organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-{2-[2-(3-Hy­dr­oxy­benzyl­­idene)hydrazin-1-yl]-1,3-thia­zol-4-yl}-2H-chromen-2-one hemihydrate

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 25 May 2010; accepted 25 May 2010; online 29 May 2010)

In the title compound, C19H13N3O3S·0.5H2O, both organic mol­ecules (A and B) exist in E configurations with respect to the acyclic C=N bond and have similar overall conformations. In mol­ecule A, the essentially planar thia­zole ring [maximum deviation = 0.010 (2) Å] is inclined at inter­planar angles of 11.44 (10) and 32.50 (12)°, with the 2H-chromene ring system and the benzene ring, respectively. The equivalent values for mol­ecule B are 0.002 (2) Å, 7.71 (9) and 12.51 (12)°. In the crystal structure, neighbouring mol­ecules are inter­connected into infinite layers lying parallel to (010) by O—H⋯O, O—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds. Further stabilization of the crystal structure is provided by weak inter­molecular C—H⋯π and ππ [centroid–centroid distance = 3.6380 (19) Å] inter­actions.

Related literature

For general background to and applications of amino­thia­zoles, see: Anderson et al. (2002[Anderson, D. M., Shelley, S., Crick, N. & Buraglio, L. (2002). J. Clin. Pharmacol. 42, 1358-1365.]); Finn et al. (2004[Finn, G. J., Creaven, B. S. & Egan, D. A. (2004). Cancer Lett. 214, 43-54.]); Gursoy & Karah (2000[Gursoy, A. & Karah, N. (2000). Arzneim. Forsch. Drug Res. 50, 167-172.]); Habib & Khalil (1984[Habib, N. S. & Khalil, M. A. (1984). J. Pharm. Sci. 73, 982-985.]); Hiremath et al. (1992[Hiremath, S. P., Swamy, K. M. K. & Mrnthyunjayaswamy, B. H. M. (1992). J. Indian Chem. Soc. 69, 87-89.]); Hofmanová et al. (1998[Hofmanová, J., Kozubík, A., Dusék, L. & Pacherník, J. (1998). Eur. J. Pharmacol. 350, 273-284.]); Jayashree et al. (2005[Jayashree, B. S., Anuradha, D. & Venugopala, N. K. (2005). Asian J. Chem. 17, 2093-2095.]); Karah et al. (1998[Karah, N., Terzioglu, N. & Gursoy, A. (1998). Arzneim. Forsch. Drug Res. 48, 758-763.]); Kimura et al. (1985[Kimura, Y., Okuda, H., Arichi, S., Baba, K. & Kozawa, M. (1985). Biochim. Biophys. Acta, 834, 224-229.]); Laffitte et al. (2002[Laffitte, D., Lamour, V., Tsvetkov, P. O., Makarov, A. A., Klich, M., Deprez, P., Moras, D., Braind, C. & Gilli, R. (2002). Biochemistry, 41, 7217-7223.]); Mitscher (2002[Mitscher, L. A. (2002). Principles of Medicinal Chemistry, 5th ed., pp. 819-864. Baltimore: Williams & Wilkinsons.]); Moffett (1964[Moffett, R. B. (1964). J. Med. Chem. 7, 446-449.]); Ohkuba et al. (1995[Ohkuba, M., Kuno, A., Nakanishi, I. & Takasugi, H. (1995). Chem. Pharm. Bull. 43, 1497-1501.]); Patt et al. (1992[Patt, W. C., Hamilton, H. W., Taylor, M. D., Ryan, M. J., Taylor, D. G., Conolly, C. J. C., Doherty, A. M., Klutchko, S. R., Sircar, I., Steinbaugh, B. A., Batley, B. L., Painchaud, C. A., Rapundalo, S. T., Michniewicz, B. M. & Olson, S. C. J. (1992). J. Med. Chem. 35, 2562-2572.]); Tassies et al. (2002[Tassies, D., Freire, C., Puoan, J., Maragall, S., Moonteagudo, J., Ordinas, A. & Reverter, J. C. (2002). Haematologica, 87, 1185-1191.]); Wattenberg et al. (1979[Wattenberg, L. W., Low, L. K. T. & Fladmoe, A. V. (1979). Cancer Res. 39, 1651-1654.]); Weber et al. (1998[Weber, U. S., Steffen, B. & Siegers, C. (1998). Res. Commun. Mol. Pathol. Pharmacol. 99, 193-206.]). For the preparation of the title compound, see: Lv et al. (2010[Lv, P.-C., Zhou, C.-F., Chen, J., Liu, P.-G., Wang, K.-R., Mao, W.-J., Li, H.-Q., Yang, Y., Xiong, J. & Zhu, H.-L. (2010). Bioorg. Med. Chem. 18, 314-319.]); Siddiqui et al. (2009[Siddiqui, N., Arshad, M. F. & Khan, S. A. (2009). Acta Pol. Pharm. Drug Res. 66, 161-167.]). For related structures, see: Arshad et al. (2010a[Arshad, A., Osman, H., Chan, K. L., Goh, J. H. & Fun, H.-K. (2010a). Acta Cryst. E66, o1491-o1492.],b[Arshad, A., Osman, H., Lam, C. K., Quah, C. K. & Fun, H.-K. (2010b). Acta Cryst. E66, o1446-o1447.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C19H13N3O3S·0.5H2O

  • Mr = 372.39

  • Monoclinic, P 21 /c

  • a = 8.012 (3) Å

  • b = 32.775 (11) Å

  • c = 12.619 (4) Å

  • β = 93.034 (7)°

  • V = 3309 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 100 K

  • 0.34 × 0.14 × 0.05 mm

Data collection
  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.928, Tmax = 0.990

  • 31194 measured reflections

  • 7564 independent reflections

  • 5266 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.128

  • S = 1.06

  • 7564 reflections

  • 480 parameters

  • H-atom parameters constrained

  • Δρmax = 0.94 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of C14A–C19A benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3A—H3OA⋯O3Bi 0.82 2.00 2.808 (3) 170
N2A—H2NA⋯O1Wii 0.88 1.93 2.790 (3) 167
O3B—H3OB⋯O2Biii 0.82 1.93 2.726 (3) 165
N2B—H2NB⋯O2Aiv 0.84 2.05 2.878 (3) 170
O1W—H1W1⋯N1Bv 0.87 2.05 2.888 (3) 161
O1W—H2W1⋯N1Avi 0.88 2.15 2.913 (3) 145
C8A—H8A⋯O1Wvii 0.93 2.60 3.451 (3) 153
C5B—H5BCg1iv 0.93 2.95 3.708 (3) 139
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z+2; (iii) -x+2, -y, -z+1; (iv) -x, -y, -z+1; (v) -x+1, -y+1, -z+1; (vi) x, y+1, z; (vii) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The biological activity of aminothiazoles is well documentated. Some of these compounds exhibit very good anti-fungal (Hiremath et al., 1992), anti-bacterial (Habib & Khalil, 1984), anti-tuberculosis (Gursoy & Karah, 2000; Karah et al., 1998) and anti-tumor (Wattenberg et al., 1979) activities. They also have broad applications in the treatment of allergies, Schizophrenia (Ohkuba et al., 1995), inflammation (Jayashree et al., 2005) and hypertension (Patt et al., 1992). Besides that, coumarin and its derivatives also possess significant anti-bacterial (Mitscher, 2002; Laffitte et al., 2002), anti-fungal (Moffett, 1964) and cytotoxic (Weber et al., 1998) activities. They also have pronounced medicinal value as anti-coagulants (Anderson et al., 2002; Tassies et al., 2002), free radical scavengers (Finn et al., 2004), lipoxygenese and cyclooxygenese inhibitors (Kimura et al., 1985, Hofmanová et al., 1998). The title compound, (I) was synthesized by incorporating aminothioazole moiety to a coumarin skeleton and here we present its crystal structure.

The asymmetric unit of the title compound (Fig. 1) comprises of two crystallographically independent 3-{2-[2-(3-hydroxybenzylidene)hydrazinyl]thiazol-4-yl}-2H-chromen-2-one molecules and a water molecule of crystallization. Both of the independent molecules exist in cis configurations with respect to the acyclic N3C13 double bond. A superposition of the non-H atoms of molecules A and B (Fig. 2) using XP in SHELXTL (Sheldrick, 2008), gave an r.m.s. deviation of 0.447 Å.

In each molecule, the thiazole ring (C10/C11/S1/C12/N1) is essentially planar, with maximum deviations of -0.010 (2) and 0.002 (2) Å, respectively, for atoms C11A of molecule A and C12B of molecule B. In molecule A, the thiazole ring is inclined at interplanar angles of 11.44 (10) and 32.50 (12)°, respectively, with respect to the 2H-chromene ring system (C1A-C9A/O1A) and C14A-C19A benzene ring; the comparable angles for molecule B are 7.71 (9) and 12.51 (12)°, respectively. The bond lengths and angles are comparable to those observed in closely related structures (Arshad et al., 2010a,b).

In the crystal structure (Fig. 3), neighbouring molecules are interconnected into two-dimensional infinite networks parallel to the (010) plane by intermolecular O3A—H3OA···O3B, N2A—H2NA···O1W, O3B—H3OB···O2B, N2B—H2NB···O2A, O1W—H1W1···N1B, O1W—H2W1···N1A and C8A—H8A···O1W hydrogen bonds (Table 1). The crystal structure is further stabilized by weak intermolecular C5B—H5B···Cg1 interactions (Table 1) involving the centroid of C14A—C19A benzene ring as well as Cg2···Cg3 aromatic stacking interactions [Cg2···Cg3 = 3.6380 (19) Å, symmetry code: -x+1, -y, -z+1 where Cg2 and Cg3 are the centroids of benzene (C14B-C19B) and 2H-pyran (C1B/O1B/C2B/C7B/C8B/C9B) rings].

Related literature top

For general background to and applications of aminothiazoles, see: Anderson et al. (2002); Finn et al. (2004); Gursoy & Karah (2000); Habib & Khalil (1984); Hiremath et al. (1992); Hofmanová et al. (1998); Jayashree et al. (2005); Karah et al. (1998); Kimura et al. (1985); Laffitte et al. (2002); Mitscher (2002); Moffett (1964); Ohkuba et al. (1995); Patt et al. (1992); Tassies et al. (2002); Wattenberg et al. (1979); Weber et al. (1998). For the preparation of the title compound, see: Lv et al. (2010); Siddiqui et al. (2009). For related structures, see: Arshad et al. (2010a,b). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

3-Hydroxybenzaldehyde thiosemicarbazone (Lv et al., 2010) and 3-[ω-bromoacetyl coumarin] (Siddiqui et al., 2009) were synthesized as reported in the literatures. A solution of 3-[ω-bromoacetyl coumarin] (2.5 mmol) and 3-hydroxybenzaldehyde thiosemicarbazone (2.5 mmol) in chloroform-ethanol (2:1) was refluxed for 1 h at 353 K. A clear solution was formed followed by the deposition of thick yellow precipitates. The reaction mixture was cooled and basified with ammonia. The title compound, (I) was purified and recrystallized as shiny yellow plates of (I) from ethanol-ethyl acetate (1:2); the water of crystallisation was presumably incorporated from the atmosphere.

Refinement top

The H atoms bound to O and N atoms were located from the difference Fourier map and constrained to ride with the parent atom with Uiso = 1.5 Ueq(O) or Uiso = 1.2 Ueq(N). All other H atoms were placed in their calculated positions, with C—H = 0.93 Å, and refined using a riding model, with Uiso = 1.2 Ueq(C).

Structure description top

The biological activity of aminothiazoles is well documentated. Some of these compounds exhibit very good anti-fungal (Hiremath et al., 1992), anti-bacterial (Habib & Khalil, 1984), anti-tuberculosis (Gursoy & Karah, 2000; Karah et al., 1998) and anti-tumor (Wattenberg et al., 1979) activities. They also have broad applications in the treatment of allergies, Schizophrenia (Ohkuba et al., 1995), inflammation (Jayashree et al., 2005) and hypertension (Patt et al., 1992). Besides that, coumarin and its derivatives also possess significant anti-bacterial (Mitscher, 2002; Laffitte et al., 2002), anti-fungal (Moffett, 1964) and cytotoxic (Weber et al., 1998) activities. They also have pronounced medicinal value as anti-coagulants (Anderson et al., 2002; Tassies et al., 2002), free radical scavengers (Finn et al., 2004), lipoxygenese and cyclooxygenese inhibitors (Kimura et al., 1985, Hofmanová et al., 1998). The title compound, (I) was synthesized by incorporating aminothioazole moiety to a coumarin skeleton and here we present its crystal structure.

The asymmetric unit of the title compound (Fig. 1) comprises of two crystallographically independent 3-{2-[2-(3-hydroxybenzylidene)hydrazinyl]thiazol-4-yl}-2H-chromen-2-one molecules and a water molecule of crystallization. Both of the independent molecules exist in cis configurations with respect to the acyclic N3C13 double bond. A superposition of the non-H atoms of molecules A and B (Fig. 2) using XP in SHELXTL (Sheldrick, 2008), gave an r.m.s. deviation of 0.447 Å.

In each molecule, the thiazole ring (C10/C11/S1/C12/N1) is essentially planar, with maximum deviations of -0.010 (2) and 0.002 (2) Å, respectively, for atoms C11A of molecule A and C12B of molecule B. In molecule A, the thiazole ring is inclined at interplanar angles of 11.44 (10) and 32.50 (12)°, respectively, with respect to the 2H-chromene ring system (C1A-C9A/O1A) and C14A-C19A benzene ring; the comparable angles for molecule B are 7.71 (9) and 12.51 (12)°, respectively. The bond lengths and angles are comparable to those observed in closely related structures (Arshad et al., 2010a,b).

In the crystal structure (Fig. 3), neighbouring molecules are interconnected into two-dimensional infinite networks parallel to the (010) plane by intermolecular O3A—H3OA···O3B, N2A—H2NA···O1W, O3B—H3OB···O2B, N2B—H2NB···O2A, O1W—H1W1···N1B, O1W—H2W1···N1A and C8A—H8A···O1W hydrogen bonds (Table 1). The crystal structure is further stabilized by weak intermolecular C5B—H5B···Cg1 interactions (Table 1) involving the centroid of C14A—C19A benzene ring as well as Cg2···Cg3 aromatic stacking interactions [Cg2···Cg3 = 3.6380 (19) Å, symmetry code: -x+1, -y, -z+1 where Cg2 and Cg3 are the centroids of benzene (C14B-C19B) and 2H-pyran (C1B/O1B/C2B/C7B/C8B/C9B) rings].

For general background to and applications of aminothiazoles, see: Anderson et al. (2002); Finn et al. (2004); Gursoy & Karah (2000); Habib & Khalil (1984); Hiremath et al. (1992); Hofmanová et al. (1998); Jayashree et al. (2005); Karah et al. (1998); Kimura et al. (1985); Laffitte et al. (2002); Mitscher (2002); Moffett (1964); Ohkuba et al. (1995); Patt et al. (1992); Tassies et al. (2002); Wattenberg et al. (1979); Weber et al. (1998). For the preparation of the title compound, see: Lv et al. (2010); Siddiqui et al. (2009). For related structures, see: Arshad et al. (2010a,b). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50 % probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Fit of molecule A (dashed lines) on molecule B (solid lines). H atoms have been omitted for clarity.
[Figure 3] Fig. 3. The crystal structure of (I), viewed along the a axis, showing a two-dimensional infinite network parallel to the (010) plane. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.
3-{2-[2-(3-Hydroxybenzylidene)hydrazin-1-yl]-1,3-thiazol-4-yl}- 2H-chromen-2-one hemihydrate top
Crystal data top
C19H13N3O3S·0.5H2OF(000) = 1544
Mr = 372.39Dx = 1.495 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3134 reflections
a = 8.012 (3) Åθ = 2.5–27.6°
b = 32.775 (11) ŵ = 0.23 mm1
c = 12.619 (4) ÅT = 100 K
β = 93.034 (7)°Plate, yellow
V = 3309 (2) Å30.34 × 0.14 × 0.05 mm
Z = 8
Data collection top
Bruker APEXII DUO CCD
diffractometer
7564 independent reflections
Radiation source: fine-focus sealed tube5266 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
φ and ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.928, Tmax = 0.990k = 4242
31194 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0407P)2 + 2.6662P]
where P = (Fo2 + 2Fc2)/3
7564 reflections(Δ/σ)max < 0.001
480 parametersΔρmax = 0.94 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C19H13N3O3S·0.5H2OV = 3309 (2) Å3
Mr = 372.39Z = 8
Monoclinic, P21/cMo Kα radiation
a = 8.012 (3) ŵ = 0.23 mm1
b = 32.775 (11) ÅT = 100 K
c = 12.619 (4) Å0.34 × 0.14 × 0.05 mm
β = 93.034 (7)°
Data collection top
Bruker APEXII DUO CCD
diffractometer
7564 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5266 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.990Rint = 0.073
31194 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.06Δρmax = 0.94 e Å3
7564 reflectionsΔρmin = 0.31 e Å3
480 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.04957 (8)0.042270 (18)0.83927 (5)0.01871 (15)
O1A0.0143 (2)0.12215 (5)0.63046 (14)0.0206 (4)
O2A0.1831 (2)0.07185 (5)0.65803 (15)0.0254 (4)
O3A0.0075 (3)0.22741 (6)0.90542 (17)0.0346 (5)
H3OA0.02310.21120.85630.052*
N1A0.1639 (2)0.01536 (6)0.87974 (16)0.0154 (4)
N2A0.2018 (3)0.04304 (6)0.98605 (16)0.0170 (4)
H2NA0.27950.03321.03060.020*
N3A0.1505 (3)0.08281 (6)0.99354 (17)0.0175 (4)
C1A0.0463 (3)0.08587 (7)0.6792 (2)0.0203 (5)
C2A0.1305 (3)0.14405 (7)0.6527 (2)0.0185 (5)
C3A0.1447 (3)0.18124 (8)0.6037 (2)0.0231 (6)
H3A0.05980.19100.55730.028*
C4A0.2874 (3)0.20371 (8)0.6249 (2)0.0242 (6)
H4A0.29860.22910.59330.029*
C5A0.4147 (3)0.18901 (8)0.6929 (2)0.0242 (6)
H5A0.51180.20420.70520.029*
C6A0.3980 (3)0.15206 (7)0.7422 (2)0.0203 (5)
H6A0.48320.14250.78860.024*
C7A0.2529 (3)0.12857 (7)0.7231 (2)0.0175 (5)
C8A0.2251 (3)0.08987 (7)0.7713 (2)0.0181 (5)
H8A0.30720.07910.81800.022*
C9A0.0829 (3)0.06862 (7)0.75075 (19)0.0159 (5)
C10A0.0537 (3)0.02896 (7)0.79832 (19)0.0153 (5)
C11A0.0693 (3)0.00203 (7)0.7687 (2)0.0182 (5)
H11A0.15320.00710.71660.022*
C12A0.1223 (3)0.02122 (7)0.90784 (19)0.0167 (5)
C13A0.2049 (3)0.10343 (7)1.0744 (2)0.0183 (5)
H13A0.27270.09141.12780.022*
C14A0.1576 (3)0.14634 (7)1.0806 (2)0.0182 (5)
C15A0.1798 (3)0.16766 (8)1.1748 (2)0.0220 (6)
H15A0.22580.15481.23520.026*
C16A0.1327 (3)0.20862 (8)1.1787 (2)0.0286 (6)
H16A0.14410.22281.24240.034*
C17A0.0696 (3)0.22810 (8)1.0886 (2)0.0277 (6)
H17A0.03950.25551.09140.033*
C18A0.0509 (3)0.20689 (8)0.9942 (2)0.0256 (6)
C19A0.0919 (3)0.16639 (7)0.9902 (2)0.0207 (5)
H19A0.07590.15210.92670.025*
S1B0.78931 (7)0.008872 (18)0.47478 (5)0.01707 (14)
O1B0.7053 (2)0.14603 (5)0.21875 (14)0.0202 (4)
O2B0.8716 (2)0.11627 (5)0.33656 (15)0.0234 (4)
O3B0.9374 (2)0.18069 (5)0.72037 (16)0.0260 (4)
H3OB0.98540.15900.71150.039*
N1B0.5592 (2)0.00941 (6)0.33149 (16)0.0159 (4)
N2B0.5221 (3)0.05370 (6)0.41319 (16)0.0174 (4)
H2NB0.42670.05840.38510.021*
N3B0.5912 (3)0.08171 (6)0.48285 (16)0.0162 (4)
C1B0.7465 (3)0.11277 (7)0.2789 (2)0.0182 (5)
C2B0.5703 (3)0.14700 (7)0.14717 (19)0.0175 (5)
C3B0.5399 (3)0.18320 (8)0.0931 (2)0.0224 (6)
H3B0.60580.20610.10730.027*
C4B0.4100 (3)0.18436 (8)0.0180 (2)0.0241 (6)
H4B0.38780.20840.01950.029*
C5B0.3109 (3)0.15024 (8)0.0028 (2)0.0219 (6)
H5B0.22350.15150.05430.026*
C6B0.3415 (3)0.11466 (8)0.0523 (2)0.0214 (5)
H6B0.27510.09190.03790.026*
C7B0.4727 (3)0.11258 (7)0.13051 (19)0.0174 (5)
C8B0.5100 (3)0.07779 (7)0.19488 (19)0.0177 (5)
H8B0.44320.05470.18600.021*
C9B0.6387 (3)0.07698 (7)0.26843 (19)0.0153 (5)
C10B0.6726 (3)0.04195 (7)0.33772 (19)0.0156 (5)
C11B0.8019 (3)0.03722 (7)0.4095 (2)0.0176 (5)
H11B0.88660.05630.42220.021*
C12B0.6075 (3)0.01856 (7)0.39946 (19)0.0152 (5)
C13B0.4999 (3)0.11281 (7)0.50071 (19)0.0171 (5)
H13B0.39170.11410.47030.021*
C14B0.5629 (3)0.14618 (7)0.56794 (19)0.0165 (5)
C15B0.4627 (3)0.18039 (7)0.5765 (2)0.0201 (5)
H15B0.35570.18080.54410.024*
C16B0.5224 (3)0.21406 (7)0.6334 (2)0.0215 (5)
H16B0.45490.23690.64000.026*
C17B0.6821 (3)0.21366 (7)0.6802 (2)0.0212 (5)
H17B0.72340.23650.71660.025*
C18B0.7808 (3)0.17906 (7)0.6729 (2)0.0187 (5)
C19B0.7216 (3)0.14544 (7)0.61789 (19)0.0174 (5)
H19B0.78770.12220.61410.021*
O1W0.5255 (2)0.97623 (5)0.87645 (14)0.0220 (4)
H1W10.52310.98450.81110.033*
H2W10.42670.97130.90030.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0181 (3)0.0184 (3)0.0194 (3)0.0046 (2)0.0013 (2)0.0010 (2)
O1A0.0233 (10)0.0184 (9)0.0196 (9)0.0026 (7)0.0022 (8)0.0040 (7)
O2A0.0188 (9)0.0264 (10)0.0299 (11)0.0018 (8)0.0097 (8)0.0033 (8)
O3A0.0465 (13)0.0223 (10)0.0337 (12)0.0053 (9)0.0083 (10)0.0015 (9)
N1A0.0152 (10)0.0162 (10)0.0148 (10)0.0007 (8)0.0002 (8)0.0012 (8)
N2A0.0190 (11)0.0142 (10)0.0173 (10)0.0047 (8)0.0035 (8)0.0021 (8)
N3A0.0172 (10)0.0142 (10)0.0212 (11)0.0028 (8)0.0017 (9)0.0015 (8)
C1A0.0241 (14)0.0181 (12)0.0184 (12)0.0017 (10)0.0003 (11)0.0006 (10)
C2A0.0226 (13)0.0169 (12)0.0164 (12)0.0000 (10)0.0046 (10)0.0026 (10)
C3A0.0300 (15)0.0210 (13)0.0184 (13)0.0081 (11)0.0033 (11)0.0020 (11)
C4A0.0351 (16)0.0155 (12)0.0228 (14)0.0028 (11)0.0088 (12)0.0023 (11)
C5A0.0290 (15)0.0182 (12)0.0259 (14)0.0053 (11)0.0062 (12)0.0032 (11)
C6A0.0224 (13)0.0185 (12)0.0202 (13)0.0024 (10)0.0016 (11)0.0008 (10)
C7A0.0221 (13)0.0148 (11)0.0158 (12)0.0014 (10)0.0019 (10)0.0019 (10)
C8A0.0181 (12)0.0184 (12)0.0176 (12)0.0014 (10)0.0019 (10)0.0005 (10)
C9A0.0166 (12)0.0169 (11)0.0143 (11)0.0018 (10)0.0001 (10)0.0032 (9)
C10A0.0134 (12)0.0181 (11)0.0146 (11)0.0010 (9)0.0022 (9)0.0010 (10)
C11A0.0171 (12)0.0192 (12)0.0180 (12)0.0002 (10)0.0011 (10)0.0010 (10)
C12A0.0143 (12)0.0184 (12)0.0174 (12)0.0005 (9)0.0016 (10)0.0021 (10)
C13A0.0184 (13)0.0177 (12)0.0188 (13)0.0010 (10)0.0022 (10)0.0006 (10)
C14A0.0141 (12)0.0158 (12)0.0249 (13)0.0017 (9)0.0035 (10)0.0005 (10)
C15A0.0214 (13)0.0231 (13)0.0217 (13)0.0028 (11)0.0037 (11)0.0009 (11)
C16A0.0296 (15)0.0244 (14)0.0328 (16)0.0067 (12)0.0102 (13)0.0140 (12)
C17A0.0278 (15)0.0157 (12)0.0400 (17)0.0044 (11)0.0050 (13)0.0044 (12)
C18A0.0220 (14)0.0204 (13)0.0341 (16)0.0018 (11)0.0020 (12)0.0007 (12)
C19A0.0155 (12)0.0197 (12)0.0270 (14)0.0026 (10)0.0004 (11)0.0017 (11)
S1B0.0155 (3)0.0181 (3)0.0173 (3)0.0001 (2)0.0027 (2)0.0011 (2)
O1B0.0229 (9)0.0144 (8)0.0230 (9)0.0012 (7)0.0023 (8)0.0020 (7)
O2B0.0223 (10)0.0209 (9)0.0263 (10)0.0016 (8)0.0055 (8)0.0001 (8)
O3B0.0257 (10)0.0202 (9)0.0310 (11)0.0042 (8)0.0091 (9)0.0059 (8)
N1B0.0148 (10)0.0161 (10)0.0168 (10)0.0014 (8)0.0012 (8)0.0015 (8)
N2B0.0154 (10)0.0160 (10)0.0202 (11)0.0025 (8)0.0029 (9)0.0037 (8)
N3B0.0194 (11)0.0148 (10)0.0143 (10)0.0030 (8)0.0005 (8)0.0020 (8)
C1B0.0208 (13)0.0160 (12)0.0180 (12)0.0020 (10)0.0025 (10)0.0013 (10)
C2B0.0159 (12)0.0210 (12)0.0158 (12)0.0048 (10)0.0032 (10)0.0002 (10)
C3B0.0275 (14)0.0176 (12)0.0227 (13)0.0019 (11)0.0050 (11)0.0016 (11)
C4B0.0288 (15)0.0220 (13)0.0221 (13)0.0077 (11)0.0071 (12)0.0047 (11)
C5B0.0184 (13)0.0276 (13)0.0200 (13)0.0049 (11)0.0031 (11)0.0068 (11)
C6B0.0181 (13)0.0264 (13)0.0199 (13)0.0010 (11)0.0015 (10)0.0018 (11)
C7B0.0166 (12)0.0183 (12)0.0178 (12)0.0024 (10)0.0040 (10)0.0000 (10)
C8B0.0182 (12)0.0162 (11)0.0189 (12)0.0013 (10)0.0012 (10)0.0000 (10)
C9B0.0145 (12)0.0145 (11)0.0174 (12)0.0010 (9)0.0035 (10)0.0005 (9)
C10B0.0169 (12)0.0147 (11)0.0151 (12)0.0006 (9)0.0016 (10)0.0000 (9)
C11B0.0159 (12)0.0161 (11)0.0206 (12)0.0010 (10)0.0005 (10)0.0013 (10)
C12B0.0136 (11)0.0162 (11)0.0158 (12)0.0013 (9)0.0010 (9)0.0017 (9)
C13B0.0149 (12)0.0180 (12)0.0183 (12)0.0016 (10)0.0000 (10)0.0025 (10)
C14B0.0209 (12)0.0141 (11)0.0148 (12)0.0024 (10)0.0043 (10)0.0028 (9)
C15B0.0193 (13)0.0187 (12)0.0226 (13)0.0006 (10)0.0029 (11)0.0004 (10)
C16B0.0239 (13)0.0153 (12)0.0258 (14)0.0030 (10)0.0059 (11)0.0011 (10)
C17B0.0265 (14)0.0143 (12)0.0229 (13)0.0011 (10)0.0028 (11)0.0014 (10)
C18B0.0208 (13)0.0179 (12)0.0170 (12)0.0006 (10)0.0030 (10)0.0009 (10)
C19B0.0209 (13)0.0137 (11)0.0179 (12)0.0015 (10)0.0029 (10)0.0018 (10)
O1W0.0188 (9)0.0284 (10)0.0186 (9)0.0012 (8)0.0019 (7)0.0033 (8)
Geometric parameters (Å, º) top
S1A—C11A1.706 (2)S1B—C12B1.726 (2)
S1A—C12A1.730 (2)O1B—C1B1.359 (3)
O1A—C1A1.369 (3)O1B—C2B1.372 (3)
O1A—C2A1.380 (3)O2B—C1B1.212 (3)
O2A—C1A1.206 (3)O3B—C18B1.362 (3)
O3A—C18A1.367 (3)O3B—H3OB0.8200
O3A—H3OA0.8200N1B—C12B1.300 (3)
N1A—C12A1.299 (3)N1B—C10B1.400 (3)
N1A—C10A1.392 (3)N2B—C12B1.355 (3)
N2A—C12A1.351 (3)N2B—N3B1.367 (3)
N2A—N3A1.372 (3)N2B—H2NB0.8398
N2A—H2NA0.8779N3B—C13B1.281 (3)
N3A—C13A1.281 (3)C1B—C9B1.459 (3)
C1A—C9A1.452 (3)C2B—C7B1.382 (3)
C2A—C3A1.374 (3)C2B—C3B1.384 (3)
C2A—C7A1.385 (4)C3B—C4B1.371 (4)
C3A—C4A1.375 (4)C3B—H3B0.9300
C3A—H3A0.9300C4B—C5B1.389 (4)
C4A—C5A1.384 (4)C4B—H4B0.9300
C4A—H4A0.9300C5B—C6B1.374 (3)
C5A—C6A1.371 (3)C5B—H5B0.9300
C5A—H5A0.9300C6B—C7B1.404 (4)
C6A—C7A1.404 (3)C6B—H6B0.9300
C6A—H6A0.9300C7B—C8B1.423 (3)
C7A—C8A1.429 (3)C8B—C9B1.350 (3)
C8A—C9A1.348 (3)C8B—H8B0.9300
C8A—H8A0.9300C9B—C10B1.460 (3)
C9A—C10A1.456 (3)C10B—C11B1.348 (3)
C10A—C11A1.361 (3)C11B—H11B0.9300
C11A—H11A0.9300C13B—C14B1.458 (3)
C13A—C14A1.460 (3)C13B—H13B0.9300
C13A—H13A0.9300C14B—C15B1.386 (3)
C14A—C15A1.383 (4)C14B—C19B1.389 (3)
C14A—C19A1.395 (4)C15B—C16B1.388 (3)
C15A—C16A1.396 (4)C15B—H15B0.9300
C15A—H15A0.9300C16B—C17B1.380 (4)
C16A—C17A1.376 (4)C16B—H16B0.9300
C16A—H16A0.9300C17B—C18B1.389 (3)
C17A—C18A1.381 (4)C17B—H17B0.9300
C17A—H17A0.9300C18B—C19B1.373 (3)
C18A—C19A1.369 (3)C19B—H19B0.9300
C19A—H19A0.9300O1W—H1W10.8672
S1B—C11B1.726 (2)O1W—H2W10.8763
C11A—S1A—C12A88.33 (12)C1B—O1B—C2B123.10 (19)
C1A—O1A—C2A122.4 (2)C18B—O3B—H3OB109.5
C18A—O3A—H3OA109.5C12B—N1B—C10B109.3 (2)
C12A—N1A—C10A109.6 (2)C12B—N2B—N3B117.6 (2)
C12A—N2A—N3A114.9 (2)C12B—N2B—H2NB123.8
C12A—N2A—H2NA124.4N3B—N2B—H2NB118.5
N3A—N2A—H2NA120.7C13B—N3B—N2B115.6 (2)
C13A—N3A—N2A117.7 (2)O2B—C1B—O1B115.4 (2)
O2A—C1A—O1A114.9 (2)O2B—C1B—C9B126.6 (2)
O2A—C1A—C9A126.8 (2)O1B—C1B—C9B118.0 (2)
O1A—C1A—C9A118.3 (2)O1B—C2B—C7B120.1 (2)
C3A—C2A—O1A117.3 (2)O1B—C2B—C3B117.2 (2)
C3A—C2A—C7A122.7 (2)C7B—C2B—C3B122.8 (2)
O1A—C2A—C7A119.9 (2)C4B—C3B—C2B118.2 (2)
C2A—C3A—C4A118.4 (2)C4B—C3B—H3B120.9
C2A—C3A—H3A120.8C2B—C3B—H3B120.9
C4A—C3A—H3A120.8C3B—C4B—C5B121.0 (2)
C3A—C4A—C5A120.8 (2)C3B—C4B—H4B119.5
C3A—C4A—H4A119.6C5B—C4B—H4B119.5
C5A—C4A—H4A119.6C6B—C5B—C4B120.2 (3)
C6A—C5A—C4A120.1 (2)C6B—C5B—H5B119.9
C6A—C5A—H5A119.9C4B—C5B—H5B119.9
C4A—C5A—H5A119.9C5B—C6B—C7B120.3 (2)
C5A—C6A—C7A120.4 (2)C5B—C6B—H6B119.9
C5A—C6A—H6A119.8C7B—C6B—H6B119.9
C7A—C6A—H6A119.8C2B—C7B—C6B117.6 (2)
C2A—C7A—C6A117.5 (2)C2B—C7B—C8B117.8 (2)
C2A—C7A—C8A118.5 (2)C6B—C7B—C8B124.5 (2)
C6A—C7A—C8A124.0 (2)C9B—C8B—C7B122.5 (2)
C9A—C8A—C7A121.7 (2)C9B—C8B—H8B118.7
C9A—C8A—H8A119.1C7B—C8B—H8B118.7
C7A—C8A—H8A119.1C8B—C9B—C1B118.2 (2)
C8A—C9A—C1A119.0 (2)C8B—C9B—C10B122.6 (2)
C8A—C9A—C10A122.3 (2)C1B—C9B—C10B119.2 (2)
C1A—C9A—C10A118.7 (2)C11B—C10B—N1B115.0 (2)
C11A—C10A—N1A114.6 (2)C11B—C10B—C9B127.2 (2)
C11A—C10A—C9A126.6 (2)N1B—C10B—C9B117.7 (2)
N1A—C10A—C9A118.7 (2)C10B—C11B—S1B111.06 (18)
C10A—C11A—S1A111.28 (19)C10B—C11B—H11B124.5
C10A—C11A—H11A124.4S1B—C11B—H11B124.5
S1A—C11A—H11A124.4N1B—C12B—N2B123.3 (2)
N1A—C12A—N2A124.7 (2)N1B—C12B—S1B116.50 (18)
N1A—C12A—S1A116.15 (18)N2B—C12B—S1B120.19 (18)
N2A—C12A—S1A119.10 (18)N3B—C13B—C14B121.1 (2)
N3A—C13A—C14A118.2 (2)N3B—C13B—H13B119.5
N3A—C13A—H13A120.9C14B—C13B—H13B119.5
C14A—C13A—H13A120.9C15B—C14B—C19B119.9 (2)
C15A—C14A—C19A119.4 (2)C15B—C14B—C13B117.9 (2)
C15A—C14A—C13A120.7 (2)C19B—C14B—C13B122.1 (2)
C19A—C14A—C13A119.9 (2)C14B—C15B—C16B119.9 (2)
C14A—C15A—C16A119.6 (3)C14B—C15B—H15B120.1
C14A—C15A—H15A120.2C16B—C15B—H15B120.1
C16A—C15A—H15A120.2C17B—C16B—C15B120.0 (2)
C17A—C16A—C15A120.4 (3)C17B—C16B—H16B120.0
C17A—C16A—H16A119.8C15B—C16B—H16B120.0
C15A—C16A—H16A119.8C16B—C17B—C18B119.8 (2)
C16A—C17A—C18A119.8 (2)C16B—C17B—H17B120.1
C16A—C17A—H17A120.1C18B—C17B—H17B120.1
C18A—C17A—H17A120.1O3B—C18B—C19B122.6 (2)
O3A—C18A—C19A121.3 (3)O3B—C18B—C17B117.0 (2)
O3A—C18A—C17A118.4 (2)C19B—C18B—C17B120.4 (2)
C19A—C18A—C17A120.3 (3)C18B—C19B—C14B119.9 (2)
C18A—C19A—C14A120.5 (3)C18B—C19B—H19B120.0
C18A—C19A—H19A119.7C14B—C19B—H19B120.0
C14A—C19A—H19A119.7H1W1—O1W—H2W1114.1
C11B—S1B—C12B88.11 (12)
C12A—N2A—N3A—C13A170.9 (2)C12B—N2B—N3B—C13B174.0 (2)
C2A—O1A—C1A—O2A174.4 (2)C2B—O1B—C1B—O2B178.3 (2)
C2A—O1A—C1A—C9A4.7 (3)C2B—O1B—C1B—C9B1.8 (3)
C1A—O1A—C2A—C3A176.2 (2)C1B—O1B—C2B—C7B2.5 (3)
C1A—O1A—C2A—C7A2.9 (3)C1B—O1B—C2B—C3B178.3 (2)
O1A—C2A—C3A—C4A179.7 (2)O1B—C2B—C3B—C4B177.3 (2)
C7A—C2A—C3A—C4A0.7 (4)C7B—C2B—C3B—C4B1.8 (4)
C2A—C3A—C4A—C5A0.9 (4)C2B—C3B—C4B—C5B0.4 (4)
C3A—C4A—C5A—C6A1.6 (4)C3B—C4B—C5B—C6B0.3 (4)
C4A—C5A—C6A—C7A0.9 (4)C4B—C5B—C6B—C7B0.3 (4)
C3A—C2A—C7A—C6A1.3 (4)O1B—C2B—C7B—C6B176.7 (2)
O1A—C2A—C7A—C6A179.7 (2)C3B—C2B—C7B—C6B2.4 (4)
C3A—C2A—C7A—C8A179.0 (2)O1B—C2B—C7B—C8B4.4 (3)
O1A—C2A—C7A—C8A0.1 (4)C3B—C2B—C7B—C8B176.6 (2)
C5A—C6A—C7A—C2A0.5 (4)C5B—C6B—C7B—C2B1.6 (4)
C5A—C6A—C7A—C8A179.8 (2)C5B—C6B—C7B—C8B177.3 (2)
C2A—C7A—C8A—C9A0.8 (4)C2B—C7B—C8B—C9B1.9 (4)
C6A—C7A—C8A—C9A179.5 (2)C6B—C7B—C8B—C9B179.3 (2)
C7A—C8A—C9A—C1A1.1 (4)C7B—C8B—C9B—C1B2.3 (4)
C7A—C8A—C9A—C10A179.3 (2)C7B—C8B—C9B—C10B177.2 (2)
O2A—C1A—C9A—C8A175.3 (3)O2B—C1B—C9B—C8B175.9 (2)
O1A—C1A—C9A—C8A3.7 (3)O1B—C1B—C9B—C8B4.2 (3)
O2A—C1A—C9A—C10A4.4 (4)O2B—C1B—C9B—C10B4.5 (4)
O1A—C1A—C9A—C10A176.6 (2)O1B—C1B—C9B—C10B175.4 (2)
C12A—N1A—C10A—C11A0.7 (3)C12B—N1B—C10B—C11B0.3 (3)
C12A—N1A—C10A—C9A176.8 (2)C12B—N1B—C10B—C9B179.0 (2)
C8A—C9A—C10A—C11A167.1 (2)C8B—C9B—C10B—C11B176.3 (2)
C1A—C9A—C10A—C11A13.3 (4)C1B—C9B—C10B—C11B4.1 (4)
C8A—C9A—C10A—N1A10.1 (4)C8B—C9B—C10B—N1B4.5 (3)
C1A—C9A—C10A—N1A169.6 (2)C1B—C9B—C10B—N1B175.1 (2)
N1A—C10A—C11A—S1A1.5 (3)N1B—C10B—C11B—S1B0.1 (3)
C9A—C10A—C11A—S1A175.7 (2)C9B—C10B—C11B—S1B179.1 (2)
C12A—S1A—C11A—C10A1.42 (19)C12B—S1B—C11B—C10B0.09 (19)
C10A—N1A—C12A—N2A178.9 (2)C10B—N1B—C12B—N2B179.2 (2)
C10A—N1A—C12A—S1A0.4 (3)C10B—N1B—C12B—S1B0.4 (3)
N3A—N2A—C12A—N1A172.1 (2)N3B—N2B—C12B—N1B176.3 (2)
N3A—N2A—C12A—S1A8.7 (3)N3B—N2B—C12B—S1B4.2 (3)
C11A—S1A—C12A—N1A1.1 (2)C11B—S1B—C12B—N1B0.3 (2)
C11A—S1A—C12A—N2A178.2 (2)C11B—S1B—C12B—N2B179.3 (2)
N2A—N3A—C13A—C14A177.0 (2)N2B—N3B—C13B—C14B176.0 (2)
N3A—C13A—C14A—C15A165.4 (2)N3B—C13B—C14B—C15B174.6 (2)
N3A—C13A—C14A—C19A15.7 (3)N3B—C13B—C14B—C19B1.8 (4)
C19A—C14A—C15A—C16A1.4 (4)C19B—C14B—C15B—C16B1.1 (4)
C13A—C14A—C15A—C16A179.7 (2)C13B—C14B—C15B—C16B175.4 (2)
C14A—C15A—C16A—C17A2.1 (4)C14B—C15B—C16B—C17B0.9 (4)
C15A—C16A—C17A—C18A0.7 (4)C15B—C16B—C17B—C18B1.9 (4)
C16A—C17A—C18A—O3A178.1 (3)C16B—C17B—C18B—O3B179.7 (2)
C16A—C17A—C18A—C19A1.2 (4)C16B—C17B—C18B—C19B1.1 (4)
O3A—C18A—C19A—C14A177.4 (2)O3B—C18B—C19B—C14B177.7 (2)
C17A—C18A—C19A—C14A1.9 (4)C17B—C18B—C19B—C14B0.9 (4)
C15A—C14A—C19A—C18A0.5 (4)C15B—C14B—C19B—C18B2.0 (4)
C13A—C14A—C19A—C18A178.4 (2)C13B—C14B—C19B—C18B174.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of C14A–C19A benzene ring.
D—H···AD—HH···AD···AD—H···A
O3A—H3OA···O3Bi0.822.002.808 (3)170
N2A—H2NA···O1Wii0.881.932.790 (3)167
O3B—H3OB···O2Biii0.821.932.726 (3)165
N2B—H2NB···O2Aiv0.842.052.878 (3)170
O1W—H1W1···N1Bv0.872.052.888 (3)161
O1W—H2W1···N1Avi0.882.152.913 (3)145
C8A—H8A···O1Wvii0.932.603.451 (3)153
C5B—H5B···Cg1iv0.932.953.708 (3)139
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+2; (iii) x+2, y, z+1; (iv) x, y, z+1; (v) x+1, y+1, z+1; (vi) x, y+1, z; (vii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC19H13N3O3S·0.5H2O
Mr372.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.012 (3), 32.775 (11), 12.619 (4)
β (°) 93.034 (7)
V3)3309 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.34 × 0.14 × 0.05
Data collection
DiffractometerBruker APEXII DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.928, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
31194, 7564, 5266
Rint0.073
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.128, 1.06
No. of reflections7564
No. of parameters480
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.94, 0.31

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of C14A–C19A benzene ring.
D—H···AD—HH···AD···AD—H···A
O3A—H3OA···O3Bi0.822.002.808 (3)170
N2A—H2NA···O1Wii0.881.932.790 (3)167
O3B—H3OB···O2Biii0.821.932.726 (3)165
N2B—H2NB···O2Aiv0.842.052.878 (3)170
O1W—H1W1···N1Bv0.872.052.888 (3)161
O1W—H2W1···N1Avi0.882.152.913 (3)145
C8A—H8A···O1Wvii0.932.603.451 (3)153
C5B—H5B···Cg1iv0.932.953.708 (3)139
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+2; (iii) x+2, y, z+1; (iv) x, y, z+1; (v) x+1, y+1, z+1; (vi) x, y+1, z; (vii) x, y1, z.
 

Footnotes

Additional correspondence author, e-mail: ohasnah@usm.my.

§Thomson Reuters ResearcherID: C-7576-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for a Short-term Grant (No. 304/PKIMIA/639004) to conduct this research. AA thanks the Pakistan Government and PCSIR for financial scholarship support. HKF and JHG thank USM for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.

References

First citationAnderson, D. M., Shelley, S., Crick, N. & Buraglio, L. (2002). J. Clin. Pharmacol. 42, 1358–1365.  Web of Science CrossRef PubMed CAS Google Scholar
First citationArshad, A., Osman, H., Chan, K. L., Goh, J. H. & Fun, H.-K. (2010a). Acta Cryst. E66, o1491–o1492.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, A., Osman, H., Lam, C. K., Quah, C. K. & Fun, H.-K. (2010b). Acta Cryst. E66, o1446–o1447.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFinn, G. J., Creaven, B. S. & Egan, D. A. (2004). Cancer Lett. 214, 43–54.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGursoy, A. & Karah, N. (2000). Arzneim. Forsch. Drug Res. 50, 167–172.  CAS Google Scholar
First citationHabib, N. S. & Khalil, M. A. (1984). J. Pharm. Sci. 73, 982–985.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHiremath, S. P., Swamy, K. M. K. & Mrnthyunjayaswamy, B. H. M. (1992). J. Indian Chem. Soc. 69, 87–89.  CAS Google Scholar
First citationHofmanová, J., Kozubík, A., Dusék, L. & Pacherník, J. (1998). Eur. J. Pharmacol. 350, 273–284.  Web of Science PubMed Google Scholar
First citationJayashree, B. S., Anuradha, D. & Venugopala, N. K. (2005). Asian J. Chem. 17, 2093–2095.  CAS Google Scholar
First citationKarah, N., Terzioglu, N. & Gursoy, A. (1998). Arzneim. Forsch. Drug Res. 48, 758–763.  CAS Google Scholar
First citationKimura, Y., Okuda, H., Arichi, S., Baba, K. & Kozawa, M. (1985). Biochim. Biophys. Acta, 834, 224–229.  CAS PubMed Web of Science Google Scholar
First citationLaffitte, D., Lamour, V., Tsvetkov, P. O., Makarov, A. A., Klich, M., Deprez, P., Moras, D., Braind, C. & Gilli, R. (2002). Biochemistry, 41, 7217–7223.  Web of Science CrossRef PubMed Google Scholar
First citationLv, P.-C., Zhou, C.-F., Chen, J., Liu, P.-G., Wang, K.-R., Mao, W.-J., Li, H.-Q., Yang, Y., Xiong, J. & Zhu, H.-L. (2010). Bioorg. Med. Chem. 18, 314–319.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMitscher, L. A. (2002). Principles of Medicinal Chemistry, 5th ed., pp. 819–864. Baltimore: Williams & Wilkinsons.  Google Scholar
First citationMoffett, R. B. (1964). J. Med. Chem. 7, 446–449.  CrossRef PubMed CAS Web of Science Google Scholar
First citationOhkuba, M., Kuno, A., Nakanishi, I. & Takasugi, H. (1995). Chem. Pharm. Bull. 43, 1497–1501.  PubMed Web of Science Google Scholar
First citationPatt, W. C., Hamilton, H. W., Taylor, M. D., Ryan, M. J., Taylor, D. G., Conolly, C. J. C., Doherty, A. M., Klutchko, S. R., Sircar, I., Steinbaugh, B. A., Batley, B. L., Painchaud, C. A., Rapundalo, S. T., Michniewicz, B. M. & Olson, S. C. J. (1992). J. Med. Chem. 35, 2562–2572.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, N., Arshad, M. F. & Khan, S. A. (2009). Acta Pol. Pharm. Drug Res. 66, 161–167.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTassies, D., Freire, C., Puoan, J., Maragall, S., Moonteagudo, J., Ordinas, A. & Reverter, J. C. (2002). Haematologica, 87, 1185–1191.  Web of Science PubMed CAS Google Scholar
First citationWattenberg, L. W., Low, L. K. T. & Fladmoe, A. V. (1979). Cancer Res. 39, 1651–1654.  PubMed CAS Web of Science Google Scholar
First citationWeber, U. S., Steffen, B. & Siegers, C. (1998). Res. Commun. Mol. Pathol. Pharmacol. 99, 193–206.  Web of Science CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds