metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(Z)-O-Ethyl N-(4-chloro­phen­yl)thio­carbamato-κS](tri­phenyl­phosphine-κP)gold(I) di­chloro­methane hemisolvate

aDepartment of Chemistry, National University of Singapore, Singapore 117543, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 14 May 2010; accepted 17 May 2010; online 22 May 2010)

The AuI atom in the title compound, [Au(C9H9ClNOS)(C18H15P)]·0.5CH2Cl2, exists within a slightly distorted linear geometry defined by an S,P donor set [S—Au—P angle = 178.01 (4)°]; a close intra­molecular Au⋯O contact [2.964 (4) Å] also occurs. In the crystal structure, mol­ecules are linked into supra­molecular chains propagating along [010] by C—H⋯N, C—H⋯S and C—H⋯π inter­actions. The solvent mol­ecule is disordered about a twofold rotation axis.

Related literature

For the structural systematics and luminescence properties of phosphinegold(I) carbonimidothio­ates, see: Ho et al. (2006[Ho, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165-8174.]); Ho & Tiekink (2007[Ho, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368-378.]); Kuan et al. (2008[Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548-564.]). For the synthesis, see: Hall et al. (1993[Hall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561-570.]).

[Scheme 1]

Experimental

Crystal data
  • [Au(C9H9ClNOS)(C18H15P)]·0.5CH2Cl2

  • Mr = 716.40

  • Monoclinic, C 2/c

  • a = 30.5163 (16) Å

  • b = 8.5881 (5) Å

  • c = 21.0518 (12) Å

  • β = 101.054 (1)°

  • V = 5414.8 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.79 mm−1

  • T = 223 K

  • 0.15 × 0.15 × 0.13 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.672, Tmax = 1

  • 18509 measured reflections

  • 6214 independent reflections

  • 5381 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.092

  • S = 1.10

  • 6214 reflections

  • 306 parameters

  • H-atom parameters constrained

  • Δρmax = 1.73 e Å−3

  • Δρmin = −1.87 e Å−3

Table 1
Selected bond lengths (Å)

Au—P1 2.2578 (11)
Au—S1 2.3064 (11)

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C22–C27 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21⋯N1i 0.94 2.55 3.310 (6) 138
C26—H26⋯S1ii 0.94 2.86 3.738 (6) 156
C7—H7⋯Cg1i 0.94 2.96 3.784 (5) 147
Symmetry codes: (i) -x, -y, -z+1; (ii) x, y-1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992[Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

The structure of the title compound, (I), was investigated in the context of a study of molecules with the general formula R3PAu[SC(OR')NR''], for R, R' and R'' = alkyl and aryl, of interest in terms of crystal engineering endeavours (Ho et al., 2006; Ho & Tiekink, 2007; Kuan et al., 2008).

The nearly linear SP coordination geometry observed for the Au atom in (I), Fig. 1, is defined by phosphine and thiolate ligands, Table 1. The small deviation from the ideal linearity [S—Au—P = 178.01 (4) °] is related to a short intramolecular Au···O contact [2.964 (4) Å].

The major feature of the crystal packing is the presence of C–H···N (leading to centrosymmetric dimers), C–H···S and C–H···π interactions that lead to the formation of supramolecular chains along the b axis, Fig. 2 and Table 2. Chains are arranged to form channels in which reside the (disordered) CH2Cl2 molecules, Fig. 3.

Related literature top

For the structural systematics and luminescence properties of phosphinegold(I) carbonimidothioates, see: Ho et al. (2006); Ho & Tiekink (2007); Kuan et al. (2008). For the synthesis, see Hall et al. (1993).

Experimental top

Compound (I) was prepared following the standard literature procedure from the reaction of Ph3AuCl and EtOC(S)N(H)(C6H4Cl-4) in the presence of NaOH (Hall et al., 1993). Yellow blocks of (I) were obtained by the slow evaporation of a CH2Cl2/hexane (3/1) solution held at room temperature.

Refinement top

The H atoms were geometrically placed (C—H = 0.94–0.98 Å) and refined as riding with Uiso(H) = 1.2-1.5Ueq(C). The maximum and minimum residual electron density peaks of 1.73 and 1.87 e Å-3, respectively, were located 0.68 Å and 0.52 Å from the Cl2 atom. The solvent CH2Cl2 molecule (modelled isotropically) was disordered about a 2-fold axis of symmetry with the C and one Cl atom lying on the axis.

Structure description top

The structure of the title compound, (I), was investigated in the context of a study of molecules with the general formula R3PAu[SC(OR')NR''], for R, R' and R'' = alkyl and aryl, of interest in terms of crystal engineering endeavours (Ho et al., 2006; Ho & Tiekink, 2007; Kuan et al., 2008).

The nearly linear SP coordination geometry observed for the Au atom in (I), Fig. 1, is defined by phosphine and thiolate ligands, Table 1. The small deviation from the ideal linearity [S—Au—P = 178.01 (4) °] is related to a short intramolecular Au···O contact [2.964 (4) Å].

The major feature of the crystal packing is the presence of C–H···N (leading to centrosymmetric dimers), C–H···S and C–H···π interactions that lead to the formation of supramolecular chains along the b axis, Fig. 2 and Table 2. Chains are arranged to form channels in which reside the (disordered) CH2Cl2 molecules, Fig. 3.

For the structural systematics and luminescence properties of phosphinegold(I) carbonimidothioates, see: Ho et al. (2006); Ho & Tiekink (2007); Kuan et al. (2008). For the synthesis, see Hall et al. (1993).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing displacement ellipsoids at the 50% probability level. The solvent CH2Cl2 molecule of crystallisation is omitted.
[Figure 2] Fig. 2. A view of the supramolecular chain in (I), aligned along the b axis, mediated by C–H···N (blue), C–H···S (orange), and C–H···π contacts (purple) shown as dashed lines.
[Figure 3] Fig. 3. A view in projection down the b axis of the crystal packing in (I), highlighting the channels in which reside the (disordered) CH2Cl2 molecules (shown in space filling mode).
[(Z)-O-Ethyl N-(4-chlorophenyl)thiocarbamato- κS](triphenylphosphine-κP)gold(I) dichloromethane hemisolvate top
Crystal data top
[Au(C9H9ClNOS)(C18H15P)]·0.5CH2Cl2F(000) = 2792
Mr = 716.40Dx = 1.758 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 6681 reflections
a = 30.5163 (16) Åθ = 2.5–29.1°
b = 8.5881 (5) ŵ = 5.79 mm1
c = 21.0518 (12) ÅT = 223 K
β = 101.054 (1)°Block, yellow
V = 5414.8 (5) Å30.15 × 0.15 × 0.13 mm
Z = 8
Data collection top
Bruker SMART CCD
diffractometer
6214 independent reflections
Radiation source: fine-focus sealed tube5381 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 27.5°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 3938
Tmin = 0.672, Tmax = 1k = 611
18509 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.05P)2 + 9.3001P]
where P = (Fo2 + 2Fc2)/3
6214 reflections(Δ/σ)max = 0.001
306 parametersΔρmax = 1.73 e Å3
0 restraintsΔρmin = 1.87 e Å3
Crystal data top
[Au(C9H9ClNOS)(C18H15P)]·0.5CH2Cl2V = 5414.8 (5) Å3
Mr = 716.40Z = 8
Monoclinic, C2/cMo Kα radiation
a = 30.5163 (16) ŵ = 5.79 mm1
b = 8.5881 (5) ÅT = 223 K
c = 21.0518 (12) Å0.15 × 0.15 × 0.13 mm
β = 101.054 (1)°
Data collection top
Bruker SMART CCD
diffractometer
6214 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
5381 reflections with I > 2σ(I)
Tmin = 0.672, Tmax = 1Rint = 0.031
18509 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.10Δρmax = 1.73 e Å3
6214 reflectionsΔρmin = 1.87 e Å3
306 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Au0.082143 (5)0.03531 (2)0.391240 (8)0.02794 (7)
Cl10.15255 (7)0.6401 (2)0.23755 (9)0.0849 (7)
S10.01688 (4)0.16692 (14)0.35074 (6)0.0351 (3)
P10.14730 (3)0.08554 (13)0.43121 (5)0.0251 (2)
O10.00607 (11)0.0698 (4)0.41402 (17)0.0367 (8)
N10.06288 (12)0.1010 (5)0.38198 (19)0.0344 (9)
C10.02287 (15)0.0627 (5)0.3836 (2)0.0301 (9)
C20.08159 (14)0.2323 (6)0.3475 (2)0.0317 (9)
C30.08667 (17)0.2412 (7)0.2804 (2)0.0416 (11)
H30.07540.16120.25770.050*
C40.10818 (18)0.3672 (7)0.2469 (2)0.0460 (13)
H40.11140.37270.20170.055*
C50.1248 (2)0.4838 (7)0.2801 (3)0.0486 (14)
C60.1206 (2)0.4782 (7)0.3461 (3)0.0513 (15)
H60.13210.55860.36840.062*
C70.09900 (18)0.3514 (7)0.3793 (2)0.0436 (12)
H70.09620.34650.42450.052*
C80.03693 (17)0.1648 (6)0.4414 (3)0.0438 (12)
H8A0.06390.18600.40900.053*
H8B0.04560.11170.47830.053*
C90.0126 (2)0.3152 (7)0.4631 (3)0.0581 (16)
H9A0.03200.38310.48210.087*
H9B0.01410.29220.49510.087*
H9C0.00420.36630.42620.087*
C100.18807 (15)0.0764 (6)0.3788 (2)0.0291 (9)
C110.22367 (16)0.1789 (7)0.3848 (2)0.0387 (11)
H110.22620.26020.41520.046*
C120.25552 (17)0.1628 (8)0.3465 (3)0.0494 (14)
H120.27990.23170.35120.059*
C130.2511 (2)0.0445 (8)0.3014 (3)0.0568 (18)
H130.27270.03240.27550.068*
C140.2155 (2)0.0556 (8)0.2940 (3)0.0551 (16)
H140.21260.13460.26250.066*
C150.18380 (19)0.0406 (6)0.3324 (2)0.0408 (12)
H150.15940.10940.32730.049*
C160.17531 (15)0.0050 (5)0.5079 (2)0.0270 (9)
C170.21857 (16)0.0542 (6)0.5187 (2)0.0330 (10)
H170.23530.05000.48560.040*
C180.23708 (18)0.1196 (7)0.5781 (2)0.0459 (13)
H180.26620.16030.58510.055*
C190.2125 (2)0.1245 (6)0.6267 (2)0.0461 (13)
H190.22500.16920.66680.055*
C200.17016 (19)0.0650 (7)0.6171 (2)0.0426 (12)
H200.15390.06770.65070.051*
C210.15130 (17)0.0009 (6)0.5579 (2)0.0346 (10)
H210.12210.03900.55140.042*
C220.13970 (14)0.2882 (5)0.4482 (2)0.0276 (9)
C230.16943 (15)0.3689 (6)0.4943 (2)0.0349 (10)
H230.19460.31730.51780.042*
C240.16261 (19)0.5276 (6)0.5068 (3)0.0406 (12)
H240.18320.58230.53770.049*
C250.12537 (18)0.6007 (6)0.4730 (3)0.0430 (12)
H250.12060.70650.48090.052*
C260.0947 (2)0.5208 (7)0.4275 (3)0.0487 (14)
H260.06920.57210.40500.058*
C270.10177 (16)0.3649 (6)0.4152 (2)0.0360 (10)
H270.08090.31070.38450.043*
Cl20.50000.0930 (15)0.25000.288 (5)*
Cl30.44248 (15)0.3008 (6)0.2579 (2)0.0923 (12)*0.50
C280.50000.2911 (17)0.25000.101 (4)*
H28A0.50540.33600.20940.122*0.50
H28B0.52050.33600.28700.122*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au0.02219 (10)0.02619 (11)0.03374 (10)0.00001 (6)0.00111 (7)0.00359 (7)
Cl10.0923 (13)0.0844 (13)0.0850 (12)0.0519 (11)0.0347 (10)0.0537 (11)
S10.0244 (5)0.0319 (6)0.0480 (6)0.0006 (5)0.0041 (5)0.0140 (5)
P10.0215 (5)0.0231 (5)0.0295 (5)0.0008 (4)0.0022 (4)0.0022 (4)
O10.0297 (17)0.0335 (18)0.0484 (19)0.0048 (14)0.0108 (14)0.0135 (15)
N10.0287 (19)0.037 (2)0.040 (2)0.0057 (17)0.0116 (16)0.0095 (18)
C10.029 (2)0.031 (2)0.030 (2)0.0004 (18)0.0043 (17)0.0032 (18)
C20.022 (2)0.037 (2)0.037 (2)0.0010 (19)0.0071 (17)0.011 (2)
C30.044 (3)0.043 (3)0.037 (2)0.009 (2)0.007 (2)0.006 (2)
C40.047 (3)0.055 (3)0.034 (2)0.003 (3)0.004 (2)0.010 (2)
C50.040 (3)0.048 (3)0.059 (3)0.016 (2)0.013 (3)0.027 (3)
C60.060 (4)0.043 (3)0.056 (3)0.020 (3)0.024 (3)0.008 (3)
C70.050 (3)0.047 (3)0.038 (2)0.014 (3)0.018 (2)0.011 (2)
C80.035 (3)0.041 (3)0.058 (3)0.003 (2)0.016 (2)0.021 (3)
C90.053 (3)0.044 (3)0.082 (4)0.009 (3)0.026 (3)0.030 (3)
C100.029 (2)0.032 (2)0.0255 (19)0.0056 (19)0.0037 (17)0.0043 (18)
C110.035 (2)0.044 (3)0.036 (2)0.002 (2)0.0049 (19)0.004 (2)
C120.032 (3)0.075 (4)0.043 (3)0.001 (3)0.010 (2)0.017 (3)
C130.047 (3)0.088 (5)0.039 (3)0.023 (3)0.021 (3)0.021 (3)
C140.069 (4)0.062 (4)0.037 (3)0.021 (3)0.017 (3)0.003 (3)
C150.045 (3)0.040 (3)0.037 (2)0.007 (2)0.009 (2)0.004 (2)
C160.026 (2)0.023 (2)0.031 (2)0.0017 (17)0.0029 (17)0.0024 (17)
C170.026 (2)0.035 (3)0.037 (2)0.0047 (19)0.0043 (18)0.000 (2)
C180.040 (3)0.047 (3)0.046 (3)0.013 (3)0.005 (2)0.003 (3)
C190.064 (3)0.039 (3)0.032 (2)0.005 (3)0.000 (2)0.000 (2)
C200.052 (3)0.044 (3)0.033 (2)0.002 (2)0.010 (2)0.002 (2)
C210.031 (2)0.038 (3)0.036 (2)0.001 (2)0.0072 (19)0.001 (2)
C220.028 (2)0.022 (2)0.034 (2)0.0022 (17)0.0084 (17)0.0012 (17)
C230.028 (2)0.032 (3)0.043 (2)0.0005 (19)0.0030 (19)0.004 (2)
C240.042 (3)0.031 (3)0.051 (3)0.011 (2)0.016 (2)0.010 (2)
C250.056 (3)0.023 (2)0.055 (3)0.002 (2)0.023 (3)0.002 (2)
C260.054 (4)0.035 (3)0.058 (3)0.015 (3)0.013 (3)0.009 (3)
C270.037 (2)0.032 (3)0.037 (2)0.006 (2)0.001 (2)0.000 (2)
Geometric parameters (Å, º) top
Au—P12.2578 (11)C12—H120.9400
Au—S12.3064 (11)C13—C141.371 (10)
Cl1—C51.740 (5)C13—H130.9400
S1—C11.753 (5)C14—C151.381 (8)
P1—C221.801 (5)C14—H140.9400
P1—C161.814 (5)C15—H150.9400
P1—C101.816 (4)C16—C171.392 (6)
O1—C11.358 (5)C16—C211.394 (6)
O1—C81.447 (6)C17—C181.387 (7)
N1—C11.259 (6)C17—H170.9400
N1—C21.402 (6)C18—C191.380 (8)
C2—C71.382 (7)C18—H180.9400
C2—C31.393 (6)C19—C201.368 (8)
C3—C41.386 (7)C19—H190.9400
C3—H30.9400C20—C211.382 (7)
C4—C51.372 (8)C20—H200.9400
C4—H40.9400C21—H210.9400
C5—C61.372 (9)C22—C231.381 (6)
C6—C71.390 (7)C22—C271.396 (6)
C6—H60.9400C23—C241.411 (7)
C7—H70.9400C23—H230.9400
C8—C91.516 (7)C24—C251.372 (8)
C8—H8A0.9800C24—H240.9400
C8—H8B0.9800C25—C261.386 (9)
C9—H9A0.9700C25—H250.9400
C9—H9B0.9700C26—C271.388 (8)
C9—H9C0.9700C26—H260.9400
C10—C111.385 (7)C27—H270.9400
C10—C151.389 (7)Cl2—C281.701 (18)
C11—C121.383 (7)Cl3—C281.797 (5)
C11—H110.9400C28—H28A0.9800
C12—C131.379 (9)C28—H28B0.9800
P1—Au—S1178.01 (4)C14—C13—C12120.8 (5)
C1—S1—Au102.58 (16)C14—C13—H13119.6
C22—P1—C16104.4 (2)C12—C13—H13119.6
C22—P1—C10107.0 (2)C13—C14—C15120.2 (6)
C16—P1—C10105.3 (2)C13—C14—H14119.9
C22—P1—Au112.37 (14)C15—C14—H14119.9
C16—P1—Au112.79 (15)C14—C15—C10119.8 (5)
C10—P1—Au114.24 (15)C14—C15—H15120.1
C1—O1—C8116.4 (4)C10—C15—H15120.1
C1—N1—C2121.4 (4)C17—C16—C21118.9 (4)
N1—C1—O1120.5 (4)C17—C16—P1123.7 (4)
N1—C1—S1126.7 (4)C21—C16—P1117.4 (3)
O1—C1—S1112.8 (3)C18—C17—C16120.3 (5)
C7—C2—C3118.1 (4)C18—C17—H17119.9
C7—C2—N1120.1 (4)C16—C17—H17119.9
C3—C2—N1121.6 (5)C19—C18—C17119.7 (5)
C4—C3—C2120.6 (5)C19—C18—H18120.2
C4—C3—H3119.7C17—C18—H18120.2
C2—C3—H3119.7C20—C19—C18120.7 (5)
C5—C4—C3119.8 (5)C20—C19—H19119.6
C5—C4—H4120.1C18—C19—H19119.6
C3—C4—H4120.1C19—C20—C21120.0 (5)
C6—C5—C4121.2 (5)C19—C20—H20120.0
C6—C5—Cl1119.3 (5)C21—C20—H20120.0
C4—C5—Cl1119.5 (5)C20—C21—C16120.4 (5)
C5—C6—C7118.6 (5)C20—C21—H21119.8
C5—C6—H6120.7C16—C21—H21119.8
C7—C6—H6120.7C23—C22—C27118.9 (4)
C2—C7—C6121.8 (5)C23—C22—P1122.2 (3)
C2—C7—H7119.1C27—C22—P1118.9 (3)
C6—C7—H7119.1C22—C23—C24121.0 (4)
O1—C8—C9106.3 (4)C22—C23—H23119.5
O1—C8—H8A110.5C24—C23—H23119.5
C9—C8—H8A110.5C25—C24—C23118.9 (5)
O1—C8—H8B110.5C25—C24—H24120.5
C9—C8—H8B110.5C23—C24—H24120.5
H8A—C8—H8B108.7C24—C25—C26120.9 (5)
C8—C9—H9A109.5C24—C25—H25119.5
C8—C9—H9B109.5C26—C25—H25119.5
H9A—C9—H9B109.5C25—C26—C27119.9 (5)
C8—C9—H9C109.5C25—C26—H26120.1
H9A—C9—H9C109.5C27—C26—H26120.1
H9B—C9—H9C109.5C26—C27—C22120.4 (5)
C11—C10—C15119.4 (4)C26—C27—H27119.8
C11—C10—P1122.2 (4)C22—C27—H27119.8
C15—C10—P1118.4 (4)Cl2—C28—Cl392.7 (5)
C12—C11—C10120.6 (5)Cl2—C28—H28A113.2
C12—C11—H11119.7Cl3—C28—H28A113.2
C10—C11—H11119.7Cl2—C28—H28B113.2
C11—C12—C13119.2 (6)Cl3—C28—H28B113.2
C11—C12—H12120.4H28A—C28—H28B110.5
C13—C12—H12120.4
P1—Au—S1—C1143.5 (12)C12—C13—C14—C151.0 (9)
S1—Au—P1—C22171.4 (12)C13—C14—C15—C100.1 (9)
S1—Au—P1—C1653.8 (12)C11—C10—C15—C141.4 (8)
S1—Au—P1—C1066.5 (12)P1—C10—C15—C14176.8 (4)
C2—N1—C1—O1176.1 (4)C22—P1—C16—C17114.7 (4)
C2—N1—C1—S15.2 (7)C10—P1—C16—C172.2 (5)
C8—O1—C1—N12.4 (7)Au—P1—C16—C17123.0 (4)
C8—O1—C1—S1178.8 (4)C22—P1—C16—C2167.0 (4)
Au—S1—C1—N1170.6 (4)C10—P1—C16—C21179.5 (4)
Au—S1—C1—O18.2 (4)Au—P1—C16—C2155.3 (4)
C1—N1—C2—C7121.0 (5)C21—C16—C17—C180.8 (7)
C1—N1—C2—C364.5 (7)P1—C16—C17—C18177.5 (4)
C7—C2—C3—C40.7 (8)C16—C17—C18—C190.5 (8)
N1—C2—C3—C4175.3 (5)C17—C18—C19—C200.3 (9)
C2—C3—C4—C50.3 (8)C18—C19—C20—C210.9 (9)
C3—C4—C5—C60.1 (9)C19—C20—C21—C160.6 (8)
C3—C4—C5—Cl1179.0 (5)C17—C16—C21—C200.2 (7)
C4—C5—C6—C70.1 (10)P1—C16—C21—C20178.1 (4)
Cl1—C5—C6—C7178.9 (5)C16—P1—C22—C2331.3 (4)
C3—C2—C7—C60.7 (8)C10—P1—C22—C2380.0 (4)
N1—C2—C7—C6175.4 (5)Au—P1—C22—C23153.9 (3)
C5—C6—C7—C20.4 (9)C16—P1—C22—C27146.6 (4)
C1—O1—C8—C9171.6 (5)C10—P1—C22—C27102.1 (4)
C22—P1—C10—C1135.4 (4)Au—P1—C22—C2724.0 (4)
C16—P1—C10—C1175.3 (4)C27—C22—C23—C241.9 (7)
Au—P1—C10—C11160.4 (3)P1—C22—C23—C24179.9 (4)
C22—P1—C10—C15146.5 (4)C22—C23—C24—C251.1 (7)
C16—P1—C10—C15102.9 (4)C23—C24—C25—C260.2 (8)
Au—P1—C10—C1521.4 (4)C24—C25—C26—C270.6 (9)
C15—C10—C11—C121.9 (7)C25—C26—C27—C220.3 (8)
P1—C10—C11—C12176.2 (4)C23—C22—C27—C261.5 (7)
C10—C11—C12—C131.0 (8)P1—C22—C27—C26179.5 (4)
C11—C12—C13—C140.5 (9)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C22–C27 ring.
D—H···AD—HH···AD···AD—H···A
C21—H21···N1i0.942.553.310 (6)138
C26—H26···S1ii0.942.863.738 (6)156
C7—H7···Cg1i0.942.963.784 (5)147
Symmetry codes: (i) x, y, z+1; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Au(C9H9ClNOS)(C18H15P)]·0.5CH2Cl2
Mr716.40
Crystal system, space groupMonoclinic, C2/c
Temperature (K)223
a, b, c (Å)30.5163 (16), 8.5881 (5), 21.0518 (12)
β (°) 101.054 (1)
V3)5414.8 (5)
Z8
Radiation typeMo Kα
µ (mm1)5.79
Crystal size (mm)0.15 × 0.15 × 0.13
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.672, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
18509, 6214, 5381
Rint0.031
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.092, 1.10
No. of reflections6214
No. of parameters306
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.73, 1.87

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), PATTY in DIRDIF92 (Beurskens et al., 1992), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Au—P12.2578 (11)Au—S12.3064 (11)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C22–C27 ring.
D—H···AD—HH···AD···AD—H···A
C21—H21···N1i0.942.553.310 (6)138
C26—H26···S1ii0.942.863.738 (6)156
C7—H7···Cg1i0.942.963.784 (5)147
Symmetry codes: (i) x, y, z+1; (ii) x, y1, z.
 

Acknowledgements

The National University of Singapore (grant No. R-143–000-213–112) is thanked for support.

References

First citationBeurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561–570.  CSD CrossRef CAS Google Scholar
First citationHo, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165–8174.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHo, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368–378.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548–564.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds