organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 3-(4-methyl­benzyl­­idene)carbazate

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, bMinistry of Personnel, Weifang University, Weifang 261061, People's Republic of China, and cMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: liyufeng8111@163.com

(Received 12 May 2010; accepted 15 May 2010; online 22 May 2010)

The title compound, C10H12N2O2, was prepared by the reaction of methyl carbazate and 4-methyl­benzaldehyde. The dihedral angle between the benzene ring and the carbazate fragment is 20.86 (10)°. In the crystal structure, mol­ecules are linked by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For background to Schiff bases, see: Cimerman et al. (1997[Cimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta, 343, 145-153.]). For C=N bond lengths, see: Girgis (2006[Girgis, A. S. (2006). J. Chem. Res. pp. 81-85.]). For a related structure, see: Li et al. (2009[Li, Y.-F., Liu, H.-X. & Jian, F.-F. (2009). Acta Cryst. E65, o2959.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12N2O2

  • Mr = 192.22

  • Monoclinic, P 21 /c

  • a = 10.038 (2) Å

  • b = 13.308 (3) Å

  • c = 7.7923 (16) Å

  • β = 99.71 (3)°

  • V = 1026.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 9493 measured reflections

  • 2322 independent reflections

  • 1528 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.175

  • S = 1.06

  • 2322 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.00 2.8615 (18) 176
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Li, Y.-F., Liu, H.-X. & Jian, F.-F. (2009). Acta Cryst. E65, o2959.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Li, Y.-F., Liu, H.-X. & Jian, F.-F. (2009). Acta Cryst. E65, o2959.]); molecular graphics: SHELXTL (Sheldrick, 2008[Li, Y.-F., Liu, H.-X. & Jian, F.-F. (2009). Acta Cryst. E65, o2959.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have received considerable attention in the literature. They are attractive from several points of view, such as the possibility of analytical application (Cimerman, et al., 1997). As part of our search for new Schiff base compounds we synthesized the title compound (I), and describe its structure here.

The molcular structure of (I) is shown in Fig. 1. The C8—N2 bond length of 1.273 (2)Å is comparable with C—N double bond [1.281 (2) Å] reported (Girgis, 2006). In the crystal structure, molecules are linked by intermolecular N—H···O hydrogen bonds.

Related literature top

For background to Schiff bases, see: Cimerman et al. (1997). For C N bond lengths, see: Girgis (2006). For a related structure, see: Li et al. (2009).

Experimental top

A mixture of methyl carbazate (0.1 mol), and 4-methylbenzaldehyde (0.1 mol) was stirred in refluxing ethanol (20 mL) for 4 h to afford the title compound (0.085 mol, yield 85%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93-0.97 Å; N—H = 0.86Å and with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(Cmethyl).

Structure description top

Schiff bases have received considerable attention in the literature. They are attractive from several points of view, such as the possibility of analytical application (Cimerman, et al., 1997). As part of our search for new Schiff base compounds we synthesized the title compound (I), and describe its structure here.

The molcular structure of (I) is shown in Fig. 1. The C8—N2 bond length of 1.273 (2)Å is comparable with C—N double bond [1.281 (2) Å] reported (Girgis, 2006). In the crystal structure, molecules are linked by intermolecular N—H···O hydrogen bonds.

For background to Schiff bases, see: Cimerman et al. (1997). For C N bond lengths, see: Girgis (2006). For a related structure, see: Li et al. (2009).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Methyl 3-(4-methylbenzylidene)carbazate top
Crystal data top
C10H12N2O2F(000) = 408
Mr = 192.22Dx = 1.244 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1798 reflections
a = 10.038 (2) Åθ = 3.5–25.2°
b = 13.308 (3) ŵ = 0.09 mm1
c = 7.7923 (16) ÅT = 293 K
β = 99.71 (3)°Blcok, colorless
V = 1026.1 (4) Å30.22 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1528 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.043
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
phi and ω scansh = 1312
9493 measured reflectionsk = 1717
2322 independent reflectionsl = 910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1077P)2]
where P = (Fo2 + 2Fc2)/3
2322 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C10H12N2O2V = 1026.1 (4) Å3
Mr = 192.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.038 (2) ŵ = 0.09 mm1
b = 13.308 (3) ÅT = 293 K
c = 7.7923 (16) Å0.22 × 0.20 × 0.18 mm
β = 99.71 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1528 reflections with I > 2σ(I)
9493 measured reflectionsRint = 0.043
2322 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.06Δρmax = 0.26 e Å3
2322 reflectionsΔρmin = 0.23 e Å3
127 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.44060 (12)0.82548 (9)0.19195 (16)0.0656 (4)
C90.55062 (16)0.81674 (12)0.1159 (2)0.0531 (4)
N20.75692 (13)0.73089 (10)0.14969 (17)0.0559 (4)
O10.56744 (12)0.86340 (9)0.01208 (15)0.0636 (4)
C50.95735 (16)0.62998 (12)0.1941 (2)0.0540 (4)
N10.63541 (14)0.74964 (11)0.20247 (18)0.0617 (4)
H1A0.61410.71840.29060.074*
C80.82561 (17)0.66004 (13)0.2311 (2)0.0580 (4)
H8A0.79030.62610.31760.070*
C31.15344 (17)0.65532 (14)0.0599 (2)0.0661 (5)
H3A1.20040.69510.00780.079*
C21.20961 (17)0.56483 (14)0.1252 (2)0.0623 (5)
C71.13692 (18)0.50763 (15)0.2245 (2)0.0683 (5)
H7A1.17190.44650.26920.082*
C61.01357 (17)0.53927 (13)0.2585 (2)0.0629 (5)
H6A0.96680.49920.32600.076*
C41.02987 (18)0.68754 (13)0.0931 (2)0.0647 (5)
H4A0.99470.74840.04750.078*
C100.3380 (2)0.89244 (15)0.1047 (3)0.0789 (6)
H10A0.26300.89380.16650.118*
H10B0.30800.86930.01200.118*
H10C0.37490.95890.10170.118*
C11.3469 (2)0.53239 (18)0.0914 (3)0.0857 (6)
H1B1.36990.46870.14630.128*
H1C1.41310.58150.13830.128*
H1D1.34490.52630.03170.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0612 (7)0.0707 (8)0.0700 (8)0.0078 (5)0.0254 (6)0.0082 (6)
C90.0607 (10)0.0489 (8)0.0527 (9)0.0029 (7)0.0181 (8)0.0056 (7)
N20.0573 (8)0.0566 (8)0.0561 (8)0.0004 (6)0.0165 (6)0.0012 (6)
O10.0813 (9)0.0577 (7)0.0566 (7)0.0059 (6)0.0251 (6)0.0061 (5)
C50.0561 (9)0.0530 (9)0.0517 (9)0.0046 (7)0.0059 (7)0.0048 (7)
N10.0632 (9)0.0686 (9)0.0580 (9)0.0076 (7)0.0241 (7)0.0119 (7)
C80.0613 (10)0.0600 (10)0.0535 (9)0.0063 (8)0.0121 (8)0.0016 (7)
C30.0633 (10)0.0656 (11)0.0719 (12)0.0027 (8)0.0187 (9)0.0010 (8)
C20.0575 (9)0.0670 (11)0.0597 (10)0.0026 (8)0.0025 (8)0.0105 (8)
C70.0672 (11)0.0635 (11)0.0698 (11)0.0086 (8)0.0011 (9)0.0068 (8)
C60.0629 (10)0.0635 (10)0.0606 (10)0.0035 (8)0.0052 (8)0.0096 (8)
C40.0675 (11)0.0547 (9)0.0736 (12)0.0034 (8)0.0169 (9)0.0050 (8)
C100.0678 (12)0.0721 (12)0.0987 (15)0.0134 (9)0.0196 (11)0.0115 (11)
C10.0677 (12)0.1015 (15)0.0883 (14)0.0137 (11)0.0145 (10)0.0081 (12)
Geometric parameters (Å, º) top
O2—C91.343 (2)C3—H3A0.9300
O2—C101.442 (2)C2—C71.379 (3)
C9—O11.2108 (19)C2—C11.509 (3)
C9—N11.335 (2)C7—C61.375 (2)
N2—C81.273 (2)C7—H7A0.9300
N2—N11.3742 (19)C6—H6A0.9300
C5—C41.389 (2)C4—H4A0.9300
C5—C61.390 (2)C10—H10A0.9600
C5—C81.456 (2)C10—H10B0.9600
N1—H1A0.8600C10—H10C0.9600
C8—H8A0.9300C1—H1B0.9600
C3—C41.378 (2)C1—H1C0.9600
C3—C21.389 (3)C1—H1D0.9600
C9—O2—C10114.86 (13)C6—C7—H7A119.4
O1—C9—N1126.40 (15)C2—C7—H7A119.4
O1—C9—O2123.93 (15)C7—C6—C5121.34 (17)
N1—C9—O2109.67 (14)C7—C6—H6A119.3
C8—N2—N1114.77 (14)C5—C6—H6A119.3
C4—C5—C6117.63 (16)C3—C4—C5120.62 (17)
C4—C5—C8122.74 (16)C3—C4—H4A119.7
C6—C5—C8119.61 (16)C5—C4—H4A119.7
C9—N1—N2119.52 (13)O2—C10—H10A109.5
C9—N1—H1A120.2O2—C10—H10B109.5
N2—N1—H1A120.2H10A—C10—H10B109.5
N2—C8—C5122.59 (16)O2—C10—H10C109.5
N2—C8—H8A118.7H10A—C10—H10C109.5
C5—C8—H8A118.7H10B—C10—H10C109.5
C4—C3—C2121.59 (17)C2—C1—H1B109.5
C4—C3—H3A119.2C2—C1—H1C109.5
C2—C3—H3A119.2H1B—C1—H1C109.5
C7—C2—C3117.61 (17)C2—C1—H1D109.5
C7—C2—C1121.67 (17)H1B—C1—H1D109.5
C3—C2—C1120.70 (18)H1C—C1—H1D109.5
C6—C7—C2121.21 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.002.8615 (18)176
Symmetry code: (i) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H12N2O2
Mr192.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.038 (2), 13.308 (3), 7.7923 (16)
β (°) 99.71 (3)
V3)1026.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9493, 2322, 1528
Rint0.043
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.175, 1.06
No. of reflections2322
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.23

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.002.8615 (18)176.0
Symmetry code: (i) x, y+3/2, z+1/2.
 

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta, 343, 145–153.  CrossRef CAS Web of Science Google Scholar
First citationGirgis, A. S. (2006). J. Chem. Res. pp. 81–85.  CrossRef Google Scholar
First citationLi, Y.-F., Liu, H.-X. & Jian, F.-F. (2009). Acta Cryst. E65, o2959.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds