule. Packing is stabilised by weak, non-classical intermolecular C9—H9···O5C16 hydrogen bonds that form inversion related dimers (Table 1, Fig. 2).

For general background to Schiff bases, see: Santos et al. (2001). For related structures, see: Chen & Yu (2006); Zhang et al. (2006). For reference structural data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), with displacement ellipsoids for non-H atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for (I), with hydrogen bonds drawn as dashed lines.
(E)-5-[(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4- yl)iminomethyl]-2-methoxyphenyl 4-bromobenzenesulfonate top
Crystal data top
C25H22BrN3O5SF(000) = 1136
Mr = 556.43Dx = 1.471 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1629 reflections
a = 11.102 (2) Åθ = 2.2–19.4°
b = 10.336 (2) ŵ = 1.76 mm1
c = 22.160 (4) ÅT = 294 K
β = 98.81 (3)°Block, yellow
V = 2512.9 (8) Å30.24 × 0.20 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
4431 independent reflections
Radiation source: fine-focus sealed tube2007 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
φ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 813
Tmin = 0.628, Tmax = 0.810k = 1211
12656 measured reflectionsl = 2625
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.163 w = 1/[σ2(Fo2) + (0.0562P)2 + 2.7821P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4431 reflectionsΔρmax = 0.98 e Å3
320 parametersΔρmin = 0.82 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0027 (4)
Crystal data top
C25H22BrN3O5SV = 2512.9 (8) Å3
Mr = 556.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.102 (2) ŵ = 1.76 mm1
b = 10.336 (2) ÅT = 294 K
c = 22.160 (4) Å0.24 × 0.20 × 0.12 mm
β = 98.81 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4431 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2007 reflections with I > 2σ(I)
Tmin = 0.628, Tmax = 0.810Rint = 0.080
12656 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.00Δρmax = 0.98 e Å3
4431 reflectionsΔρmin = 0.82 e Å3
320 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.02396 (8)0.56145 (7)0.12388 (5)0.1174 (5)
S10.05698 (13)0.05809 (14)0.13190 (8)0.0487 (4)
N10.3100 (4)0.3198 (4)0.0051 (2)0.0395 (11)
N20.4162 (4)0.4909 (4)0.1195 (2)0.0452 (12)
N30.3891 (4)0.5927 (4)0.0811 (2)0.0417 (12)
O10.1268 (4)0.1008 (4)0.1771 (2)0.0718 (13)
O20.0793 (3)0.1107 (4)0.07154 (18)0.0615 (12)
O30.0813 (3)0.0930 (3)0.16212 (16)0.0422 (9)
O40.2066 (3)0.1252 (3)0.19075 (17)0.0508 (10)
O50.4261 (3)0.2660 (3)0.11424 (18)0.0584 (11)
C10.0754 (5)0.1852 (6)0.1783 (3)0.0611 (18)
H10.09270.14400.21330.073*
C20.0685 (6)0.3191 (7)0.1770 (4)0.070 (2)
H20.08240.36820.21040.084*
C30.0402 (6)0.3780 (7)0.1246 (4)0.071 (2)
C40.0228 (6)0.3070 (7)0.0741 (4)0.069 (2)
H40.00550.34830.03920.083*
C50.0314 (5)0.1730 (6)0.0759 (3)0.0566 (17)
H50.02000.12400.04200.068*
C60.0571 (5)0.1124 (5)0.1284 (3)0.0449 (15)
C70.1760 (4)0.0594 (5)0.1284 (2)0.0356 (13)
C80.2399 (4)0.0569 (5)0.1435 (2)0.0370 (13)
C90.3316 (5)0.0897 (5)0.1096 (3)0.0421 (14)
H90.37500.16630.11780.050*
C100.3579 (5)0.0081 (5)0.0636 (3)0.0449 (15)
H100.41770.03310.04080.054*
C110.2986 (4)0.1100 (5)0.0501 (2)0.0379 (13)
C120.2050 (5)0.1420 (5)0.0842 (2)0.0388 (14)
H120.16280.21950.07670.047*
C130.2697 (5)0.2459 (5)0.2063 (3)0.0636 (18)
H13A0.25860.30220.17140.095*
H13B0.23740.28630.23940.095*
H13C0.35510.22920.21840.095*
C140.3353 (5)0.1982 (5)0.0048 (3)0.0429 (14)
H140.37790.16600.02500.052*
C150.3472 (4)0.4037 (5)0.0382 (2)0.0361 (13)
C160.3973 (5)0.3721 (5)0.0931 (3)0.0403 (14)
C170.3399 (5)0.5359 (5)0.0341 (2)0.0406 (14)
C180.2903 (5)0.6155 (5)0.0127 (3)0.0573 (17)
H18A0.25460.55970.03970.086*
H18B0.22930.67360.00720.086*
H18C0.35500.66450.03570.086*
C190.3517 (6)0.7179 (5)0.1087 (3)0.0663 (19)
H19A0.28170.70630.13940.099*
H19B0.41730.75390.12690.099*
H19C0.33170.77570.07780.099*
C200.4861 (5)0.5129 (5)0.1677 (3)0.0415 (14)
C210.4518 (5)0.4494 (5)0.2229 (3)0.0518 (16)
H210.38470.39440.22800.062*
C220.5180 (6)0.4683 (6)0.2703 (3)0.0634 (19)
H220.49580.42490.30710.076*
C230.6173 (7)0.5514 (7)0.2633 (3)0.074 (2)
H230.66010.56580.29570.089*
C240.6519 (6)0.6123 (6)0.2083 (3)0.0669 (19)
H240.71960.66640.20340.080*
C250.5879 (5)0.5945 (5)0.1599 (3)0.0543 (16)
H250.61210.63620.12290.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1074 (7)0.0431 (5)0.1895 (12)0.0027 (4)0.0163 (6)0.0076 (5)
S10.0404 (9)0.0425 (8)0.0666 (12)0.0128 (7)0.0188 (8)0.0081 (8)
N10.038 (3)0.042 (3)0.040 (3)0.002 (2)0.007 (2)0.008 (2)
N20.054 (3)0.035 (3)0.053 (3)0.006 (2)0.027 (3)0.001 (2)
N30.050 (3)0.031 (3)0.046 (3)0.008 (2)0.013 (2)0.005 (2)
O10.063 (3)0.065 (3)0.099 (4)0.025 (2)0.048 (3)0.002 (3)
O20.057 (3)0.067 (3)0.060 (3)0.015 (2)0.006 (2)0.032 (2)
O30.041 (2)0.037 (2)0.052 (3)0.0062 (16)0.0158 (18)0.0046 (18)
O40.051 (2)0.047 (2)0.054 (3)0.0093 (18)0.010 (2)0.016 (2)
O50.074 (3)0.039 (2)0.068 (3)0.006 (2)0.031 (2)0.004 (2)
C10.058 (4)0.056 (4)0.073 (5)0.000 (3)0.020 (4)0.008 (4)
C20.062 (5)0.053 (5)0.093 (6)0.006 (3)0.005 (4)0.027 (4)
C30.049 (4)0.049 (4)0.107 (7)0.000 (3)0.012 (4)0.004 (5)
C40.060 (5)0.061 (5)0.081 (6)0.007 (3)0.007 (4)0.021 (4)
C50.046 (4)0.064 (5)0.055 (5)0.001 (3)0.008 (3)0.001 (4)
C60.039 (3)0.038 (3)0.057 (4)0.001 (3)0.006 (3)0.007 (3)
C70.039 (3)0.029 (3)0.039 (3)0.006 (2)0.005 (3)0.001 (3)
C80.036 (3)0.031 (3)0.043 (4)0.001 (2)0.003 (3)0.005 (3)
C90.039 (3)0.029 (3)0.057 (4)0.009 (2)0.003 (3)0.004 (3)
C100.041 (3)0.042 (3)0.056 (4)0.007 (3)0.019 (3)0.001 (3)
C110.034 (3)0.037 (3)0.044 (4)0.001 (2)0.009 (3)0.001 (3)
C120.040 (3)0.028 (3)0.047 (4)0.003 (2)0.004 (3)0.000 (3)
C130.069 (4)0.045 (4)0.076 (5)0.014 (3)0.009 (3)0.020 (4)
C140.040 (4)0.044 (3)0.048 (4)0.003 (3)0.017 (3)0.002 (3)
C150.030 (3)0.035 (3)0.044 (4)0.005 (2)0.007 (3)0.001 (3)
C160.039 (3)0.034 (3)0.049 (4)0.002 (3)0.010 (3)0.003 (3)
C170.041 (3)0.040 (3)0.040 (4)0.004 (3)0.003 (3)0.001 (3)
C180.066 (4)0.048 (4)0.061 (4)0.008 (3)0.016 (3)0.001 (3)
C190.085 (5)0.041 (4)0.078 (5)0.018 (3)0.029 (4)0.016 (3)
C200.043 (4)0.042 (3)0.040 (4)0.008 (3)0.009 (3)0.007 (3)
C210.052 (4)0.056 (4)0.048 (4)0.011 (3)0.009 (3)0.004 (3)
C220.074 (5)0.077 (5)0.040 (4)0.028 (4)0.010 (4)0.004 (4)
C230.082 (5)0.089 (5)0.061 (5)0.024 (5)0.040 (4)0.031 (5)
C240.060 (4)0.074 (5)0.071 (5)0.003 (3)0.023 (4)0.012 (4)
C250.057 (4)0.054 (4)0.054 (4)0.003 (3)0.016 (3)0.004 (3)
Geometric parameters (Å, º) top
Br1—C31.905 (7)C9—H90.9300
S1—O11.427 (4)C10—C111.398 (7)
S1—O21.430 (4)C10—H100.9300
S1—O31.619 (4)C11—C121.415 (7)
S1—C61.764 (6)C11—C141.461 (7)
N1—C141.287 (6)C12—H120.9300
N1—C151.403 (6)C13—H13A0.9600
N2—C161.390 (6)C13—H13B0.9600
N2—N31.414 (6)C13—H13C0.9600
N2—C201.433 (7)C14—H140.9300
N3—C171.378 (6)C15—C171.373 (7)
N3—C191.464 (6)C15—C161.449 (7)
O3—C71.423 (6)C17—C181.495 (7)
O4—C81.359 (6)C18—H18A0.9600
O4—C131.446 (6)C18—H18B0.9600
O5—C161.253 (6)C18—H18C0.9600
C1—C61.378 (8)C19—H19A0.9600
C1—C21.386 (8)C19—H19B0.9600
C1—H10.9300C19—H19C0.9600
C2—C31.389 (9)C20—C211.388 (7)
C2—H20.9300C20—C251.399 (7)
C3—C41.375 (9)C21—C221.386 (8)
C4—C51.389 (8)C21—H210.9300
C4—H40.9300C22—C231.387 (9)
C5—C61.388 (8)C22—H220.9300
C5—H50.9300C23—C241.374 (9)
C7—C121.374 (7)C23—H230.9300
C7—C81.410 (6)C24—C251.386 (8)
C8—C91.397 (7)C24—H240.9300
C9—C101.388 (7)C25—H250.9300
O1—S1—O2120.2 (3)C11—C12—H12119.8
O1—S1—O3102.9 (2)O4—C13—H13A109.5
O2—S1—O3108.7 (2)O4—C13—H13B109.5
O1—S1—C6110.1 (3)H13A—C13—H13B109.5
O2—S1—C6109.9 (3)O4—C13—H13C109.5
O3—S1—C6103.6 (2)H13A—C13—H13C109.5
C14—N1—C15120.8 (5)H13B—C13—H13C109.5
C16—N2—N3110.2 (4)N1—C14—C11121.4 (5)
C16—N2—C20126.0 (4)N1—C14—H14119.3
N3—N2—C20121.4 (4)C11—C14—H14119.3
C17—N3—N2106.4 (4)C17—C15—N1122.9 (5)
C17—N3—C19124.9 (4)C17—C15—C16108.3 (5)
N2—N3—C19118.6 (4)N1—C15—C16128.7 (4)
C7—O3—S1117.3 (3)O5—C16—N2123.5 (5)
C8—O4—C13116.9 (4)O5—C16—C15131.6 (5)
C6—C1—C2120.9 (7)N2—C16—C15104.8 (4)
C6—C1—H1119.6C15—C17—N3109.9 (5)
C2—C1—H1119.6C15—C17—C18128.7 (5)
C1—C2—C3118.4 (7)N3—C17—C18121.4 (5)
C1—C2—H2120.8C17—C18—H18A109.5
C3—C2—H2120.8C17—C18—H18B109.5
C4—C3—C2121.5 (7)H18A—C18—H18B109.5
C4—C3—Br1119.9 (6)C17—C18—H18C109.5
C2—C3—Br1118.5 (6)H18A—C18—H18C109.5
C3—C4—C5119.3 (7)H18B—C18—H18C109.5
C3—C4—H4120.3N3—C19—H19A109.5
C5—C4—H4120.3N3—C19—H19B109.5
C6—C5—C4119.8 (6)H19A—C19—H19B109.5
C6—C5—H5120.1N3—C19—H19C109.5
C4—C5—H5120.1H19A—C19—H19C109.5
C1—C6—C5120.0 (6)H19B—C19—H19C109.5
C1—C6—S1120.6 (5)C21—C20—C25120.1 (5)
C5—C6—S1119.3 (5)C21—C20—N2118.4 (5)
C12—C7—C8122.4 (5)C25—C20—N2121.5 (5)
C12—C7—O3119.6 (4)C22—C21—C20119.7 (6)
C8—C7—O3117.9 (4)C22—C21—H21120.2
O4—C8—C9126.5 (5)C20—C21—H21120.2
O4—C8—C7116.1 (5)C21—C22—C23120.5 (6)
C9—C8—C7117.4 (5)C21—C22—H22119.7
C10—C9—C8120.0 (5)C23—C22—H22119.7
C10—C9—H9120.0C24—C23—C22119.4 (6)
C8—C9—H9120.0C24—C23—H23120.3
C9—C10—C11122.9 (5)C22—C23—H23120.3
C9—C10—H10118.6C23—C24—C25121.3 (6)
C11—C10—H10118.6C23—C24—H24119.4
C10—C11—C12116.8 (5)C25—C24—H24119.4
C10—C11—C14121.4 (5)C24—C25—C20119.0 (6)
C12—C11—C14121.8 (5)C24—C25—H25120.5
C7—C12—C11120.4 (5)C20—C25—H25120.5
C7—C12—H12119.8
C16—N2—N3—C176.8 (5)O3—C7—C12—C11179.8 (4)
C20—N2—N3—C17170.1 (5)C10—C11—C12—C70.3 (7)
C16—N2—N3—C19154.0 (5)C14—C11—C12—C7177.2 (5)
C20—N2—N3—C1942.7 (7)C15—N1—C14—C11179.2 (4)
O1—S1—O3—C7178.7 (3)C10—C11—C14—N1158.1 (5)
O2—S1—O3—C752.8 (4)C12—C11—C14—N119.3 (8)
C6—S1—O3—C764.0 (4)C14—N1—C15—C17169.3 (5)
C6—C1—C2—C31.2 (10)C14—N1—C15—C1611.0 (8)
C1—C2—C3—C41.9 (10)N3—N2—C16—O5172.4 (5)
C1—C2—C3—Br1177.4 (5)C20—N2—C16—O510.1 (9)
C2—C3—C4—C51.2 (10)N3—N2—C16—C154.5 (5)
Br1—C3—C4—C5178.1 (4)C20—N2—C16—C15166.9 (5)
C3—C4—C5—C60.2 (9)C17—C15—C16—O5175.9 (6)
C2—C1—C6—C50.1 (9)N1—C15—C16—O54.3 (9)
C2—C1—C6—S1176.2 (5)C17—C15—C16—N20.6 (6)
C4—C5—C6—C10.8 (8)N1—C15—C16—N2179.1 (5)
C4—C5—C6—S1175.5 (4)N1—C15—C17—N3176.6 (4)
O1—S1—C6—C125.1 (6)C16—C15—C17—N33.6 (6)
O2—S1—C6—C1159.7 (4)N1—C15—C17—C182.3 (9)
O3—S1—C6—C184.3 (5)C16—C15—C17—C18177.5 (5)
O1—S1—C6—C5158.6 (4)N2—N3—C17—C156.3 (6)
O2—S1—C6—C524.0 (5)C19—N3—C17—C15150.8 (5)
O3—S1—C6—C591.9 (5)N2—N3—C17—C18174.7 (5)
S1—O3—C7—C1284.6 (5)C19—N3—C17—C1830.1 (8)
S1—O3—C7—C897.6 (5)C16—N2—C20—C2159.0 (7)
C13—O4—C8—C92.1 (7)N3—N2—C20—C21140.4 (5)
C13—O4—C8—C7179.0 (4)C16—N2—C20—C25120.0 (6)
C12—C7—C8—O4175.9 (5)N3—N2—C20—C2540.6 (7)
O3—C7—C8—O41.8 (7)C25—C20—C21—C220.7 (8)
C12—C7—C8—C93.1 (7)N2—C20—C21—C22179.7 (5)
O3—C7—C8—C9179.2 (4)C20—C21—C22—C230.8 (9)
O4—C8—C9—C10178.0 (5)C21—C22—C23—C241.9 (9)
C7—C8—C9—C100.9 (7)C22—C23—C24—C251.5 (10)
C8—C9—C10—C111.9 (8)C23—C24—C25—C200.0 (9)
C9—C10—C11—C122.5 (8)C21—C20—C25—C241.1 (8)
C9—C10—C11—C14175.0 (5)N2—C20—C25—C24179.9 (5)
C8—C7—C12—C112.5 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O50.932.363.046 (7)130
C9—H9···O5i0.932.453.238 (6)143
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC25H22BrN3O5S
Mr556.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)11.102 (2), 10.336 (2), 22.160 (4)
β (°) 98.81 (3)
V3)2512.9 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.76
Crystal size (mm)0.24 × 0.20 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.628, 0.810
No. of measured, independent and
observed [I > 2σ(I)] reflections
12656, 4431, 2007
Rint0.080
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.163, 1.00
No. of reflections4431
No. of parameters320
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.98, 0.82

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O50.932.363.046 (7)130
C9—H9···O5i0.932.453.238 (6)143
Symmetry code: (i) x+1, y, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X. & Yu, M. (2006). Acta Cryst. E62, o4592–o4593.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSantos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Q.-Z., Zhao, Y.-L., Chen, X. & Yu, M. (2006). Acta Cryst. E62, o5252–o5254.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds