organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Methyl-2,4-bis­­(methyl­sulfan­yl)tri­cyclo­[6.2.1.02,7]undeca-4,9-diene-3,6-dione1

aChemistry Institute of the University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil, bDepartment of Chemistry, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 28 April 2010; accepted 28 April 2010; online 8 May 2010)

The structure analysis of the title compound, C14H16O2S2, shows the SMe and H atoms of the bond linking the six-membered rings to be syn and also to be syn to the bridgehead –CH2– group. Each of the five-membered rings adopts an envelope conformation at the bridgehead –CH2– group. The dione-substituted ring adopts a folded conformation about the 1,4-C⋯C vector, with the ketone groups lying to one side. The cyclo­hexene ring adopts a boat conformation.

Related literature

For background to reactions of toluquinone-cyclo­penta­diene Diels–Alder adducts epoxides with nucleophiles under heterogeneous conditions, see: von Richthofen et al. (2010[Richthofen, A. A. von, Cardoso Filho, A. J. E. P., Marzorati, L., Zukerman-Schpector, J., Tiekink, E. R. T. & Di Vitta, C. (2010). Can. J. Chem. In the press.]). For conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16O2S2

  • Mr = 280.39

  • Monoclinic, P 21 /c

  • a = 9.1109 (11) Å

  • b = 17.3009 (19) Å

  • c = 9.3746 (11) Å

  • β = 115.916 (2)°

  • V = 1329.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 98 K

  • 0.28 × 0.18 × 0.15 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.887, Tmax = 1

  • 10394 measured reflections

  • 3044 independent reflections

  • 2974 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.092

  • S = 1.02

  • 3044 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992[Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

The structure of the title compound, (I), was investigated as a part of a study into the reactions of toluquinone-cyclopentadiene Diels-Alder adducts epoxides with nucleophiles under heterogeneous conditions (von Richthofen et al., 2010). The most important feature of the molecular structure, Fig. 1, is the syn relationship between the bridgehead-C7, S1 and H6 atoms; the oxo groups and double bond of the hexene residue lie to the opposite side of the molecule to these atoms. The conformation of each of the five-membered rings in (I) is an envelope on C7; the ring puckering parameters (Cremer & Pople, 1975) are Q2 = 0.6188 (18) Å and φ2 = 252.91 (16) ° for C1,C2,C5–C7, and Q2 = 0.5393 (18) Å and φ2 = 323.49 (19) ° for C2–C5,C6. The cyclohexene ring, C1–C6, adopts a boat form with ring-puckering parameters of q2 = 0.9782 (17) Å, q3 = 0.0101 (17) Å, θ = 89.41 (10) °, and φ2 = 59.60 (10) °. Finally, the C1,C6,C8–C11 dione-substituted ring adopts a folded conformation about the C8–C11 vector. The C1,C6,C9,C10 atoms define a plane [r.m.s. deviation = 0.0069 Å] with the C8 and C11 atoms lying 0.3859 (20) and 0.3099 (21) Å out of this plane, respectively; the O1 and O2 atoms lie even further out of the plane, i.e. 0.950 (3) and -0.743 (3) Å, respectively. No specific intermolecular interactions are noted in the crystal packing.

Related literature top

For background to reactions of toluquinone-cyclopentadiene Diels–Alder adducts epoxides with nucleophiles under heterogeneous conditions, see: von Richthofen et al. (2010). For conformational analysis, see: Cremer & Pople (1975)

Experimental top

The preparation and characterisation is as described in the literature (von Richthofen et al., 2010). The crystals were obtained by slow evaporation at 253 K from a 6:1 solution of n-hexane:ethyl acetate.

Refinement top

The H atoms were geometrically placed (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2-1.5Ueq(C).

Structure description top

The structure of the title compound, (I), was investigated as a part of a study into the reactions of toluquinone-cyclopentadiene Diels-Alder adducts epoxides with nucleophiles under heterogeneous conditions (von Richthofen et al., 2010). The most important feature of the molecular structure, Fig. 1, is the syn relationship between the bridgehead-C7, S1 and H6 atoms; the oxo groups and double bond of the hexene residue lie to the opposite side of the molecule to these atoms. The conformation of each of the five-membered rings in (I) is an envelope on C7; the ring puckering parameters (Cremer & Pople, 1975) are Q2 = 0.6188 (18) Å and φ2 = 252.91 (16) ° for C1,C2,C5–C7, and Q2 = 0.5393 (18) Å and φ2 = 323.49 (19) ° for C2–C5,C6. The cyclohexene ring, C1–C6, adopts a boat form with ring-puckering parameters of q2 = 0.9782 (17) Å, q3 = 0.0101 (17) Å, θ = 89.41 (10) °, and φ2 = 59.60 (10) °. Finally, the C1,C6,C8–C11 dione-substituted ring adopts a folded conformation about the C8–C11 vector. The C1,C6,C9,C10 atoms define a plane [r.m.s. deviation = 0.0069 Å] with the C8 and C11 atoms lying 0.3859 (20) and 0.3099 (21) Å out of this plane, respectively; the O1 and O2 atoms lie even further out of the plane, i.e. 0.950 (3) and -0.743 (3) Å, respectively. No specific intermolecular interactions are noted in the crystal packing.

For background to reactions of toluquinone-cyclopentadiene Diels–Alder adducts epoxides with nucleophiles under heterogeneous conditions, see: von Richthofen et al. (2010). For conformational analysis, see: Cremer & Pople (1975)

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
5-Methyl-2,4-bis(methylsulfanyl)tricyclo[6.2.1.02,7]undeca-4,9-diene-3,6-dione top
Crystal data top
C14H16O2S2F(000) = 592
Mr = 280.39Dx = 1.401 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5730 reflections
a = 9.1109 (11) Åθ = 2.4–40.4°
b = 17.3009 (19) ŵ = 0.39 mm1
c = 9.3746 (11) ÅT = 98 K
β = 115.916 (2)°Block, pale-yellow
V = 1329.1 (3) Å30.28 × 0.18 × 0.15 mm
Z = 4
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
3044 independent reflections
Radiation source: fine-focus sealed tube2974 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1111
Tmin = 0.887, Tmax = 1k = 2216
10394 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0478P)2 + 1.0842P]
where P = (Fo2 + 2Fc2)/3
3044 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C14H16O2S2V = 1329.1 (3) Å3
Mr = 280.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.1109 (11) ŵ = 0.39 mm1
b = 17.3009 (19) ÅT = 98 K
c = 9.3746 (11) Å0.28 × 0.18 × 0.15 mm
β = 115.916 (2)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
3044 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2974 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 1Rint = 0.021
10394 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.02Δρmax = 0.53 e Å3
3044 reflectionsΔρmin = 0.36 e Å3
164 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.09559 (4)0.19478 (2)0.09496 (4)0.01770 (11)
S20.59801 (5)0.11808 (2)0.12851 (4)0.01903 (11)
O10.29429 (13)0.03034 (6)0.10133 (13)0.0187 (2)
O20.54427 (14)0.17201 (7)0.62713 (13)0.0217 (2)
C10.20518 (17)0.11982 (8)0.24056 (16)0.0131 (3)
C20.09479 (18)0.05593 (8)0.26238 (18)0.0166 (3)
H20.00930.03410.16510.020*
C30.21532 (18)0.00100 (9)0.37784 (19)0.0186 (3)
H30.23760.05040.35340.022*
C40.28332 (19)0.03223 (9)0.52005 (19)0.0192 (3)
H40.36090.01020.61290.023*
C50.21127 (18)0.11264 (9)0.50320 (18)0.0176 (3)
H50.21980.13680.60110.021*
C60.28355 (17)0.15956 (8)0.40699 (17)0.0143 (3)
H60.24050.21230.39450.017*
C70.03709 (19)0.09835 (9)0.37360 (19)0.0201 (3)
H7A0.02130.14580.32810.024*
H7B0.02690.06570.40920.024*
C80.32628 (17)0.08718 (8)0.18602 (16)0.0136 (3)
C90.48477 (17)0.12970 (8)0.23722 (17)0.0136 (3)
C100.55309 (17)0.16556 (8)0.38032 (17)0.0142 (3)
C110.46773 (17)0.16467 (8)0.48354 (17)0.0146 (3)
C120.71871 (18)0.20233 (9)0.44683 (18)0.0183 (3)
H12A0.80090.16310.49070.027*
H12B0.72860.23830.52850.027*
H12C0.73270.22910.36390.027*
C130.4452 (2)0.11235 (10)0.07521 (18)0.0232 (3)
H13A0.49780.10600.14360.035*
H13B0.38190.15900.10280.035*
H13C0.37490.06900.08730.035*
C140.0177 (2)0.13994 (10)0.08395 (19)0.0257 (3)
H14A0.08030.17460.16890.039*
H14B0.08980.10470.06680.039*
H14C0.05680.11140.11120.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01849 (19)0.01411 (19)0.01702 (18)0.00254 (13)0.00454 (15)0.00180 (13)
S20.0191 (2)0.0247 (2)0.01740 (19)0.00085 (14)0.01171 (15)0.00128 (14)
O10.0216 (5)0.0166 (5)0.0186 (5)0.0013 (4)0.0093 (4)0.0041 (4)
O20.0207 (6)0.0295 (6)0.0137 (5)0.0047 (4)0.0064 (4)0.0031 (4)
C10.0132 (6)0.0120 (6)0.0127 (6)0.0011 (5)0.0045 (5)0.0013 (5)
C20.0148 (7)0.0163 (7)0.0189 (7)0.0022 (5)0.0075 (6)0.0001 (5)
C30.0212 (7)0.0136 (7)0.0245 (7)0.0008 (5)0.0133 (6)0.0039 (6)
C40.0212 (7)0.0180 (7)0.0210 (7)0.0010 (6)0.0116 (6)0.0046 (6)
C50.0186 (7)0.0195 (7)0.0178 (7)0.0001 (5)0.0109 (6)0.0007 (6)
C60.0160 (7)0.0146 (6)0.0140 (6)0.0005 (5)0.0079 (5)0.0011 (5)
C70.0175 (7)0.0208 (7)0.0254 (8)0.0011 (6)0.0126 (6)0.0026 (6)
C80.0154 (7)0.0130 (6)0.0119 (6)0.0011 (5)0.0054 (5)0.0026 (5)
C90.0149 (6)0.0133 (6)0.0141 (6)0.0010 (5)0.0076 (5)0.0014 (5)
C100.0143 (6)0.0127 (6)0.0155 (6)0.0006 (5)0.0065 (5)0.0011 (5)
C110.0172 (7)0.0122 (6)0.0145 (6)0.0014 (5)0.0070 (6)0.0014 (5)
C120.0156 (7)0.0204 (7)0.0191 (7)0.0034 (5)0.0078 (6)0.0018 (6)
C130.0317 (9)0.0263 (8)0.0146 (7)0.0017 (7)0.0130 (7)0.0011 (6)
C140.0246 (8)0.0248 (8)0.0178 (7)0.0020 (6)0.0001 (6)0.0012 (6)
Geometric parameters (Å, º) top
S1—C141.8071 (17)C5—H50.9800
S1—C11.8304 (14)C6—C111.512 (2)
S2—C91.7500 (14)C6—H60.9800
S2—C131.8086 (17)C7—H7A0.9700
O1—C81.2167 (18)C7—H7B0.9700
O2—C111.2223 (18)C8—C91.5003 (19)
C1—C81.5135 (19)C9—C101.357 (2)
C1—C61.5630 (19)C10—C111.4830 (19)
C1—C21.5668 (19)C10—C121.4994 (19)
C2—C31.520 (2)C12—H12A0.9600
C2—C71.543 (2)C12—H12B0.9600
C2—H20.9800C12—H12C0.9600
C3—C41.330 (2)C13—H13A0.9600
C3—H30.9300C13—H13B0.9600
C4—C51.517 (2)C13—H13C0.9600
C4—H40.9300C14—H14A0.9600
C5—C71.540 (2)C14—H14B0.9600
C5—C61.557 (2)C14—H14C0.9600
C14—S1—C1102.96 (7)C2—C7—H7A112.9
C9—S2—C13104.11 (7)C5—C7—H7B112.9
C8—C1—C6114.76 (11)C2—C7—H7B112.9
C8—C1—C2112.65 (11)H7A—C7—H7B110.3
C6—C1—C2102.67 (11)O1—C8—C9121.85 (13)
C8—C1—S1104.66 (9)O1—C8—C1121.33 (13)
C6—C1—S1107.16 (9)C9—C8—C1116.80 (12)
C2—C1—S1115.16 (10)C10—C9—C8120.12 (13)
C3—C2—C7100.40 (12)C10—C9—S2119.71 (11)
C3—C2—C1104.19 (11)C8—C9—S2119.17 (10)
C7—C2—C1100.39 (11)C9—C10—C11119.70 (13)
C3—C2—H2116.5C9—C10—C12123.26 (13)
C7—C2—H2116.5C11—C10—C12116.91 (12)
C1—C2—H2116.5O2—C11—C10120.53 (13)
C4—C3—C2107.98 (13)O2—C11—C6120.63 (13)
C4—C3—H3126.0C10—C11—C6118.73 (12)
C2—C3—H3126.0C10—C12—H12A109.5
C3—C4—C5107.54 (14)C10—C12—H12B109.5
C3—C4—H4126.2H12A—C12—H12B109.5
C5—C4—H4126.2C10—C12—H12C109.5
C4—C5—C7100.65 (12)H12A—C12—H12C109.5
C4—C5—C6105.37 (12)H12B—C12—H12C109.5
C7—C5—C6100.23 (12)S2—C13—H13A109.5
C4—C5—H5116.1S2—C13—H13B109.5
C7—C5—H5116.1H13A—C13—H13B109.5
C6—C5—H5116.1S2—C13—H13C109.5
C11—C6—C5114.71 (12)H13A—C13—H13C109.5
C11—C6—C1115.31 (11)H13B—C13—H13C109.5
C5—C6—C1102.97 (11)S1—C14—H14A109.5
C11—C6—H6107.8S1—C14—H14B109.5
C5—C6—H6107.8H14A—C14—H14B109.5
C1—C6—H6107.8S1—C14—H14C109.5
C5—C7—C294.11 (11)H14A—C14—H14C109.5
C5—C7—H7A112.9H14B—C14—H14C109.5
C14—S1—C1—C867.48 (11)C3—C2—C7—C548.84 (12)
C14—S1—C1—C6170.26 (10)C1—C2—C7—C557.84 (12)
C14—S1—C1—C256.77 (12)C6—C1—C8—O1148.85 (13)
C8—C1—C2—C355.85 (15)C2—C1—C8—O131.83 (18)
C6—C1—C2—C368.13 (13)S1—C1—C8—O193.99 (14)
S1—C1—C2—C3175.78 (10)C6—C1—C8—C933.00 (17)
C8—C1—C2—C7159.48 (12)C2—C1—C8—C9150.01 (12)
C6—C1—C2—C735.50 (13)S1—C1—C8—C984.16 (12)
S1—C1—C2—C780.59 (12)O1—C8—C9—C10148.32 (14)
C7—C2—C3—C432.22 (15)C1—C8—C9—C1033.53 (19)
C1—C2—C3—C471.40 (15)O1—C8—C9—S220.23 (19)
C2—C3—C4—C50.54 (16)C1—C8—C9—S2157.91 (10)
C3—C4—C5—C733.23 (15)C13—S2—C9—C10153.96 (12)
C3—C4—C5—C670.61 (15)C13—S2—C9—C837.43 (13)
C4—C5—C6—C1159.34 (15)C8—C9—C10—C112.0 (2)
C7—C5—C6—C11163.48 (12)S2—C9—C10—C11170.46 (10)
C4—C5—C6—C166.75 (14)C8—C9—C10—C12173.67 (13)
C7—C5—C6—C137.39 (13)S2—C9—C10—C125.2 (2)
C8—C1—C6—C114.20 (17)C9—C10—C11—O2155.13 (14)
C2—C1—C6—C11126.78 (12)C12—C10—C11—O220.8 (2)
S1—C1—C6—C11111.53 (11)C9—C10—C11—C628.7 (2)
C8—C1—C6—C5121.50 (12)C12—C10—C11—C6155.42 (13)
C2—C1—C6—C51.07 (13)C5—C6—C11—O238.17 (19)
S1—C1—C6—C5122.77 (10)C1—C6—C11—O2157.58 (14)
C4—C5—C7—C249.33 (13)C5—C6—C11—C10145.63 (13)
C6—C5—C7—C258.61 (12)C1—C6—C11—C1026.22 (18)

Experimental details

Crystal data
Chemical formulaC14H16O2S2
Mr280.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)98
a, b, c (Å)9.1109 (11), 17.3009 (19), 9.3746 (11)
β (°) 115.916 (2)
V3)1329.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.28 × 0.18 × 0.15
Data collection
DiffractometerRigaku AFC12K/SATURN724
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.887, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
10394, 3044, 2974
Rint0.021
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.092, 1.02
No. of reflections3044
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.36

Computer programs: CrystalClear (Rigaku/MSC, 2005), PATTY in DIRDIF92 (Beurskens et al., 1992), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2010).

 

Footnotes

1Additional correspondence author, e-mail: cldvitta@iq.usp.br.

Acknowledgements

We thank FAPESP, CAPES, and CNPq (306532/2009–3 to JZ-S) for financial support.

References

First citationBeurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRichthofen, A. A. von, Cardoso Filho, A. J. E. P., Marzorati, L., Zukerman-Schpector, J., Tiekink, E. R. T. & Di Vitta, C. (2010). Can. J. Chem. In the press.  Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds