metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[4-amino-N-(pyrimidin-2-yl)benzene­sulfonamidato](2,2′-bi­pyridine)manganese(II)

aKey Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry & Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China
*Correspondence e-mail: chenzfgxnu@yahoo.com

(Received 25 April 2010; accepted 14 May 2010; online 22 May 2010)

The title compound, [Mn(C10H9N4O2S)2(C10H8N2)], contains a distorted octa­hedral [Mn(sdz)2(bpy)] (sdz is the sulfadiazine anion and bpy is 2,2′-bipyridine) complex mol­ecule. A three-dimensional network is generated by N—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds from the sulfadiazine ligands.

Related literature

For mono-ligand sulfadiazine–metal complexes, see: Yuan et al. (2001[Yuan, R.-X., Xiong, R.-G., Chen, Z.-F., Zhang, P., Ju, H.-X., Dai, Z., Guo, Z.-J., Fun, H.-K. & You, X.-Z. (2001). J. Chem. Soc. Dalton Trans. pp. 774-776.]); Wang et al. (2005[Wang, X.-S., Huang, X.-F. & Xiong, R.-G. (2005). Chin. J. Inorg. Chem. 21, 1279-1280.]). For mixed-ligand sulfadiazine–metal complexes, see: Ajibade et al. (2006[Ajibade, P. A., Kolawole, G. A., O'Brien, P., Helliwell, M. & Raftery, J. (2006). Inorg. Chim. Acta, 359, 3111-3116.]); Brown et al. (1987[Brown, C. J., Cook, D. S. & Sengier, L. (1987). Acta Cryst. C43, 2332-2334.]); Hossain et al. (2006[Hossain, G. M. G., Banu, A. & Amoroso, A. J. (2006). Acta Cryst. E62, m2727-m2729.]); Wang et al. (2009[Wang, Y.-F., Li, F.-X., Peng, Y., Chen, Z.-F. & Liang, H. (2009). Acta Cryst. E65, m1584.], 2010[Wang, Y.-F., Zou, H.-L., Luo, X.-J., Chen, Z.-F. & Liang, H. (2010). Acta Cryst. E66, m548.]). For 2,2′-bipyridine–Mn(II) complexes, see: Chen et al. (1995[Chen, X.-M., Wang, R.-Q. & Xu, Z.-T. (1995). Acta Cryst. C51, 820-822.]); Cheng et al. (2004[Cheng, Y.-Q., Hu, M.-L., Fan, S.-R. & Zhang, W. (2004). Acta Cryst. E60, m212-m213.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C10H9N4O2S)2(C10H8N2)]

  • Mr = 709.67

  • Monoclinic, C 2/c

  • a = 20.121 (3) Å

  • b = 17.555 (3) Å

  • c = 17.956 (3) Å

  • β = 106.973 (4)°

  • V = 6066.4 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 193 K

  • 0.25 × 0.17 × 0.15 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.859, Tmax = 0.912

  • 28490 measured reflections

  • 5533 independent reflections

  • 4438 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.167

  • S = 1.17

  • 5533 reflections

  • 441 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8B⋯O2i 0.87 (6) 2.17 (6) 3.011 (6) 163 (5)
N4—H4A⋯N3ii 0.82 (5) 2.23 (5) 3.003 (6) 156 (5)
C12—H12⋯O1iii 0.95 2.32 3.248 (6) 165
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+1; (iii) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: CrystalClear (Rigaku, 1999[Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC & Rigaku, 2000[Rigaku/MSC & Rigaku (2000). CrystalStrucutre. Rigaku/MSC, The Woodands, Texas, USA, and Rigaku Coporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the title compound, [Mn(sdz)2(bpy)] (where sdz is the sulfadiazine anion and bpy is 2,2'-bipyridine), the Mn(II) ion has six-coordinated distorted octahedral geometry and contains two bidentate N-coordinated sulfadiazinate anions and one chelating 2,2'-bipyridine ligand. The coordination mode of sulfadiazine is similar to its cobalt(II) complex (Ajibade et al., 2006; Wang et al. 2010), nickel(II) complex (Wang et al.200 9), and copper(II) complex (Brown et al., 1987), but different from Zn(sdz)2 (Yuan et al., 2001), polymeric Cd(II) complex (Wang et al. 2005), and its copper complex (Hossain et al. 2006). The Mn—N bond distances involving the sulfonamide atoms N1, N5,the pyrimido atoms N2, N6, and the 2,2'-bipyridine atoms N9, N10, are very similar, at 2.242 (4), 2.234 (4), 2.312 (4), 2.278 (4), 2.235 (4), 2.225 (4) Å, respectively. The bond distances of the chelating bpy to Mn(II), Mn—N are consistent with those for the reported bpy-Mn(II) complexes, e.g. diazidobis(2,2'-bipyridine)manganese(II) (Mn—N 2.322 (3) Å)(Cheng et al., 2004) and tris(2,2'-bipyridine)manganese(II) perchlorate hemihydrate (Mn—N 2.214 (4)-2.294 (4) Å)(Chen et al., 1995). The tetrahedral coordination at S is distorted, also found in the neutral sulfadiazine molecule. A three dimensional network is generated via N—H···N, N—H···O, C—H···O hydrogen bonds from the sulfadiazine ligands of the complex.

Related literature top

For mono-ligand sulfadiazine–metal complexes, see: Yuan et al. (2001); Wang et al. (2005). For mixed-ligand sulfadiazine–metal complexes, see: Ajibade et al. (2006); Brown et al. (1987); Hossain et al. (2006); Wang et al. (2009, 2010). For 2,2'-bipyridine–Mn(II) complexes, see: Chen et al. (1995); Cheng et al. (2004).

Experimental top

0.1 mmol Mn(CH3COO)2.4H2O, 0.2 mmol sulfadiazine, 0.1 mmol 2,2'-bipyridine, ethanol (1 ml), methanol (1 ml) and pyridine (0.1 ml) were placed in a Pyrex tube (ca 25 cm). The tube was frozen with liquid N2, evacuated under vacuum, sealed with a torch and heated at 353 K for three days to give yellow block-shaped crystals, with a yield of 70%.

Refinement top

The carbon H atoms were treated as riding, with C—H distances of 0.95 Å ,and Uiso(H) = 1.2Ueq (C). The H atoms attached to the amino N atoms were located in an electron-density map and refined isotropically.

Structure description top

In the title compound, [Mn(sdz)2(bpy)] (where sdz is the sulfadiazine anion and bpy is 2,2'-bipyridine), the Mn(II) ion has six-coordinated distorted octahedral geometry and contains two bidentate N-coordinated sulfadiazinate anions and one chelating 2,2'-bipyridine ligand. The coordination mode of sulfadiazine is similar to its cobalt(II) complex (Ajibade et al., 2006; Wang et al. 2010), nickel(II) complex (Wang et al.200 9), and copper(II) complex (Brown et al., 1987), but different from Zn(sdz)2 (Yuan et al., 2001), polymeric Cd(II) complex (Wang et al. 2005), and its copper complex (Hossain et al. 2006). The Mn—N bond distances involving the sulfonamide atoms N1, N5,the pyrimido atoms N2, N6, and the 2,2'-bipyridine atoms N9, N10, are very similar, at 2.242 (4), 2.234 (4), 2.312 (4), 2.278 (4), 2.235 (4), 2.225 (4) Å, respectively. The bond distances of the chelating bpy to Mn(II), Mn—N are consistent with those for the reported bpy-Mn(II) complexes, e.g. diazidobis(2,2'-bipyridine)manganese(II) (Mn—N 2.322 (3) Å)(Cheng et al., 2004) and tris(2,2'-bipyridine)manganese(II) perchlorate hemihydrate (Mn—N 2.214 (4)-2.294 (4) Å)(Chen et al., 1995). The tetrahedral coordination at S is distorted, also found in the neutral sulfadiazine molecule. A three dimensional network is generated via N—H···N, N—H···O, C—H···O hydrogen bonds from the sulfadiazine ligands of the complex.

For mono-ligand sulfadiazine–metal complexes, see: Yuan et al. (2001); Wang et al. (2005). For mixed-ligand sulfadiazine–metal complexes, see: Ajibade et al. (2006); Brown et al. (1987); Hossain et al. (2006); Wang et al. (2009, 2010). For 2,2'-bipyridine–Mn(II) complexes, see: Chen et al. (1995); Cheng et al. (2004).

Computing details top

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear (Rigaku, 1999); data reduction: CrystalStructure (Rigaku/MSC & Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing plot of the title compound view along [001]. Hydrogen bonds are shown in the dashed line, and the H atoms that are not involved in hydrogen bonding are omitted.
Bis[4-amino-N-(pyrimidin-2-yl)benzenesulfonamidato](2,2'- bipyridine)manganese(II) top
Crystal data top
[Mn(C10H9N4O2S)2(C10H8N2)]F(000) = 2920
Mr = 709.67Dx = 1.554 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -C 2ycCell parameters from 8748 reflections
a = 20.121 (3) Åθ = 3.1–25.3°
b = 17.555 (3) ŵ = 0.63 mm1
c = 17.956 (3) ÅT = 193 K
β = 106.973 (4)°Block, yellow
V = 6066.4 (17) Å30.25 × 0.17 × 0.15 mm
Z = 8
Data collection top
Rigaku Mercury CCD
diffractometer
5533 independent reflections
Radiation source: fine-focus sealed tube4438 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
Detector resolution: 7.31 pixels mm-1θmax = 25.3°, θmin = 3.1°
ω scansh = 2424
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 2121
Tmin = 0.859, Tmax = 0.912l = 1921
28490 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.0668P)2 + 12.6903P]
where P = (Fo2 + 2Fc2)/3
5533 reflections(Δ/σ)max < 0.001
441 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Mn(C10H9N4O2S)2(C10H8N2)]V = 6066.4 (17) Å3
Mr = 709.67Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.121 (3) ŵ = 0.63 mm1
b = 17.555 (3) ÅT = 193 K
c = 17.956 (3) Å0.25 × 0.17 × 0.15 mm
β = 106.973 (4)°
Data collection top
Rigaku Mercury CCD
diffractometer
5533 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
4438 reflections with I > 2σ(I)
Tmin = 0.859, Tmax = 0.912Rint = 0.077
28490 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.167H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.0668P)2 + 12.6903P]
where P = (Fo2 + 2Fc2)/3
5533 reflectionsΔρmax = 0.43 e Å3
441 parametersΔρmin = 0.58 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.68247 (3)0.52337 (4)0.53748 (4)0.0286 (2)
S10.85240 (6)0.60913 (7)0.57746 (7)0.0328 (3)
S20.66371 (6)0.37074 (6)0.39626 (7)0.0293 (3)
O10.81279 (17)0.67735 (18)0.5490 (2)0.0428 (9)
O20.90959 (17)0.6182 (2)0.6479 (2)0.0441 (9)
O30.66571 (17)0.32382 (17)0.46238 (18)0.0364 (8)
O40.60548 (15)0.36038 (18)0.32761 (19)0.0355 (8)
N10.79647 (18)0.5472 (2)0.5858 (2)0.0303 (9)
N20.75742 (18)0.4341 (2)0.6121 (2)0.0304 (9)
N30.8801 (2)0.4501 (2)0.6411 (2)0.0386 (10)
N40.9673 (3)0.5174 (3)0.3230 (3)0.0417 (11)
N50.66857 (19)0.45691 (19)0.4279 (2)0.0280 (8)
N60.67347 (17)0.5838 (2)0.4227 (2)0.0284 (8)
N70.6663 (2)0.5141 (2)0.3060 (2)0.0327 (9)
N80.9195 (2)0.3105 (3)0.3033 (3)0.0414 (11)
N90.59065 (18)0.4786 (2)0.5698 (2)0.0316 (9)
N100.63904 (19)0.6209 (2)0.5872 (2)0.0315 (9)
C10.8146 (2)0.4764 (2)0.6150 (3)0.0283 (10)
C20.7671 (3)0.3623 (3)0.6383 (3)0.0374 (11)
H20.72790.33130.63620.045*
C30.8325 (3)0.3328 (3)0.6680 (3)0.0422 (12)
H30.83950.28240.68810.051*
C40.8875 (3)0.3790 (3)0.6675 (3)0.0432 (13)
H40.93320.35900.68700.052*
C50.8884 (2)0.5770 (2)0.5047 (3)0.0290 (10)
C60.9558 (2)0.5958 (3)0.5071 (3)0.0333 (11)
H60.98450.62210.55100.040*
C70.9814 (2)0.5768 (3)0.4471 (3)0.0344 (11)
H71.02770.59060.44960.041*
C80.9409 (2)0.5373 (3)0.3821 (3)0.0314 (10)
C90.8722 (2)0.5200 (3)0.3791 (3)0.0344 (11)
H90.84290.49500.33470.041*
C100.8469 (2)0.5389 (3)0.4396 (3)0.0378 (12)
H100.80050.52580.43720.045*
C110.6687 (2)0.5180 (2)0.3812 (3)0.0280 (10)
C120.6778 (2)0.6488 (3)0.3868 (3)0.0388 (12)
H120.68130.69550.41440.047*
C130.6774 (3)0.6497 (3)0.3098 (3)0.0453 (13)
H130.68110.69600.28390.054*
C140.6713 (3)0.5814 (3)0.2727 (3)0.0401 (12)
H140.67070.58140.21950.048*
C150.7400 (2)0.3524 (2)0.3695 (3)0.0293 (10)
C160.8007 (2)0.3292 (3)0.4249 (3)0.0334 (11)
H160.80120.32290.47770.040*
C170.8598 (2)0.3153 (2)0.4036 (3)0.0308 (10)
H170.90090.29940.44180.037*
C180.8604 (2)0.3243 (2)0.3260 (3)0.0311 (10)
C190.7986 (2)0.3457 (2)0.2706 (3)0.0324 (10)
H190.79760.35050.21760.039*
C200.7388 (2)0.3599 (2)0.2918 (3)0.0310 (10)
H200.69720.37470.25360.037*
C210.5717 (3)0.4048 (3)0.5639 (3)0.0402 (12)
H210.59160.37140.53470.048*
C220.5244 (3)0.3759 (3)0.5988 (3)0.0426 (12)
H220.51210.32350.59350.051*
C230.4952 (3)0.4237 (3)0.6412 (3)0.0426 (12)
H230.46340.40450.66670.051*
C240.5127 (2)0.5001 (3)0.6465 (3)0.0350 (11)
H240.49240.53440.67460.042*
C250.5604 (2)0.5258 (3)0.6099 (3)0.0292 (10)
C260.6618 (2)0.6924 (3)0.5882 (3)0.0348 (11)
H260.70130.70210.57080.042*
C270.6300 (3)0.7526 (3)0.6135 (3)0.0398 (12)
H270.64750.80290.61330.048*
C280.5731 (3)0.7392 (3)0.6389 (3)0.0425 (12)
H280.55060.78000.65660.051*
C290.5491 (2)0.6656 (3)0.6382 (3)0.0381 (12)
H290.50960.65520.65540.046*
C300.5827 (2)0.6070 (3)0.6125 (3)0.0304 (10)
H4A1.009 (3)0.512 (3)0.330 (3)0.039 (15)*
H4B0.943 (3)0.485 (3)0.286 (3)0.042 (15)*
H8A0.962 (3)0.319 (3)0.336 (4)0.065 (19)*
H8B0.922 (3)0.323 (3)0.258 (3)0.051 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0292 (4)0.0308 (4)0.0283 (4)0.0005 (3)0.0123 (3)0.0015 (3)
S10.0325 (6)0.0312 (6)0.0383 (7)0.0039 (5)0.0159 (5)0.0080 (5)
S20.0351 (6)0.0248 (6)0.0311 (6)0.0019 (5)0.0143 (5)0.0008 (5)
O10.0468 (19)0.0261 (17)0.065 (2)0.0001 (15)0.0307 (18)0.0028 (16)
O20.0404 (19)0.054 (2)0.039 (2)0.0082 (16)0.0144 (16)0.0165 (16)
O30.0485 (19)0.0284 (17)0.0398 (19)0.0005 (15)0.0247 (16)0.0037 (14)
O40.0298 (16)0.0360 (18)0.0414 (19)0.0066 (14)0.0114 (15)0.0060 (15)
N10.0296 (19)0.029 (2)0.035 (2)0.0042 (16)0.0128 (17)0.0001 (16)
N20.0296 (19)0.031 (2)0.032 (2)0.0076 (17)0.0123 (17)0.0053 (16)
N30.034 (2)0.037 (2)0.043 (2)0.0035 (19)0.0091 (19)0.0048 (19)
N40.033 (2)0.060 (3)0.035 (3)0.003 (2)0.015 (2)0.005 (2)
N50.037 (2)0.0215 (19)0.026 (2)0.0002 (16)0.0103 (17)0.0018 (15)
N60.0255 (19)0.0230 (19)0.036 (2)0.0010 (15)0.0078 (17)0.0000 (16)
N70.040 (2)0.032 (2)0.028 (2)0.0010 (18)0.0122 (18)0.0025 (16)
N80.035 (2)0.053 (3)0.040 (3)0.003 (2)0.017 (2)0.005 (2)
N90.0280 (19)0.037 (2)0.030 (2)0.0054 (17)0.0094 (17)0.0017 (17)
N100.031 (2)0.034 (2)0.031 (2)0.0008 (17)0.0123 (17)0.0013 (16)
C10.031 (2)0.030 (2)0.027 (2)0.003 (2)0.014 (2)0.0031 (19)
C20.046 (3)0.036 (3)0.033 (3)0.004 (2)0.016 (2)0.003 (2)
C30.046 (3)0.034 (3)0.044 (3)0.005 (2)0.008 (2)0.001 (2)
C40.037 (3)0.043 (3)0.044 (3)0.008 (2)0.003 (2)0.000 (2)
C50.030 (2)0.025 (2)0.033 (3)0.0008 (19)0.012 (2)0.0013 (19)
C60.030 (2)0.038 (3)0.034 (3)0.004 (2)0.013 (2)0.002 (2)
C70.025 (2)0.043 (3)0.038 (3)0.002 (2)0.013 (2)0.002 (2)
C80.036 (3)0.031 (2)0.031 (3)0.005 (2)0.015 (2)0.0061 (19)
C90.030 (2)0.038 (3)0.034 (3)0.002 (2)0.008 (2)0.007 (2)
C100.034 (3)0.040 (3)0.042 (3)0.004 (2)0.015 (2)0.008 (2)
C110.031 (2)0.022 (2)0.029 (2)0.0001 (19)0.007 (2)0.0000 (18)
C120.043 (3)0.025 (3)0.049 (3)0.002 (2)0.014 (2)0.003 (2)
C130.060 (3)0.032 (3)0.042 (3)0.004 (3)0.013 (3)0.011 (2)
C140.050 (3)0.040 (3)0.033 (3)0.005 (2)0.016 (2)0.008 (2)
C150.036 (2)0.023 (2)0.030 (2)0.001 (2)0.012 (2)0.0006 (18)
C160.042 (3)0.029 (2)0.030 (3)0.003 (2)0.013 (2)0.004 (2)
C170.031 (2)0.031 (2)0.029 (2)0.003 (2)0.006 (2)0.0013 (19)
C180.037 (3)0.023 (2)0.033 (3)0.003 (2)0.011 (2)0.0049 (19)
C190.045 (3)0.030 (2)0.025 (2)0.001 (2)0.014 (2)0.0019 (19)
C200.034 (2)0.030 (2)0.029 (3)0.001 (2)0.009 (2)0.0005 (19)
C210.044 (3)0.031 (3)0.049 (3)0.003 (2)0.019 (3)0.002 (2)
C220.043 (3)0.035 (3)0.054 (3)0.004 (2)0.020 (3)0.001 (2)
C230.034 (3)0.050 (3)0.044 (3)0.001 (2)0.013 (2)0.009 (2)
C240.032 (2)0.044 (3)0.031 (3)0.007 (2)0.014 (2)0.005 (2)
C250.026 (2)0.034 (3)0.028 (2)0.0003 (19)0.008 (2)0.0029 (19)
C260.038 (3)0.034 (3)0.033 (3)0.006 (2)0.011 (2)0.001 (2)
C270.045 (3)0.029 (3)0.048 (3)0.001 (2)0.017 (3)0.001 (2)
C280.044 (3)0.034 (3)0.053 (3)0.011 (2)0.020 (3)0.001 (2)
C290.032 (2)0.044 (3)0.039 (3)0.007 (2)0.013 (2)0.003 (2)
C300.029 (2)0.036 (3)0.025 (2)0.004 (2)0.0068 (19)0.0015 (19)
Geometric parameters (Å, º) top
Mn1—N102.225 (4)C6—C71.365 (6)
Mn1—N52.234 (4)C6—H60.9500
Mn1—N92.235 (4)C7—C81.396 (6)
Mn1—N12.242 (4)C7—H70.9500
Mn1—N62.278 (4)C8—C91.401 (6)
Mn1—N22.312 (4)C9—C101.367 (7)
S1—O11.447 (4)C9—H90.9500
S1—O21.449 (4)C10—H100.9500
S1—N11.603 (4)C12—C131.379 (7)
S1—C51.761 (4)C12—H120.9500
S2—O31.436 (3)C13—C141.360 (7)
S2—O41.443 (3)C13—H130.9500
S2—N51.609 (4)C14—H140.9500
S2—C151.766 (4)C15—C161.393 (6)
N1—C11.356 (6)C15—C201.395 (6)
N2—C21.339 (6)C16—C171.374 (6)
N2—C11.359 (5)C16—H160.9500
N3—C41.328 (6)C17—C181.405 (6)
N3—C11.344 (6)C17—H170.9500
N4—C81.364 (6)C18—C191.397 (6)
N4—H4A0.82 (5)C19—C201.388 (6)
N4—H4B0.89 (6)C19—H190.9500
N5—C111.361 (5)C20—H200.9500
N6—C121.326 (6)C21—C221.380 (7)
N6—C111.363 (5)C21—H210.9500
N7—C111.340 (6)C22—C231.376 (7)
N7—C141.341 (6)C22—H220.9500
N8—C181.387 (6)C23—C241.383 (7)
N8—H8A0.91 (6)C23—H230.9500
N8—H8B0.87 (6)C24—C251.387 (6)
N9—C211.345 (6)C24—H240.9500
N9—C251.354 (6)C25—C301.492 (6)
N10—C261.333 (6)C26—C271.379 (6)
N10—C301.360 (6)C26—H260.9500
C2—C31.369 (7)C27—C281.372 (7)
C2—H20.9500C27—H270.9500
C3—C41.375 (7)C28—C291.379 (7)
C3—H30.9500C28—H280.9500
C4—H40.9500C29—C301.383 (6)
C5—C61.383 (6)C29—H290.9500
C5—C101.395 (6)
N10—Mn1—N5142.44 (13)C6—C7—H7119.4
N10—Mn1—N973.45 (14)C8—C7—H7119.4
N5—Mn1—N998.33 (14)N4—C8—C7120.8 (4)
N10—Mn1—N1100.29 (14)N4—C8—C9121.2 (5)
N5—Mn1—N1106.80 (13)C7—C8—C9118.0 (4)
N9—Mn1—N1142.64 (14)C10—C9—C8120.6 (4)
N10—Mn1—N693.88 (13)C10—C9—H9119.7
N5—Mn1—N659.32 (13)C8—C9—H9119.7
N9—Mn1—N6123.06 (13)C9—C10—C5120.7 (4)
N1—Mn1—N693.76 (13)C9—C10—H10119.6
N10—Mn1—N2123.73 (13)C5—C10—H10119.6
N5—Mn1—N292.83 (13)N7—C11—N5125.1 (4)
N9—Mn1—N293.42 (13)N7—C11—N6124.8 (4)
N1—Mn1—N258.77 (13)N5—C11—N6110.1 (4)
N6—Mn1—N2134.94 (13)N6—C12—C13121.0 (5)
O1—S1—O2115.6 (2)N6—C12—H12119.5
O1—S1—N1105.4 (2)C13—C12—H12119.5
O2—S1—N1113.2 (2)C14—C13—C12117.1 (4)
O1—S1—C5107.9 (2)C14—C13—H13121.4
O2—S1—C5106.8 (2)C12—C13—H13121.4
N1—S1—C5107.7 (2)N7—C14—C13124.4 (5)
O3—S2—O4117.0 (2)N7—C14—H14117.8
O3—S2—N5105.28 (19)C13—C14—H14117.8
O4—S2—N5111.74 (19)C16—C15—C20119.9 (4)
O3—S2—C15107.7 (2)C16—C15—S2120.7 (3)
O4—S2—C15107.3 (2)C20—C15—S2119.5 (3)
N5—S2—C15107.4 (2)C17—C16—C15120.2 (4)
C1—N1—S1122.7 (3)C17—C16—H16119.9
C1—N1—Mn196.3 (3)C15—C16—H16119.9
S1—N1—Mn1139.2 (2)C16—C17—C18121.0 (4)
C2—N2—C1117.8 (4)C16—C17—H17119.5
C2—N2—Mn1147.7 (3)C18—C17—H17119.5
C1—N2—Mn193.1 (3)N8—C18—C19119.9 (4)
C4—N3—C1116.4 (4)N8—C18—C17121.9 (4)
C8—N4—H4A122 (4)C19—C18—C17118.2 (4)
C8—N4—H4B119 (3)C20—C19—C18121.1 (4)
H4A—N4—H4B111 (5)C20—C19—H19119.4
C11—N5—S2122.3 (3)C18—C19—H19119.4
C11—N5—Mn196.2 (3)C19—C20—C15119.6 (4)
S2—N5—Mn1141.3 (2)C19—C20—H20120.2
C12—N6—C11117.9 (4)C15—C20—H20120.2
C12—N6—Mn1147.3 (3)N9—C21—C22122.4 (4)
C11—N6—Mn194.2 (3)N9—C21—H21118.8
C11—N7—C14114.8 (4)C22—C21—H21118.8
C18—N8—H8A121 (4)C23—C22—C21119.3 (5)
C18—N8—H8B122 (4)C23—C22—H22120.4
H8A—N8—H8B106 (5)C21—C22—H22120.4
C21—N9—C25118.0 (4)C22—C23—C24119.2 (5)
C21—N9—Mn1123.7 (3)C22—C23—H23120.4
C25—N9—Mn1117.2 (3)C24—C23—H23120.4
C26—N10—C30118.8 (4)C23—C24—C25118.7 (4)
C26—N10—Mn1123.8 (3)C23—C24—H24120.6
C30—N10—Mn1117.3 (3)C25—C24—H24120.6
N3—C1—N1125.1 (4)N9—C25—C24122.3 (4)
N3—C1—N2124.0 (4)N9—C25—C30115.0 (4)
N1—C1—N2110.9 (4)C24—C25—C30122.7 (4)
N2—C2—C3121.2 (5)N10—C26—C27122.4 (4)
N2—C2—H2119.4N10—C26—H26118.8
C3—C2—H2119.4C27—C26—H26118.8
C2—C3—C4117.3 (5)C28—C27—C26119.3 (5)
C2—C3—H3121.4C28—C27—H27120.3
C4—C3—H3121.4C26—C27—H27120.3
N3—C4—C3123.3 (5)C27—C28—C29118.9 (5)
N3—C4—H4118.3C27—C28—H28120.6
C3—C4—H4118.3C29—C28—H28120.6
C6—C5—C10118.8 (4)C28—C29—C30119.7 (4)
C6—C5—S1120.9 (3)C28—C29—H29120.2
C10—C5—S1120.0 (3)C30—C29—H29120.2
C7—C6—C5120.7 (4)N10—C30—C29121.0 (4)
C7—C6—H6119.7N10—C30—C25115.8 (4)
C5—C6—H6119.7C29—C30—C25123.3 (4)
C6—C7—C8121.1 (4)
O1—S1—N1—C1176.6 (3)C2—N2—C1—N1179.3 (4)
O2—S1—N1—C149.3 (4)Mn1—N2—C1—N19.4 (4)
C5—S1—N1—C168.5 (4)C1—N2—C2—C30.9 (7)
O1—S1—N1—Mn123.2 (4)Mn1—N2—C2—C3161.8 (4)
O2—S1—N1—Mn1150.4 (3)N2—C2—C3—C42.0 (7)
C5—S1—N1—Mn191.8 (3)C1—N3—C4—C30.8 (7)
N10—Mn1—N1—C1129.6 (3)C2—C3—C4—N31.1 (8)
N5—Mn1—N1—C176.7 (3)O1—S1—C5—C696.4 (4)
N9—Mn1—N1—C153.5 (4)O2—S1—C5—C628.5 (4)
N6—Mn1—N1—C1135.7 (3)N1—S1—C5—C6150.3 (4)
N2—Mn1—N1—C16.3 (2)O1—S1—C5—C1077.0 (4)
N10—Mn1—N1—S167.0 (3)O2—S1—C5—C10158.2 (4)
N5—Mn1—N1—S186.7 (3)N1—S1—C5—C1036.3 (4)
N9—Mn1—N1—S1143.2 (3)C10—C5—C6—C70.5 (7)
N6—Mn1—N1—S127.6 (3)S1—C5—C6—C7174.0 (4)
N2—Mn1—N1—S1169.6 (4)C5—C6—C7—C80.6 (7)
N10—Mn1—N2—C2109.5 (6)C6—C7—C8—N4178.9 (5)
N5—Mn1—N2—C261.4 (6)C6—C7—C8—C92.1 (7)
N9—Mn1—N2—C237.1 (6)N4—C8—C9—C10178.5 (5)
N1—Mn1—N2—C2169.4 (6)C7—C8—C9—C102.4 (7)
N6—Mn1—N2—C2109.1 (6)C8—C9—C10—C51.3 (7)
N10—Mn1—N2—C187.4 (3)C6—C5—C10—C90.2 (7)
N5—Mn1—N2—C1101.8 (3)S1—C5—C10—C9173.7 (4)
N9—Mn1—N2—C1159.7 (3)C14—N7—C11—N5176.1 (4)
N1—Mn1—N2—C16.2 (2)C14—N7—C11—N62.2 (7)
N6—Mn1—N2—C154.0 (3)S2—N5—C11—N71.3 (6)
O3—S2—N5—C11179.5 (3)Mn1—N5—C11—N7175.6 (4)
O4—S2—N5—C1152.6 (4)S2—N5—C11—N6179.8 (3)
C15—S2—N5—C1164.9 (4)Mn1—N5—C11—N62.9 (4)
O3—S2—N5—Mn14.3 (4)C12—N6—C11—N71.8 (6)
O4—S2—N5—Mn1132.3 (3)Mn1—N6—C11—N7175.7 (4)
C15—S2—N5—Mn1110.2 (3)C12—N6—C11—N5176.6 (4)
N10—Mn1—N5—C1151.9 (4)Mn1—N6—C11—N52.8 (4)
N9—Mn1—N5—C11125.5 (3)C11—N6—C12—C130.2 (7)
N1—Mn1—N5—C1182.4 (3)Mn1—N6—C12—C13168.7 (4)
N6—Mn1—N5—C111.9 (2)N6—C12—C13—C140.8 (8)
N2—Mn1—N5—C11140.6 (3)C11—N7—C14—C131.0 (7)
N10—Mn1—N5—S2132.2 (3)C12—C13—C14—N70.4 (8)
N9—Mn1—N5—S258.6 (3)O3—S2—C15—C1628.5 (4)
N1—Mn1—N5—S293.4 (3)O4—S2—C15—C16155.2 (4)
N6—Mn1—N5—S2177.7 (4)N5—S2—C15—C1684.5 (4)
N2—Mn1—N5—S235.3 (3)O3—S2—C15—C20150.3 (3)
N10—Mn1—N6—C1236.2 (6)O4—S2—C15—C2023.5 (4)
N5—Mn1—N6—C12171.7 (6)N5—S2—C15—C2096.8 (4)
N9—Mn1—N6—C12108.9 (6)C20—C15—C16—C171.5 (7)
N1—Mn1—N6—C1264.4 (6)S2—C15—C16—C17179.8 (3)
N2—Mn1—N6—C12112.5 (6)C15—C16—C17—C180.1 (7)
N10—Mn1—N6—C11154.0 (3)C16—C17—C18—N8179.9 (4)
N5—Mn1—N6—C111.9 (2)C16—C17—C18—C191.7 (6)
N9—Mn1—N6—C1181.2 (3)N8—C18—C19—C20179.9 (4)
N1—Mn1—N6—C11105.5 (3)C17—C18—C19—C201.9 (6)
N2—Mn1—N6—C1157.4 (3)C18—C19—C20—C150.4 (7)
N10—Mn1—N9—C21175.6 (4)C16—C15—C20—C191.3 (6)
N5—Mn1—N9—C2142.0 (4)S2—C15—C20—C19179.9 (3)
N1—Mn1—N9—C2190.3 (4)C25—N9—C21—C221.8 (7)
N6—Mn1—N9—C21100.6 (4)Mn1—N9—C21—C22166.2 (4)
N2—Mn1—N9—C2151.4 (4)N9—C21—C22—C230.0 (8)
N10—Mn1—N9—C257.6 (3)C21—C22—C23—C241.6 (8)
N5—Mn1—N9—C25150.0 (3)C22—C23—C24—C251.3 (7)
N1—Mn1—N9—C2577.7 (4)C21—N9—C25—C242.0 (6)
N6—Mn1—N9—C2591.3 (3)Mn1—N9—C25—C24166.8 (3)
N2—Mn1—N9—C25116.7 (3)C21—N9—C25—C30178.7 (4)
N5—Mn1—N10—C2691.8 (4)Mn1—N9—C25—C3012.5 (5)
N9—Mn1—N10—C26173.9 (4)C23—C24—C25—N90.5 (7)
N1—Mn1—N10—C2644.1 (4)C23—C24—C25—C30179.7 (4)
N6—Mn1—N10—C2650.5 (4)C30—N10—C26—C270.3 (7)
N2—Mn1—N10—C26103.2 (4)Mn1—N10—C26—C27174.4 (4)
N5—Mn1—N10—C3083.0 (4)N10—C26—C27—C280.2 (7)
N9—Mn1—N10—C301.0 (3)C26—C27—C28—C290.2 (8)
N1—Mn1—N10—C30141.1 (3)C27—C28—C29—C300.3 (8)
N6—Mn1—N10—C30124.4 (3)C26—N10—C30—C290.5 (6)
N2—Mn1—N10—C3081.9 (3)Mn1—N10—C30—C29174.6 (3)
C4—N3—C1—N1179.9 (4)C26—N10—C30—C25179.9 (4)
C4—N3—C1—N22.1 (7)Mn1—N10—C30—C255.0 (5)
S1—N1—C1—N31.1 (6)C28—C29—C30—N100.4 (7)
Mn1—N1—C1—N3168.3 (4)C28—C29—C30—C25179.9 (5)
S1—N1—C1—N2176.9 (3)N9—C25—C30—N1011.6 (6)
Mn1—N1—C1—N29.8 (4)C24—C25—C30—N10167.7 (4)
C2—N2—C1—N31.3 (7)N9—C25—C30—C29168.1 (4)
Mn1—N2—C1—N3168.6 (4)C24—C25—C30—C2912.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8B···O2i0.87 (6)2.17 (6)3.011 (6)163 (5)
N4—H4A···N3ii0.82 (5)2.23 (5)3.003 (6)156 (5)
C12—H12···O1iii0.952.323.248 (6)165
Symmetry codes: (i) x, y+1, z1/2; (ii) x+2, y+1, z+1; (iii) x+3/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formula[Mn(C10H9N4O2S)2(C10H8N2)]
Mr709.67
Crystal system, space groupMonoclinic, C2/c
Temperature (K)193
a, b, c (Å)20.121 (3), 17.555 (3), 17.956 (3)
β (°) 106.973 (4)
V3)6066.4 (17)
Z8
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.25 × 0.17 × 0.15
Data collection
DiffractometerRigaku Mercury CCD
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.859, 0.912
No. of measured, independent and
observed [I > 2σ(I)] reflections
28490, 5533, 4438
Rint0.077
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.167, 1.17
No. of reflections5533
No. of parameters441
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0668P)2 + 12.6903P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.43, 0.58

Computer programs: CrystalClear (Rigaku, 1999), CrystalStructure (Rigaku/MSC & Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8B···O2i0.87 (6)2.17 (6)3.011 (6)163 (5)
N4—H4A···N3ii0.82 (5)2.23 (5)3.003 (6)156 (5)
C12—H12···O1iii0.952.323.248 (6)165.4
Symmetry codes: (i) x, y+1, z1/2; (ii) x+2, y+1, z+1; (iii) x+3/2, y+3/2, z+1.
 

Acknowledgements

The authors thank the Guangxi Natural Science Foundation of China (No. 0991003, 2010GXNSFF013001) and the Open Foundation of the Key Laboratory for the Chemistry and Mol­ecular Engineering of Medicinal Resources (Ministry of Education of China) for financial support.

References

First citationAjibade, P. A., Kolawole, G. A., O'Brien, P., Helliwell, M. & Raftery, J. (2006). Inorg. Chim. Acta, 359, 3111–3116.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrown, C. J., Cook, D. S. & Sengier, L. (1987). Acta Cryst. C43, 2332–2334.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChen, X.-M., Wang, R.-Q. & Xu, Z.-T. (1995). Acta Cryst. C51, 820–822.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCheng, Y.-Q., Hu, M.-L., Fan, S.-R. & Zhang, W. (2004). Acta Cryst. E60, m212–m213.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHossain, G. M. G., Banu, A. & Amoroso, A. J. (2006). Acta Cryst. E62, m2727–m2729.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC & Rigaku (2000). CrystalStrucutre. Rigaku/MSC, The Woodands, Texas, USA, and Rigaku Coporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-S., Huang, X.-F. & Xiong, R.-G. (2005). Chin. J. Inorg. Chem. 21, 1279–1280.  CAS Google Scholar
First citationWang, Y.-F., Li, F.-X., Peng, Y., Chen, Z.-F. & Liang, H. (2009). Acta Cryst. E65, m1584.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Y.-F., Zou, H.-L., Luo, X.-J., Chen, Z.-F. & Liang, H. (2010). Acta Cryst. E66, m548.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYuan, R.-X., Xiong, R.-G., Chen, Z.-F., Zhang, P., Ju, H.-X., Dai, Z., Guo, Z.-J., Fun, H.-K. & You, X.-Z. (2001). J. Chem. Soc. Dalton Trans. pp. 774–776.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds