organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl 4-(4-cyano­phen­yl)-2,6-di­methyl-1,4-di­hydro­pyridine-3,5-di­carboxyl­ate

aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: zhuwq@sdu.edu.cn

(Received 13 May 2010; accepted 17 May 2010; online 22 May 2010)

In the title compound, C20H22N2O4, the dihedral angle between the roughly planar dihydro­pyridine ring (r.m.s. deviation = 0.092 Å) and the benzene ring is 87.09 (6)°. One of the eth­oxy side chains is disordered over two orientations in a 0.669 (14):0.331 (14) ratio. In the crystal, mol­ecules are linked by N—H⋯N hydrogen bonds, generating chains.

Related literature

For general background to dihydro­pyridine derivatives, see: Gaudio et al. (1994[Gaudio, A. C., Korolkovas, A. & Takahata, Y. (1994). J. Pharm. Sci. A, 83, 1110-1115.]).

[Scheme 1]

Experimental

Crystal data
  • C20H22N2O4

  • Mr = 354.40

  • Monoclinic, P 21 /n

  • a = 10.4596 (13) Å

  • b = 9.5117 (12) Å

  • c = 19.160 (2) Å

  • β = 91.493 (1)°

  • V = 1905.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.990, Tmax = 0.993

  • 10000 measured reflections

  • 3298 independent reflections

  • 2408 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.162

  • S = 1.02

  • 3298 reflections

  • 249 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1i 0.86 2.32 3.098 (3) 150
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The synthesis of 1,4-dihydropyridine derivatives has attracted continuous research interest due to various vasodilator, anti-hypertensive, bronchodilator, heptaprotective, anti-tumor, anti-mutagenic, geroprotective and anti-diabetic agents (Gaudio et al., 1994). Here, we describe the recystallization and structural characterization of the title compound.

The molecular structure is shown in Fig 1. The dihedral angle between the two rings is 87.09 (6) °. The mean devation of the dihydropyridine plane is 0.0824 Å. The intermolecular hydrogen bonding of N2—H2···N1 leads to a consolidation of the structure (Fig. 2; Table 1).

Related literature top

For general background to dihydropyridine derivatives, see: Gaudio et al. (1994).

Experimental top

Diethyl 2,6-dimethyl-4-(4-cyanophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (1 mmol 0.39 g) was dissolved in 20 ml ethanol was evaporated in one open flask at room temperature. One week later, yellow blocks of (I) were obained. Anal. C20H22N2O4: C, 67.72; H, 5.64; N, 7.90 %. Found: C, 67.56; H, 5.46; N, 7.61 %.

Refinement top

All hydrogen atoms bound to aromatic carbon atoms were refined in calculated positions using a riding model with a C—H distance of 0.93 Å and Uiso = 1.2Ueq(C). Hydrogen atoms attached to aromatic N atoms were refined with a N—H distance of 0.86 Å and Uiso = 1.2Ueq(N).

Structure description top

The synthesis of 1,4-dihydropyridine derivatives has attracted continuous research interest due to various vasodilator, anti-hypertensive, bronchodilator, heptaprotective, anti-tumor, anti-mutagenic, geroprotective and anti-diabetic agents (Gaudio et al., 1994). Here, we describe the recystallization and structural characterization of the title compound.

The molecular structure is shown in Fig 1. The dihedral angle between the two rings is 87.09 (6) °. The mean devation of the dihydropyridine plane is 0.0824 Å. The intermolecular hydrogen bonding of N2—H2···N1 leads to a consolidation of the structure (Fig. 2; Table 1).

For general background to dihydropyridine derivatives, see: Gaudio et al. (1994).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of (I), displayed with N—H···N hydrogen bonds as dashed lines.
Diethyl 4-(4-cyanophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate top
Crystal data top
C20H22N2O4F(000) = 752
Mr = 354.40Dx = 1.235 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3532 reflections
a = 10.4596 (13) Åθ = 2.4–25.9°
b = 9.5117 (12) ŵ = 0.09 mm1
c = 19.160 (2) ÅT = 296 K
β = 91.493 (1)°Block, colorless
V = 1905.6 (4) Å30.12 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3298 independent reflections
Radiation source: fine-focus sealed tube2408 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
phi and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1210
Tmin = 0.990, Tmax = 0.993k = 911
10000 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.162 w = 1/[σ2(Fo2) + (0.0857P)2 + 0.6251P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3298 reflectionsΔρmax = 0.31 e Å3
249 parametersΔρmin = 0.28 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.012 (2)
Crystal data top
C20H22N2O4V = 1905.6 (4) Å3
Mr = 354.40Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.4596 (13) ŵ = 0.09 mm1
b = 9.5117 (12) ÅT = 296 K
c = 19.160 (2) Å0.12 × 0.10 × 0.08 mm
β = 91.493 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3298 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2408 reflections with I > 2σ(I)
Tmin = 0.990, Tmax = 0.993Rint = 0.020
10000 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0512 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.02Δρmax = 0.31 e Å3
3298 reflectionsΔρmin = 0.28 e Å3
249 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5366 (2)0.1062 (3)0.32734 (12)0.0574 (6)
C20.4507 (2)0.0690 (2)0.27004 (10)0.0483 (5)
C30.3890 (2)0.0596 (3)0.26959 (12)0.0607 (6)
H30.40240.12220.30630.073*
C40.3078 (2)0.0948 (2)0.21466 (12)0.0573 (6)
H40.26700.18170.21450.069*
C50.28599 (19)0.0030 (2)0.15987 (10)0.0419 (5)
C60.3497 (2)0.1239 (2)0.16056 (12)0.0535 (6)
H60.33780.18540.12330.064*
C70.4306 (2)0.1614 (2)0.21529 (12)0.0552 (6)
H70.47130.24830.21540.066*
C80.19219 (19)0.0393 (2)0.09975 (11)0.0444 (5)
H80.15330.13050.10980.053*
C90.2616 (2)0.0512 (2)0.03111 (12)0.0507 (6)
C100.2559 (2)0.0529 (3)0.01647 (11)0.0528 (6)
C110.08375 (19)0.1693 (2)0.04492 (10)0.0445 (5)
C120.08624 (18)0.0706 (2)0.09551 (10)0.0425 (5)
C130.0033 (2)0.0607 (2)0.15302 (12)0.0490 (5)
C140.1644 (3)0.1750 (3)0.21848 (15)0.0738 (8)
H14A0.11520.17500.26210.089*
H14B0.21900.09250.21750.089*
C150.2415 (3)0.3012 (3)0.2130 (2)0.0980 (11)
H15A0.18710.38230.21680.147*
H15B0.30190.30250.24980.147*
H15C0.28640.30240.16870.147*
C160.0089 (2)0.2888 (3)0.03443 (13)0.0586 (6)
H16A0.08830.26590.05570.088*
H16B0.02350.30450.01460.088*
H16C0.02610.37240.05550.088*
C170.3287 (3)0.0650 (4)0.08253 (13)0.0756 (8)
H17A0.40010.12720.07520.113*
H17B0.27350.10170.11900.113*
H17C0.35920.02610.09580.113*
C180.3377 (2)0.1776 (3)0.01887 (15)0.0676 (7)
C190.3950 (6)0.3990 (5)0.0605 (3)0.158 (2)
H19A0.35150.45560.02510.190*0.669 (14)
H19B0.47930.37650.04370.190*0.669 (14)
H19C0.44730.39090.01960.190*0.331 (14)
H19D0.45140.41470.10070.190*0.331 (14)
C20A0.4079 (13)0.4759 (9)0.1207 (5)0.185 (6)0.669 (14)
H20A0.45490.56030.11160.278*0.669 (14)
H20B0.32480.49990.13710.278*0.669 (14)
H20C0.45300.42130.15560.278*0.669 (14)
C20B0.3114 (12)0.5133 (12)0.0522 (12)0.141 (9)0.331 (14)
H20D0.36000.59800.04670.212*0.331 (14)
H20E0.25730.49880.01160.212*0.331 (14)
H20F0.25980.52130.09270.212*0.331 (14)
N10.6066 (2)0.1329 (3)0.37179 (12)0.0765 (7)
N20.17490 (18)0.1647 (2)0.00618 (9)0.0534 (5)
H20.18130.23630.03330.064*
O10.4059 (2)0.2026 (3)0.02939 (13)0.1062 (8)
O20.3246 (2)0.2705 (2)0.06982 (13)0.0967 (7)
O30.07949 (16)0.17231 (17)0.16008 (9)0.0641 (5)
O40.00600 (19)0.0369 (2)0.19268 (11)0.0824 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0631 (14)0.0625 (15)0.0467 (13)0.0055 (12)0.0004 (11)0.0063 (11)
C20.0482 (12)0.0555 (13)0.0413 (11)0.0057 (10)0.0013 (9)0.0061 (9)
C30.0722 (15)0.0591 (15)0.0503 (13)0.0007 (12)0.0094 (12)0.0147 (11)
C40.0642 (14)0.0456 (13)0.0617 (14)0.0084 (11)0.0080 (11)0.0095 (10)
C50.0410 (10)0.0396 (11)0.0452 (11)0.0051 (9)0.0025 (8)0.0017 (8)
C60.0648 (14)0.0462 (13)0.0489 (12)0.0052 (11)0.0103 (11)0.0075 (10)
C70.0603 (13)0.0466 (12)0.0582 (13)0.0064 (11)0.0068 (11)0.0006 (10)
C80.0446 (11)0.0371 (11)0.0513 (12)0.0006 (9)0.0025 (9)0.0032 (9)
C90.0453 (12)0.0539 (13)0.0525 (12)0.0024 (10)0.0052 (10)0.0144 (10)
C100.0461 (12)0.0658 (15)0.0464 (12)0.0015 (11)0.0022 (9)0.0127 (11)
C110.0433 (11)0.0461 (12)0.0436 (11)0.0011 (9)0.0056 (9)0.0029 (9)
C120.0398 (11)0.0418 (11)0.0456 (11)0.0011 (9)0.0029 (9)0.0042 (9)
C130.0465 (12)0.0448 (12)0.0557 (12)0.0004 (10)0.0026 (10)0.0015 (10)
C140.0735 (17)0.0753 (18)0.0740 (17)0.0031 (14)0.0293 (14)0.0027 (14)
C150.088 (2)0.074 (2)0.135 (3)0.0022 (16)0.058 (2)0.0069 (19)
C160.0624 (14)0.0569 (14)0.0562 (13)0.0106 (11)0.0044 (11)0.0070 (11)
C170.0687 (16)0.106 (2)0.0526 (14)0.0028 (15)0.0107 (12)0.0091 (14)
C180.0628 (15)0.0681 (17)0.0715 (17)0.0159 (13)0.0080 (13)0.0218 (14)
C190.203 (5)0.090 (3)0.183 (5)0.084 (4)0.027 (4)0.008 (3)
C20A0.279 (14)0.093 (5)0.186 (9)0.083 (7)0.039 (9)0.046 (6)
C20B0.128 (12)0.070 (9)0.23 (2)0.017 (7)0.035 (12)0.030 (10)
N10.0915 (16)0.0847 (16)0.0522 (12)0.0014 (13)0.0187 (12)0.0122 (11)
N20.0585 (11)0.0569 (11)0.0450 (10)0.0036 (9)0.0028 (8)0.0062 (8)
O10.1042 (16)0.1076 (18)0.1084 (17)0.0390 (14)0.0303 (14)0.0284 (14)
O20.1248 (18)0.0670 (13)0.0989 (16)0.0474 (13)0.0125 (13)0.0023 (12)
O30.0684 (10)0.0557 (10)0.0694 (11)0.0101 (8)0.0264 (9)0.0053 (8)
O40.0811 (13)0.0715 (12)0.0963 (14)0.0160 (10)0.0341 (11)0.0318 (11)
Geometric parameters (Å, º) top
C1—N11.137 (3)C14—H14A0.9700
C1—C21.444 (3)C14—H14B0.9700
C2—C71.380 (3)C15—H15A0.9600
C2—C31.383 (3)C15—H15B0.9600
C3—C41.377 (3)C15—H15C0.9600
C3—H30.9300C16—H16A0.9600
C4—C51.380 (3)C16—H16B0.9600
C4—H40.9300C16—H16C0.9600
C5—C61.378 (3)C17—H17A0.9600
C5—C81.533 (3)C17—H17B0.9600
C6—C71.377 (3)C17—H17C0.9600
C6—H60.9300C18—O11.206 (3)
C7—H70.9300C18—O21.326 (4)
C8—C91.523 (3)C19—C20A1.370 (8)
C8—C121.524 (3)C19—C20B1.401 (9)
C8—H80.9800C19—O21.440 (4)
C9—C101.346 (3)C19—H19A0.9700
C9—C181.464 (3)C19—H19B0.9700
C10—N21.377 (3)C19—H19C0.9700
C10—C171.499 (3)C19—H19D0.9700
C11—C121.349 (3)C20A—H20A0.9600
C11—N21.385 (3)C20A—H20B0.9600
C11—C161.504 (3)C20A—H20C0.9600
C12—C131.467 (3)C20B—H20D0.9600
C13—O41.201 (3)C20B—H20E0.9600
C13—O31.336 (3)C20B—H20F0.9600
C14—O31.447 (3)N2—H20.8600
C14—C151.448 (4)
N1—C1—C2178.1 (3)H15B—C15—H15C109.5
C7—C2—C3119.8 (2)C11—C16—H16A109.5
C7—C2—C1120.1 (2)C11—C16—H16B109.5
C3—C2—C1120.1 (2)H16A—C16—H16B109.5
C4—C3—C2119.9 (2)C11—C16—H16C109.5
C4—C3—H3120.0H16A—C16—H16C109.5
C2—C3—H3120.0H16B—C16—H16C109.5
C3—C4—C5120.9 (2)C10—C17—H17A109.5
C3—C4—H4119.5C10—C17—H17B109.5
C5—C4—H4119.5H17A—C17—H17B109.5
C6—C5—C4118.5 (2)C10—C17—H17C109.5
C6—C5—C8120.27 (18)H17A—C17—H17C109.5
C4—C5—C8121.25 (19)H17B—C17—H17C109.5
C7—C6—C5121.4 (2)O1—C18—O2120.5 (3)
C7—C6—H6119.3O1—C18—C9128.2 (3)
C5—C6—H6119.3O2—C18—C9111.2 (2)
C6—C7—C2119.5 (2)C20A—C19—C20B74.2 (9)
C6—C7—H7120.3C20A—C19—O2112.8 (5)
C2—C7—H7120.3C20B—C19—O2110.7 (7)
C9—C8—C12111.57 (17)C20A—C19—H19A109.0
C9—C8—C5110.82 (16)O2—C19—H19A109.0
C12—C8—C5109.63 (16)C20A—C19—H19B109.0
C9—C8—H8108.2C20B—C19—H19B134.7
C12—C8—H8108.2O2—C19—H19B109.0
C5—C8—H8108.2H19A—C19—H19B107.8
C10—C9—C18120.7 (2)C20A—C19—H19C132.7
C10—C9—C8121.06 (19)C20B—C19—H19C109.5
C18—C9—C8118.2 (2)O2—C19—H19C109.5
C9—C10—N2119.2 (2)H19A—C19—H19C75.2
C9—C10—C17127.9 (2)C20B—C19—H19D109.5
N2—C10—C17112.9 (2)O2—C19—H19D109.5
C12—C11—N2119.03 (18)H19A—C19—H19D137.2
C12—C11—C16128.49 (19)H19B—C19—H19D76.0
N2—C11—C16112.47 (18)H19C—C19—H19D108.1
C11—C12—C13125.70 (19)C19—C20A—H20A109.5
C11—C12—C8121.06 (18)C19—C20A—H20B109.5
C13—C12—C8113.16 (18)H20A—C20A—H20B109.5
O4—C13—O3121.7 (2)C19—C20A—H20C109.5
O4—C13—C12123.4 (2)H20A—C20A—H20C109.5
O3—C13—C12114.78 (19)H20B—C20A—H20C109.5
O3—C14—C15108.1 (2)C19—C20B—H20D109.5
O3—C14—H14A110.1C19—C20B—H20E109.5
C15—C14—H14A110.1H20D—C20B—H20E109.5
O3—C14—H14B110.1C19—C20B—H20F109.5
C15—C14—H14B110.1H20D—C20B—H20F109.5
H14A—C14—H14B108.4H20E—C20B—H20F109.5
C14—C15—H15A109.5C10—N2—C11124.26 (19)
C14—C15—H15B109.5C10—N2—H2117.9
H15A—C15—H15B109.5C11—N2—H2117.9
C14—C15—H15C109.5C18—O2—C19114.2 (3)
H15A—C15—H15C109.5C13—O3—C14118.16 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.862.323.098 (3)150
Symmetry code: (i) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC20H22N2O4
Mr354.40
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)10.4596 (13), 9.5117 (12), 19.160 (2)
β (°) 91.493 (1)
V3)1905.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.990, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
10000, 3298, 2408
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.162, 1.02
No. of reflections3298
No. of parameters249
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.28

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.862.323.098 (3)150
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

References

First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGaudio, A. C., Korolkovas, A. & Takahata, Y. (1994). J. Pharm. Sci. A, 83, 1110–1115.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds