metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(4,7-di­chloro-1,10-phenanthroline-κ2N,N′)bis­­(dicyanamido-κN)copper(II)

aDepartment of Inorganic Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, SK-041 54 Košice, Slovakia, and bDepartment of Inorganic Chemistry, Faculty of Science, Palacký University, Tř. 17. listopadu 12, CZ-77146 Olomouc, Czech Republic
*Correspondence e-mail: ivan.potocnak@upjs.sk

(Received 17 May 2010; accepted 26 May 2010; online 29 May 2010)

In the title compound, [Cu(C2N3)2(C12H6Cl2N2)2], the CuII atom is coordinated by two chelating 4,7-dichloro-1,10-phenanthroline (4,7-Cl-phen) ligands and two dicyanamide (dca) ligands in a cis arrangement, forming a distorted octa­hedral geometry. The equatorial plane is occupied by three N atoms from two 4,7-Cl-phen ligands and one N atom from a dca ligand at shorter Cu—N distances. Due to the Jahn–Teller effect, the axial positions are occupied by a 4,7-Cl-phen N atom and a dca N atom at longer Cu—N distances. The dca ligands are nearly planar, with a maximum deviations of 0.006 (1) Å. The crystal structure is stabilized by weak C—H⋯N hydrogen bonds, with cyanide N atoms as acceptors, and ππ inter­actions between adjacent phenyl rings [centroid–centroid distance = 3.725 (3) Å].

Related literature

For long-range magnetic ordering in M(dca)2 compounds, see: Batten & Murray (2003[Batten, S. R. & Murray, K. S. (2003). Coord. Chem. Rev. 246, 103-130.]); Kurmoo & Kepert (1998[Kurmoo, M. & Kepert, C. J. (1998). New J. Chem. 22, 1515-1524.]). For penta-coordinated Cu(II) in [Cu(L)2dca]Y complexes [L = 1,10-phenanthroline (phen) and 2,2′-bipyridine (bpy), Y = a monovalent anion], see: Potočňák et al. (2005[Potočňák, I., Burčák, M., Baran, P. & Jäger, L. (2005). Transition Met. Chem. 30, 889-896.], 2008[Potočňák, I., Vavra, M., Jäger, L., Baran, P. & Wagner, C. (2008). Transition Met. Chem. 33, 1-8.]). For related structures of [M(phen)2(dca)2] compounds, see: Lan et al. (2005[Lan, G.-Z., Wu, A.-Q., Guo, G.-C. & Zheng, F.-K. (2005). Acta Cryst. E61, m1018-m1020.]) (M = Cd); Potočňák et al. (1995[Potočňák, I., Dunaj-Jurčo, M., Mikloš, D., Kabešová, M. & Jäger, L. (1995). Acta Cryst. C51, 600-602.]) (M = Cu); Wang et al. (2000[Wang, Z.-M., Luo, J., Sun, B.-W., Yan, C.-H., Liao, C.-S. & Gao, S. (2000). Acta Cryst. C56, e242-e244.]) (M = Mn and Zn); Wu et al. (2004[Wu, A.-Q., Zheng, F.-K., Guo, G.-C. & Huang, J.-S. (2004). Acta Cryst. E60, m373-m375.]) (M = Ni). For typical N—Csp bond lengths, see: Jolly (1991[Jolly, W. L. (1991). Modern Inorganic Chemistry, 2nd ed., pp. 54-55. New York: McGraw-Hill Inc.]). For ππ inter­actions, see: Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2N3)2(C12H6Cl2N2)2]

  • Mr = 693.82

  • Monoclinic, P 21 /n

  • a = 9.5484 (2) Å

  • b = 16.6471 (3) Å

  • c = 17.4906 (3) Å

  • β = 97.316 (2)°

  • V = 2757.55 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.22 mm−1

  • T = 110 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Oxford Diffraction CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.711, Tmax = 0.792

  • 24411 measured reflections

  • 5408 independent reflections

  • 4583 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.082

  • S = 1.06

  • 5408 reflections

  • 388 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N1 1.9707 (19)
Cu1—N40 2.0267 (17)
Cu1—N30 2.0431 (16)
Cu1—N10 2.0575 (17)
Cu1—N4 2.2863 (19)
Cu1—N20 2.3715 (17)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯N4 0.93 2.49 3.143 (3) 127
C22—H22⋯N3i 0.93 2.46 3.304 (3) 151
C32—H32⋯N6ii 0.93 2.54 3.181 (3) 126
C43—H43⋯N6iii 0.93 2.53 3.107 (3) 120
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y, -z; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Nowadays, there is increasing interest in the synthesis and characterization of new coordination compounds due to their fascinating structural features. Among the various classes of ligands currently employed for the generation of coordination compounds, dicyanamide (dca) has been attracting a lot of attention, partly due to the discovery of long-range magnetic ordering in the M(dca)2 compounds (Batten & Murray, 2003; Kurmoo & Kepert, 1998). A particular feature of this ligand is the variability in coordination modes it can display and thus it is able to generate one- to three-dimensional networks, as well as molecular and ionic compounds, depending on its metallic centers and its organic coligands. In our previous work with pseudohalides we have used dca and nitrosodicyanomethanide within our study on the spectral–structural correlations of penta-coordinated [Cu(L)2dca]Y complexes [L = 1,10-phenanthroline (phen) and 2,2'-bipyridine (bpy), Y = a monovalent anion] (Potočňák et al., 2005, 2008). With the aim to continue in this work we used 4,7-dichloro-1,10-phenanthroline (4,7-Cl-phen) in our synthesis and here we present the structure of accidentally prepared the title compound.

The title compound is formed by discrete molecules (Fig. 1) held together by weak hydrogen bonds and ππ interactions. The CuII atom is coordinated by two chelating 4,7-Cl-phen molecules and by two dicyanamide ligands in a cis arrangement, forming a distorted octahedral geometry. Similar cis coordination of two dca ligands was observed in [M(phen)2(dca)2] compounds with M = Ni (Wu et al., 2004), Cd (Lan et al., 2005), Mn and Zn (Wang et al., 2000) and Cu (Potočňák et al., 1995), which are mutually isostructural. The equatorial plane in the title compound is occupied by three N atoms of two 4,7-Cl-phen molecules with Cu—N distances between 2.0267 (17) and 2.0575 (17) Å while the fourth position is occupied by N1 atom of dca at a shorter distance of 1.9707 (18) Å (Table 1). Due to Jahn-Teller effect the axial positions are occupied at longer distances [Cu1—N4 = 2.2863 (19) and Cu1—N20 = 2.3715 (17) Å]. The two dca ligands are perfectly planar, with the largest deviation of atoms from the mean planes being 0.006 (1) Å. All NcyanideC distances [1.147 (6) Å in average] are usual for triple NC bond (1.15 Å) whereas Namide—C distances [1.303 (10) Å in average] are slightly shorter than typical N—Csp bond (1.35 Å) (Jolly, 1991). The bond angles around cyanide C atoms are, as expected, nearly linear [175 (2)° in average] and the angles around amide N atoms are consistent with sp2 hybridization [121 (5)° in average]. All mentioned values of bonds and angles are close to the values observed in the above mentioned [M(phen)2(dca)2] compounds. Aromatic rings of two 4,7-Cl-phen molecules are nearly planar; the largest deviation of atoms from their mean planes is 0.095 (1) Å and the bond distances and angles (including Cl atoms) are normal.

The structure of the title compound is stabilized by weak C—H···N hydrogen bonds with cyanide N atoms of the dca ligands as acceptors (Table 2). The next stabilization comes from face to face ππ interactions (Janiak, 2000) between parallel phenyl rings of two adjacent 4,7-Cl-phen molecules (Fig. 2) as evidenced by the distance of Cg(phenyl)···Cg(phenyl)i = 3.725 (3) Å and by the angle between phenyl ring normal and vector connecting Cg and Cgi of 18.5° [symmetry code: (i) = 1-x, 1-y, -z].

Related literature top

For long-range magnetic ordering in M(dca)2 compounds, see: Batten & Murray (2003); Kurmoo & Kepert (1998). For penta-coordinated [Cu(L)2dca]Y complexes [L = 1,10-phenanthroline (phen) and 2,2'-bipyridine (bpy), Y = a monovalent anion], see: Potočňák et al. (2005, 2008). For related structures of [M(phen)2(dca)2] compounds, see: Lan et al. (2005) (M = Cd); Potočňák et al. (1995) (M = Cu); Wang et al. (2000) (M = Mn and Zn); Wu et al. (2004) (M = Ni). For the typical N—Csp bond length, see: Jolly (1991). For ππ interactions, see: Janiak (2000).

Experimental top

The title compound was prepared by chance during our attempts to prepare [Cu(4,7-Cl-phen)2(dca)]NO3 compound with a penta-coordinated CuII atom. Crystals of the title compound were prepared by mixing a 0.1 M aqueous solution of Cu(NO3)2 (1 mmol, 10 ml) with a 0.1 M ethanolic solution of 4,7-Cl-phen (2 mmol, 20 ml). To the resulting dark green solution, a 0.1 M aqueous solution of NaN(CN)2 (1 mmol, 10 ml) was added (all solutions were warmed before mixing). After few days, dark green crystals were filtered off and dried in air.

Refinement top

H atom were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Nowadays, there is increasing interest in the synthesis and characterization of new coordination compounds due to their fascinating structural features. Among the various classes of ligands currently employed for the generation of coordination compounds, dicyanamide (dca) has been attracting a lot of attention, partly due to the discovery of long-range magnetic ordering in the M(dca)2 compounds (Batten & Murray, 2003; Kurmoo & Kepert, 1998). A particular feature of this ligand is the variability in coordination modes it can display and thus it is able to generate one- to three-dimensional networks, as well as molecular and ionic compounds, depending on its metallic centers and its organic coligands. In our previous work with pseudohalides we have used dca and nitrosodicyanomethanide within our study on the spectral–structural correlations of penta-coordinated [Cu(L)2dca]Y complexes [L = 1,10-phenanthroline (phen) and 2,2'-bipyridine (bpy), Y = a monovalent anion] (Potočňák et al., 2005, 2008). With the aim to continue in this work we used 4,7-dichloro-1,10-phenanthroline (4,7-Cl-phen) in our synthesis and here we present the structure of accidentally prepared the title compound.

The title compound is formed by discrete molecules (Fig. 1) held together by weak hydrogen bonds and ππ interactions. The CuII atom is coordinated by two chelating 4,7-Cl-phen molecules and by two dicyanamide ligands in a cis arrangement, forming a distorted octahedral geometry. Similar cis coordination of two dca ligands was observed in [M(phen)2(dca)2] compounds with M = Ni (Wu et al., 2004), Cd (Lan et al., 2005), Mn and Zn (Wang et al., 2000) and Cu (Potočňák et al., 1995), which are mutually isostructural. The equatorial plane in the title compound is occupied by three N atoms of two 4,7-Cl-phen molecules with Cu—N distances between 2.0267 (17) and 2.0575 (17) Å while the fourth position is occupied by N1 atom of dca at a shorter distance of 1.9707 (18) Å (Table 1). Due to Jahn-Teller effect the axial positions are occupied at longer distances [Cu1—N4 = 2.2863 (19) and Cu1—N20 = 2.3715 (17) Å]. The two dca ligands are perfectly planar, with the largest deviation of atoms from the mean planes being 0.006 (1) Å. All NcyanideC distances [1.147 (6) Å in average] are usual for triple NC bond (1.15 Å) whereas Namide—C distances [1.303 (10) Å in average] are slightly shorter than typical N—Csp bond (1.35 Å) (Jolly, 1991). The bond angles around cyanide C atoms are, as expected, nearly linear [175 (2)° in average] and the angles around amide N atoms are consistent with sp2 hybridization [121 (5)° in average]. All mentioned values of bonds and angles are close to the values observed in the above mentioned [M(phen)2(dca)2] compounds. Aromatic rings of two 4,7-Cl-phen molecules are nearly planar; the largest deviation of atoms from their mean planes is 0.095 (1) Å and the bond distances and angles (including Cl atoms) are normal.

The structure of the title compound is stabilized by weak C—H···N hydrogen bonds with cyanide N atoms of the dca ligands as acceptors (Table 2). The next stabilization comes from face to face ππ interactions (Janiak, 2000) between parallel phenyl rings of two adjacent 4,7-Cl-phen molecules (Fig. 2) as evidenced by the distance of Cg(phenyl)···Cg(phenyl)i = 3.725 (3) Å and by the angle between phenyl ring normal and vector connecting Cg and Cgi of 18.5° [symmetry code: (i) = 1-x, 1-y, -z].

For long-range magnetic ordering in M(dca)2 compounds, see: Batten & Murray (2003); Kurmoo & Kepert (1998). For penta-coordinated [Cu(L)2dca]Y complexes [L = 1,10-phenanthroline (phen) and 2,2'-bipyridine (bpy), Y = a monovalent anion], see: Potočňák et al. (2005, 2008). For related structures of [M(phen)2(dca)2] compounds, see: Lan et al. (2005) (M = Cd); Potočňák et al. (1995) (M = Cu); Wang et al. (2000) (M = Mn and Zn); Wu et al. (2004) (M = Ni). For the typical N—Csp bond length, see: Jolly (1991). For ππ interactions, see: Janiak (2000).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Parallel stacking of phenyl rings enabling ππ interactions in the title compound. [Symmetry code: (i) 1-x, 1-y, -z.]
Bis(4,7-dichloro-1,10-phenanthroline-κ2N,N')bis(dicyanamido- κN)copper(II) top
Crystal data top
[Cu(C2N3)2(C12H6Cl2N2)2]F(000) = 1388
Mr = 693.82Dx = 1.671 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 18055 reflections
a = 9.5484 (2) Åθ = 2.6–32.0°
b = 16.6471 (3) ŵ = 1.22 mm1
c = 17.4906 (3) ÅT = 110 K
β = 97.316 (2)°Prism, dark green
V = 2757.55 (9) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Oxford Diffraction CCD
diffractometer
5408 independent reflections
Radiation source: Enhance Mo X-ray Source4583 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 8.3611 pixels mm-1θmax = 26.0°, θmin = 2.6°
Rotation method data acquisition using ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 2017
Tmin = 0.711, Tmax = 0.792l = 2021
24411 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0472P)2 + 1.3402P]
where P = (Fo2 + 2Fc2)/3
5408 reflections(Δ/σ)max = 0.001
388 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
[Cu(C2N3)2(C12H6Cl2N2)2]V = 2757.55 (9) Å3
Mr = 693.82Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.5484 (2) ŵ = 1.22 mm1
b = 16.6471 (3) ÅT = 110 K
c = 17.4906 (3) Å0.30 × 0.25 × 0.20 mm
β = 97.316 (2)°
Data collection top
Oxford Diffraction CCD
diffractometer
5408 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
4583 reflections with I > 2σ(I)
Tmin = 0.711, Tmax = 0.792Rint = 0.018
24411 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.06Δρmax = 0.64 e Å3
5408 reflectionsΔρmin = 0.23 e Å3
388 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.73584 (2)0.244567 (14)0.074294 (14)0.01736 (8)
N100.65586 (17)0.34366 (10)0.12412 (10)0.0201 (4)
N200.81350 (18)0.35667 (10)0.00736 (10)0.0204 (4)
Cl10.44014 (7)0.55644 (4)0.21633 (4)0.04029 (16)
Cl20.85895 (7)0.58898 (4)0.11851 (4)0.04439 (18)
C110.6665 (2)0.41712 (12)0.09164 (11)0.0190 (4)
C120.5825 (2)0.33722 (14)0.18341 (13)0.0255 (5)
H120.57600.28700.20610.031*
C130.5150 (2)0.40176 (14)0.21322 (13)0.0295 (5)
H130.46440.39480.25480.035*
C140.5242 (2)0.47530 (14)0.18044 (13)0.0277 (5)
C150.6010 (2)0.48611 (13)0.11737 (12)0.0233 (5)
C160.6149 (3)0.56097 (13)0.07980 (14)0.0313 (5)
H160.57200.60640.09720.038*
C210.7488 (2)0.42388 (12)0.02814 (11)0.0199 (4)
C220.8939 (2)0.36242 (14)0.04874 (12)0.0246 (5)
H220.94090.31670.06230.030*
C230.9115 (2)0.43357 (14)0.08856 (13)0.0287 (5)
H230.96850.43520.12790.034*
C240.8431 (2)0.50057 (14)0.06831 (13)0.0285 (5)
C250.7597 (2)0.49893 (13)0.00764 (12)0.0249 (5)
C260.6891 (3)0.56708 (13)0.01959 (14)0.0322 (5)
H260.69460.61640.00480.039*
N300.84783 (17)0.16751 (10)0.01434 (9)0.0171 (3)
N400.92200 (17)0.24532 (9)0.14439 (10)0.0167 (3)
Cl31.15245 (6)0.02029 (3)0.10381 (3)0.02774 (13)
Cl41.35419 (5)0.22801 (4)0.27827 (3)0.02713 (13)
C310.9859 (2)0.16187 (11)0.04440 (11)0.0160 (4)
C320.8057 (2)0.12642 (12)0.04913 (11)0.0195 (4)
H320.71100.12890.06960.023*
C330.8970 (2)0.07940 (12)0.08686 (12)0.0211 (4)
H330.86340.05080.13110.025*
C341.0362 (2)0.07628 (12)0.05764 (12)0.0199 (4)
C351.0863 (2)0.11723 (12)0.01083 (11)0.0185 (4)
C361.2283 (2)0.11490 (13)0.04832 (12)0.0227 (4)
H361.29640.08680.02560.027*
C411.0252 (2)0.20322 (11)0.11568 (11)0.0154 (4)
C420.9524 (2)0.27980 (12)0.21246 (11)0.0199 (4)
H420.88200.30860.23250.024*
C431.0851 (2)0.27489 (13)0.25544 (12)0.0214 (4)
H431.10230.29900.30370.026*
C441.1897 (2)0.23404 (12)0.22564 (12)0.0197 (4)
C451.1636 (2)0.19653 (12)0.15307 (11)0.0176 (4)
C461.2653 (2)0.15285 (13)0.11640 (12)0.0226 (4)
H461.35840.15040.13960.027*
C10.4712 (2)0.22929 (13)0.04859 (13)0.0232 (5)
N10.56293 (19)0.23404 (11)0.00040 (11)0.0258 (4)
N20.3809 (2)0.22103 (17)0.10946 (12)0.0451 (6)
C30.2472 (2)0.23853 (13)0.11338 (12)0.0233 (5)
N30.1290 (2)0.25177 (13)0.12394 (12)0.0348 (5)
C40.6328 (2)0.10062 (14)0.19498 (13)0.0251 (5)
N40.6632 (2)0.15641 (12)0.16144 (11)0.0299 (4)
N50.6030 (2)0.03864 (12)0.23565 (12)0.0361 (5)
C60.4981 (3)0.00718 (14)0.20559 (14)0.0352 (6)
N60.4072 (3)0.04946 (14)0.18408 (16)0.0607 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01357 (13)0.01900 (14)0.01928 (14)0.00215 (9)0.00121 (10)0.00168 (10)
N100.0195 (9)0.0188 (9)0.0220 (9)0.0018 (7)0.0030 (7)0.0003 (7)
N200.0201 (9)0.0234 (9)0.0171 (9)0.0008 (7)0.0004 (7)0.0003 (7)
Cl10.0458 (4)0.0343 (3)0.0409 (4)0.0157 (3)0.0060 (3)0.0142 (3)
Cl20.0578 (4)0.0363 (3)0.0376 (3)0.0181 (3)0.0007 (3)0.0157 (3)
C110.0166 (10)0.0195 (10)0.0195 (10)0.0006 (8)0.0028 (8)0.0009 (8)
C120.0264 (11)0.0251 (11)0.0266 (12)0.0005 (9)0.0100 (9)0.0005 (9)
C130.0296 (12)0.0324 (13)0.0286 (12)0.0011 (10)0.0114 (10)0.0058 (10)
C140.0256 (11)0.0289 (12)0.0278 (12)0.0080 (9)0.0002 (9)0.0107 (10)
C150.0235 (11)0.0207 (11)0.0239 (11)0.0027 (9)0.0041 (9)0.0045 (9)
C160.0376 (13)0.0198 (11)0.0343 (13)0.0059 (10)0.0042 (11)0.0044 (10)
C210.0178 (10)0.0213 (10)0.0190 (10)0.0014 (8)0.0037 (8)0.0003 (8)
C220.0219 (11)0.0333 (12)0.0179 (10)0.0009 (9)0.0006 (9)0.0001 (9)
C230.0269 (12)0.0404 (14)0.0183 (11)0.0100 (10)0.0014 (9)0.0032 (10)
C240.0317 (12)0.0290 (12)0.0228 (11)0.0126 (10)0.0049 (9)0.0078 (9)
C250.0266 (11)0.0231 (11)0.0223 (11)0.0042 (9)0.0068 (9)0.0026 (9)
C260.0421 (14)0.0187 (11)0.0330 (13)0.0019 (10)0.0056 (11)0.0040 (10)
N300.0170 (8)0.0166 (8)0.0171 (8)0.0007 (7)0.0006 (7)0.0019 (7)
N400.0173 (8)0.0164 (8)0.0165 (8)0.0003 (6)0.0030 (7)0.0023 (7)
Cl30.0304 (3)0.0281 (3)0.0261 (3)0.0076 (2)0.0089 (2)0.0045 (2)
Cl40.0191 (3)0.0393 (3)0.0212 (3)0.0046 (2)0.0043 (2)0.0036 (2)
C310.0159 (9)0.0151 (10)0.0168 (10)0.0004 (8)0.0017 (8)0.0038 (8)
C320.0192 (10)0.0198 (10)0.0189 (10)0.0010 (8)0.0002 (8)0.0017 (8)
C330.0280 (11)0.0185 (10)0.0166 (10)0.0023 (8)0.0024 (8)0.0002 (8)
C340.0247 (11)0.0161 (10)0.0203 (10)0.0031 (8)0.0079 (8)0.0037 (8)
C350.0203 (10)0.0157 (10)0.0197 (10)0.0001 (8)0.0038 (8)0.0034 (8)
C360.0184 (10)0.0233 (11)0.0269 (11)0.0053 (8)0.0050 (9)0.0021 (9)
C410.0166 (9)0.0144 (9)0.0154 (10)0.0012 (7)0.0033 (8)0.0043 (7)
C420.0232 (10)0.0195 (10)0.0173 (10)0.0015 (8)0.0041 (8)0.0010 (8)
C430.0258 (11)0.0225 (10)0.0157 (10)0.0057 (9)0.0013 (8)0.0012 (8)
C440.0171 (10)0.0220 (10)0.0189 (10)0.0063 (8)0.0015 (8)0.0062 (8)
C450.0167 (9)0.0169 (10)0.0189 (10)0.0022 (8)0.0016 (8)0.0049 (8)
C460.0148 (10)0.0257 (11)0.0265 (11)0.0027 (8)0.0002 (8)0.0052 (9)
C10.0180 (10)0.0276 (11)0.0252 (11)0.0034 (9)0.0071 (9)0.0000 (9)
N10.0165 (9)0.0299 (10)0.0302 (10)0.0035 (7)0.0008 (8)0.0027 (8)
N20.0204 (10)0.0888 (18)0.0253 (11)0.0133 (11)0.0003 (8)0.0157 (11)
C30.0269 (12)0.0259 (11)0.0168 (11)0.0018 (9)0.0010 (9)0.0001 (8)
N30.0189 (11)0.0511 (14)0.0326 (11)0.0036 (9)0.0041 (8)0.0005 (9)
C40.0213 (11)0.0269 (12)0.0270 (12)0.0033 (9)0.0023 (9)0.0039 (10)
N40.0246 (10)0.0295 (11)0.0366 (11)0.0012 (8)0.0081 (8)0.0041 (9)
N50.0401 (12)0.0328 (11)0.0325 (11)0.0109 (9)0.0071 (9)0.0076 (9)
C60.0446 (15)0.0224 (12)0.0347 (14)0.0047 (11)0.0094 (11)0.0068 (10)
N60.0718 (18)0.0376 (14)0.0632 (17)0.0228 (13)0.0276 (14)0.0153 (12)
Geometric parameters (Å, º) top
Cu1—N11.9707 (19)N30—C311.359 (2)
Cu1—N402.0267 (17)N40—C421.320 (3)
Cu1—N302.0431 (16)N40—C411.357 (2)
Cu1—N102.0575 (17)Cl3—C341.727 (2)
Cu1—N42.2863 (19)Cl4—C441.719 (2)
Cu1—N202.3715 (17)C31—C351.400 (3)
N10—C121.328 (3)C31—C411.432 (3)
N10—C111.358 (3)C32—C331.398 (3)
N20—C221.324 (3)C32—H320.9300
N20—C211.350 (3)C33—C341.363 (3)
Cl1—C141.729 (2)C33—H330.9300
Cl2—C241.730 (2)C34—C351.408 (3)
C11—C151.408 (3)C35—C361.429 (3)
C11—C211.445 (3)C36—C461.354 (3)
C12—C131.388 (3)C36—H360.9300
C12—H120.9300C41—C451.402 (3)
C13—C141.359 (3)C42—C431.391 (3)
C13—H130.9300C42—H420.9300
C14—C151.412 (3)C43—C441.366 (3)
C15—C161.423 (3)C43—H430.9300
C16—C261.346 (4)C44—C451.408 (3)
C16—H160.9300C45—C461.428 (3)
C21—C251.407 (3)C46—H460.9300
C22—C231.395 (3)C1—N11.147 (3)
C22—H220.9300C1—N21.289 (3)
C23—C241.362 (3)N2—C31.302 (3)
C23—H230.9300C3—N31.142 (3)
C24—C251.406 (3)C4—N41.155 (3)
C25—C261.432 (3)C4—N51.305 (3)
C26—H260.9300N5—C61.314 (3)
N30—C321.322 (3)C6—N61.143 (3)
N1—Cu1—N40173.85 (7)C16—C26—C25121.2 (2)
N1—Cu1—N3093.27 (7)C16—C26—H26119.4
N40—Cu1—N3080.69 (6)C25—C26—H26119.4
N1—Cu1—N1091.37 (7)C32—N30—C31117.75 (17)
N40—Cu1—N1094.76 (6)C32—N30—Cu1129.23 (13)
N30—Cu1—N10165.36 (7)C31—N30—Cu1112.97 (13)
N1—Cu1—N494.60 (7)C42—N40—C41118.15 (17)
N40—Cu1—N485.29 (7)C42—N40—Cu1128.54 (14)
N30—Cu1—N499.33 (7)C41—N40—Cu1113.30 (13)
N10—Cu1—N494.12 (7)N30—C31—C35123.84 (18)
N1—Cu1—N2091.99 (7)N30—C31—C41115.94 (17)
N40—Cu1—N2089.34 (6)C35—C31—C41120.20 (17)
N30—Cu1—N2091.36 (6)N30—C32—C33122.97 (19)
N10—Cu1—N2074.60 (6)N30—C32—H32118.5
N4—Cu1—N20167.08 (6)C33—C32—H32118.5
C12—N10—C11118.32 (18)C34—C33—C32118.78 (19)
C12—N10—Cu1121.83 (14)C34—C33—H33120.6
C11—N10—Cu1119.57 (14)C32—C33—H33120.6
C22—N20—C21117.89 (18)C33—C34—C35120.69 (18)
C22—N20—Cu1132.06 (15)C33—C34—Cl3119.97 (16)
C21—N20—Cu1109.68 (13)C35—C34—Cl3119.33 (15)
N10—C11—C15122.76 (19)C31—C35—C34115.91 (18)
N10—C11—C21117.96 (18)C31—C35—C36118.81 (18)
C15—C11—C21119.28 (18)C34—C35—C36125.26 (18)
N10—C12—C13123.2 (2)C46—C36—C35121.13 (19)
N10—C12—H12118.4C46—C36—H36119.4
C13—C12—H12118.4C35—C36—H36119.4
C14—C13—C12118.7 (2)N40—C41—C45123.67 (18)
C14—C13—H13120.6N40—C41—C31116.63 (17)
C12—C13—H13120.6C45—C41—C31119.66 (17)
C13—C14—C15120.8 (2)N40—C42—C43122.83 (19)
C13—C14—Cl1119.50 (18)N40—C42—H42118.6
C15—C14—Cl1119.69 (18)C43—C42—H42118.6
C11—C15—C14116.19 (19)C44—C43—C42118.91 (19)
C11—C15—C16119.7 (2)C44—C43—H43120.5
C14—C15—C16124.1 (2)C42—C43—H43120.5
C26—C16—C15121.1 (2)C43—C44—C45120.73 (19)
C26—C16—H16119.4C43—C44—Cl4119.18 (16)
C15—C16—H16119.4C45—C44—Cl4120.10 (16)
N20—C21—C25123.64 (19)C41—C45—C44115.67 (18)
N20—C21—C11117.06 (18)C41—C45—C46119.00 (18)
C25—C21—C11119.29 (19)C44—C45—C46125.33 (18)
N20—C22—C23123.4 (2)C36—C46—C45121.06 (18)
N20—C22—H22118.3C36—C46—H46119.5
C23—C22—H22118.3C45—C46—H46119.5
C24—C23—C22118.2 (2)N1—C1—N2172.2 (2)
C24—C23—H23120.9C1—N1—Cu1172.76 (18)
C22—C23—H23120.9C1—N2—C3124.6 (2)
C23—C24—C25121.1 (2)N3—C3—N2173.5 (2)
C23—C24—Cl2119.25 (18)N4—C4—N5177.2 (2)
C25—C24—Cl2119.61 (18)C4—N4—Cu1166.37 (18)
C24—C25—C21115.7 (2)C4—N5—C6116.7 (2)
C24—C25—C26124.9 (2)N6—C6—N5175.5 (3)
C21—C25—C26119.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···N40.932.493.143 (3)127
C22—H22···N3i0.932.463.304 (3)151
C32—H32···N6ii0.932.543.181 (3)126
C43—H43···N6iii0.932.533.107 (3)120
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C2N3)2(C12H6Cl2N2)2]
Mr693.82
Crystal system, space groupMonoclinic, P21/n
Temperature (K)110
a, b, c (Å)9.5484 (2), 16.6471 (3), 17.4906 (3)
β (°) 97.316 (2)
V3)2757.55 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.22
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerOxford Diffraction CCD
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.711, 0.792
No. of measured, independent and
observed [I > 2σ(I)] reflections
24411, 5408, 4583
Rint0.018
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.082, 1.06
No. of reflections5408
No. of parameters388
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.23

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Selected bond lengths (Å) top
Cu1—N11.9707 (19)Cu1—N102.0575 (17)
Cu1—N402.0267 (17)Cu1—N42.2863 (19)
Cu1—N302.0431 (16)Cu1—N202.3715 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···N40.932.493.143 (3)127.4
C22—H22···N3i0.932.463.304 (3)151.1
C32—H32···N6ii0.932.543.181 (3)126.3
C43—H43···N6iii0.932.533.107 (3)120.2
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Slovak Grant Agency VEGA (grant No. 1/0079/08), the grants of the Slovak Research and Development Agency (Nos. APVV-VVCE-0058-07 and APVV-0006-07) and the Ministry of Education, Youth and Sports of the Czech Republic (MSM6198959218). ZP thanks Socrates-Erasmus for financial support and Palacký University for hospitality.

References

First citationBatten, S. R. & Murray, K. S. (2003). Coord. Chem. Rev. 246, 103–130.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationJolly, W. L. (1991). Modern Inorganic Chemistry, 2nd ed., pp. 54–55. New York: McGraw-Hill Inc.  Google Scholar
First citationKurmoo, M. & Kepert, C. J. (1998). New J. Chem. 22, 1515–1524.  Web of Science CSD CrossRef CAS Google Scholar
First citationLan, G.-Z., Wu, A.-Q., Guo, G.-C. & Zheng, F.-K. (2005). Acta Cryst. E61, m1018–m1020.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPotočňák, I., Burčák, M., Baran, P. & Jäger, L. (2005). Transition Met. Chem. 30, 889–896.  Google Scholar
First citationPotočňák, I., Dunaj-Jurčo, M., Mikloš, D., Kabešová, M. & Jäger, L. (1995). Acta Cryst. C51, 600–602.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationPotočňák, I., Vavra, M., Jäger, L., Baran, P. & Wagner, C. (2008). Transition Met. Chem. 33, 1–8.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z.-M., Luo, J., Sun, B.-W., Yan, C.-H., Liao, C.-S. & Gao, S. (2000). Acta Cryst. C56, e242–e244.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWu, A.-Q., Zheng, F.-K., Guo, G.-C. & Huang, J.-S. (2004). Acta Cryst. E60, m373–m375.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds