organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Hydr­­oxy-5-methyl­phen­yl)-3-(3-methylthiophen-2-yl)prop-2-en-1-one

aDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, and bDepartment of Pharmaceutical Chemistry, Manipal college of Pharmaceutical Sciences, Manipal 576 104, India
*Correspondence e-mail: mas@physics.uni-mysore.ac.in

(Received 4 April 2010; accepted 10 May 2010; online 19 May 2010)

In the structure of the title compound, C15H14O2S, the benzene ring is nearly coplanar with the thio­phene ring. The hydroxy group substituted at C2 position is in an antiperi­planar conformation with respect to the phenyl ring. The crystal structure exhibits weak intramolecular O—H⋯O hydrogen bonding.

Related literature

For the bioactivity of related compounds, see: Ratty (1988[Ratty, A. K. (1988). Biochem. Med. Metab. Biol. 39 , 67-79.]); Sato et al. (1996[Sato, M., Fujiwara, S., Tsuchiya, H., Fujii, T., Iinuma, M., Tosa, H. & Ohkawa, Y. (1996). J. Ethnopharmacol. 54, 171-176.]); Tencate et al. (1973[Tencate, J. W., Van Haeringen, N. J., Gerritsen, J. & Glasius, E. (1973). Clin. Chem. 19, 31-35.]); Murakami et al. (1992[Murakami, S., Muramatsu, M. & Otomo, S. (1992). J. Pharmacol. 44, 926-928.]); Gerdin & Srensso (1983[Gerdin, B. & Srensso, E. (1983). Int J. Microcir. Clin. Exp. 2, 39-46.]); Shahidi et al.(1988[Shahidi, F., Yang, Z. & Saleemi, Z. O. (1988). J. Food Lipids, 1, 69-75.]); Jayashree et al. (2008[Jayashree, B. S., Noor Fathima, A., Yogendra, N. & Vijay Kumar, D. (2008). Pharmacology Online, 3, 586-595.]); Nijveldt et al. (2001[Nijveldt, R. J., van Nood, E., van Hoom, D. E. C., Boelens, P. G., van Norren, K. & van Leeuwen, P. A. (2001). Am. J. Clin. Nutr. 74, 418-425.]); Varma & Kinoshita (1976[Varma, S. D. & Kinoshita, J. H. (1976). Biochem. Pharmacol. 25, 2505-2510.]). For related structures, see: Jasinski et al. (2009[Jasinski, J. P., Butcher, R. J., Mayekar, A. N., Yathirajan, H. S. & Narayana, B. (2009). J. Chem. Crystallogr. 39, 157-162.], 2010[Jasinski, J. P., Butcher, R. J., Narayana, B., Veena, K. & Yathirajan, H. S. (2010). Acta Cryst. E66, o158.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14O2S

  • Mr = 258.33

  • Orthorhombic, P b c a

  • a = 13.6680 (12) Å

  • b = 13.3750 (8) Å

  • c = 14.5410 (14) Å

  • V = 2658.2 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.27 × 0.25 × 0.23 mm

Data collection
  • MacScience DIPLabo 32001 diffractometer

  • 4360 measured reflections

  • 2335 independent reflections

  • 1742 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.182

  • S = 1.07

  • 2335 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O10 0.82 1.79 2.518 (3) 147

Data collection: XPRESS (MacScience, 2002[MacScience (2002). XPRESS. MacScience Co. Ltd, Yokohama, Japan.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Chalcone is the basic skeleton present in all flavonoids, which are important secondary plant metabolities reported to exhibit a wide range of biological activities such as anti-oxidant (Ratty, 1988), anti-bacterial (Sato et al., 1996), anti-fungal (Tencate et al., 1973), anti-cancer (Murakami et al., 1992), anti-HIV (Gerdin et al., 1983), anti-inflammatory (Shahidi et al., 1988) and inhibition of various enzymens such as aldose reductase, cycloxigenase, tyrosinkinase (Varma et al., 1976). The hydroxy group has exhibited a broad range of biological activities displaying anti-oxidant, anti-bacterials, anti-diabetic properties (Jayashree et al., 2008). The unsaturated ketone group present in chalcones is believed to be responsible for the biological activity (Nijveldt et al., 2001). In view of the importance of such compounds the title compound is synthesised and its crystal structure is reported.

The molecular structure of 1-(2-hydroxy-5-methylphenyl)-3-(3-methylthiophen-2-yl)prop-2-en-1-one, consists of a phenyl ring and a thiophen ring attached to a propanone chain at 1,3-position. The bond lengths C7–C9, C9–O10, C9–C11, C11–C12, C12–C13 and bond angles C7–C9–O10, O10–C9–C11 are in good agreement with those of the similar compounds reported earlier (Jasinski et al., 2009; Jasinski et al., 2010). The torsion angle for C12-C13-C17-C18 is -1.71° and adopts -syn-periplanar conformation. The structure exhibits weak intramolecular hydrogen bond of the type O–H···O.

Related literature top

For the bioactivity of related structures, see: Ratty et al. (1988); Sato et al. (1996); Tencate et al. (1973); Murakami et al. (1992); Gerdin et al., (1983); Shahidi et al.(1988); Jayashree et al. (2008); Nijveldt et al. (2001); Varma & Kinoshita (1976). For related structures, see: Jasinski et al. (2009, 2010).

Experimental top

The title compound 1-(2-hydroxy-5-methylphenyl)-3-(3-methylthiophen-2-yl)prop-2-en-1-one was synthesized by dissolving 5 m mole of 5-methyl-2 hydroxyacetophenone in 15 ml of methanol taken in a conical flask, towhich 5 ml of aqueous solution of sodium hydroxide was added with stirring at room temperature. Later 5 m mole of 5-methyl-2-thiophene-carboxaldehyde was added slowly and the stirring continued for 48 hours. The mixture was then poured into ice cold water and acidified with dilute hydrochloric acid. The title compound separates as a precipitate which was collected by filtration, dried and recrystallised from methanol.

Structure description top

Chalcone is the basic skeleton present in all flavonoids, which are important secondary plant metabolities reported to exhibit a wide range of biological activities such as anti-oxidant (Ratty, 1988), anti-bacterial (Sato et al., 1996), anti-fungal (Tencate et al., 1973), anti-cancer (Murakami et al., 1992), anti-HIV (Gerdin et al., 1983), anti-inflammatory (Shahidi et al., 1988) and inhibition of various enzymens such as aldose reductase, cycloxigenase, tyrosinkinase (Varma et al., 1976). The hydroxy group has exhibited a broad range of biological activities displaying anti-oxidant, anti-bacterials, anti-diabetic properties (Jayashree et al., 2008). The unsaturated ketone group present in chalcones is believed to be responsible for the biological activity (Nijveldt et al., 2001). In view of the importance of such compounds the title compound is synthesised and its crystal structure is reported.

The molecular structure of 1-(2-hydroxy-5-methylphenyl)-3-(3-methylthiophen-2-yl)prop-2-en-1-one, consists of a phenyl ring and a thiophen ring attached to a propanone chain at 1,3-position. The bond lengths C7–C9, C9–O10, C9–C11, C11–C12, C12–C13 and bond angles C7–C9–O10, O10–C9–C11 are in good agreement with those of the similar compounds reported earlier (Jasinski et al., 2009; Jasinski et al., 2010). The torsion angle for C12-C13-C17-C18 is -1.71° and adopts -syn-periplanar conformation. The structure exhibits weak intramolecular hydrogen bond of the type O–H···O.

For the bioactivity of related structures, see: Ratty et al. (1988); Sato et al. (1996); Tencate et al. (1973); Murakami et al. (1992); Gerdin et al., (1983); Shahidi et al.(1988); Jayashree et al. (2008); Nijveldt et al. (2001); Varma & Kinoshita (1976). For related structures, see: Jasinski et al. (2009, 2010).

Computing details top

Data collection: XPRESS (MacScience, 2002); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and ORTEPII (Johnson, 1976); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with 50% probability displacement ellipsoids.
1-(2-Hydroxy-5-methylphenyl)-3-(3-methylthiophen-2-yl)prop-2-en-1-one top
Crystal data top
C15H14O2SF(000) = 1088
Mr = 258.33Dx = 1.291 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4360 reflections
a = 13.6680 (12) Åθ = 3.2–25.0°
b = 13.3750 (8) ŵ = 0.23 mm1
c = 14.5410 (14) ÅT = 293 K
V = 2658.2 (4) Å3Rectangular, orange
Z = 80.27 × 0.25 × 0.23 mm
Data collection top
MacScience DIPLabo 32001
diffractometer
1742 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
Graphite monochromatorθmax = 25.0°, θmin = 3.2°
Detector resolution: 10.0 pixels mm-1h = 1516
ω scansk = 1515
4360 measured reflectionsl = 1717
2335 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.182 w = 1/[σ2(Fo2) + (0.1131P)2 + 0.2932P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2335 reflectionsΔρmax = 0.24 e Å3
166 parametersΔρmin = 0.35 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.009975
Crystal data top
C15H14O2SV = 2658.2 (4) Å3
Mr = 258.33Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.6680 (12) ŵ = 0.23 mm1
b = 13.3750 (8) ÅT = 293 K
c = 14.5410 (14) Å0.27 × 0.25 × 0.23 mm
Data collection top
MacScience DIPLabo 32001
diffractometer
1742 reflections with I > 2σ(I)
4360 measured reflectionsRint = 0.016
2335 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 1.07Δρmax = 0.24 e Å3
2335 reflectionsΔρmin = 0.35 e Å3
166 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S140.03308 (6)0.63213 (6)0.34076 (5)0.0917 (3)
O10.30633 (16)0.21283 (14)0.47357 (17)0.1086 (9)
O100.14602 (14)0.28250 (13)0.41732 (14)0.0902 (7)
C20.32536 (19)0.3053 (2)0.5061 (2)0.0824 (9)
C30.4133 (2)0.3227 (3)0.5511 (2)0.0998 (11)
C40.4358 (2)0.4136 (3)0.5850 (2)0.0968 (13)
C50.37207 (18)0.4947 (2)0.57621 (16)0.0817 (9)
C60.28521 (17)0.47858 (19)0.53026 (16)0.0714 (8)
C70.25907 (16)0.38552 (17)0.49421 (16)0.0681 (8)
C80.3971 (2)0.5955 (3)0.6154 (2)0.1067 (14)
C90.16789 (18)0.36901 (17)0.44277 (16)0.0692 (8)
C110.10438 (16)0.45228 (18)0.41721 (15)0.0685 (8)
C120.02561 (16)0.43481 (19)0.36459 (17)0.0702 (8)
C130.04379 (16)0.5047 (2)0.32810 (16)0.0724 (8)
C150.1358 (3)0.6508 (3)0.2772 (2)0.1040 (12)
C160.1769 (2)0.5658 (3)0.2486 (2)0.0996 (13)
C170.12548 (19)0.4798 (2)0.27636 (17)0.0830 (9)
C180.1554 (2)0.3751 (3)0.2526 (2)0.1080 (14)
H10.253100.212800.447500.1630*
H30.457600.270500.558000.1200*
H40.495200.422600.615000.1160*
H60.242200.531900.523000.0860*
H8A0.356800.645600.587200.1600*
H8B0.385900.595100.680600.1600*
H8C0.464700.610100.603500.1600*
H110.118400.516800.437200.0820*
H120.014500.368100.349700.0840*
H150.160800.713800.263800.1250*
H160.233800.563600.213600.1200*
H18A0.149800.333400.306100.1620*
H18B0.222000.375000.231600.1620*
H18C0.113700.349800.204900.1620*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S140.1046 (6)0.0844 (6)0.0861 (6)0.0070 (3)0.0065 (4)0.0020 (3)
O10.0995 (14)0.0704 (12)0.156 (2)0.0136 (9)0.0070 (13)0.0142 (12)
O100.0902 (12)0.0694 (11)0.1110 (14)0.0007 (9)0.0016 (10)0.0092 (9)
C20.0757 (14)0.0763 (16)0.0953 (18)0.0082 (12)0.0099 (13)0.0177 (14)
C30.0765 (17)0.104 (2)0.119 (2)0.0175 (16)0.0017 (16)0.0356 (19)
C40.0715 (16)0.125 (3)0.094 (2)0.0003 (16)0.0098 (14)0.0259 (19)
C50.0724 (14)0.106 (2)0.0666 (14)0.0062 (13)0.0035 (11)0.0083 (13)
C60.0704 (13)0.0763 (15)0.0676 (13)0.0012 (11)0.0008 (10)0.0029 (11)
C70.0659 (13)0.0703 (14)0.0681 (13)0.0029 (10)0.0056 (10)0.0109 (11)
C80.103 (2)0.124 (3)0.093 (2)0.0186 (18)0.0217 (17)0.0114 (19)
C90.0698 (13)0.0652 (14)0.0725 (14)0.0004 (10)0.0066 (11)0.0009 (11)
C110.0684 (13)0.0682 (14)0.0688 (13)0.0007 (10)0.0007 (10)0.0006 (11)
C120.0714 (14)0.0743 (15)0.0650 (13)0.0034 (10)0.0034 (11)0.0013 (11)
C130.0704 (13)0.0843 (17)0.0624 (13)0.0039 (11)0.0001 (10)0.0043 (11)
C150.110 (2)0.112 (2)0.090 (2)0.0278 (19)0.0034 (17)0.0192 (18)
C160.0887 (19)0.130 (3)0.0801 (17)0.0134 (18)0.0133 (14)0.0117 (17)
C170.0744 (14)0.106 (2)0.0685 (14)0.0040 (13)0.0009 (11)0.0094 (14)
C180.093 (2)0.125 (3)0.106 (2)0.0234 (18)0.0195 (18)0.0011 (19)
Geometric parameters (Å, º) top
S14—C131.721 (3)C15—C161.335 (5)
S14—C151.699 (4)C16—C171.407 (5)
O1—C21.350 (3)C17—C181.499 (5)
O10—C91.251 (3)C3—H30.9300
O1—H10.8200C4—H40.9300
C2—C71.415 (3)C6—H60.9300
C2—C31.388 (4)C8—H8A0.9600
C3—C41.348 (5)C8—H8B0.9600
C4—C51.397 (4)C8—H8C0.9600
C5—C61.379 (3)C11—H110.9300
C5—C81.503 (5)C12—H120.9300
C6—C71.397 (3)C15—H150.9300
C7—C91.470 (3)C16—H160.9300
C9—C111.460 (3)C18—H18A0.9600
C11—C121.341 (3)C18—H18B0.9600
C12—C131.434 (3)C18—H18C0.9600
C13—C171.387 (3)
C13—S14—C1590.98 (16)C2—C3—H3119.00
C2—O1—H1109.00C4—C3—H3119.00
O1—C2—C7121.9 (2)C3—C4—H4119.00
C3—C2—C7119.0 (3)C5—C4—H4119.00
O1—C2—C3119.1 (3)C5—C6—H6119.00
C2—C3—C4121.4 (3)C7—C6—H6119.00
C3—C4—C5121.7 (3)C5—C8—H8A109.00
C4—C5—C6117.4 (3)C5—C8—H8B109.00
C4—C5—C8121.3 (2)C5—C8—H8C109.00
C6—C5—C8121.3 (2)H8A—C8—H8B110.00
C5—C6—C7122.8 (2)H8A—C8—H8C109.00
C2—C7—C6117.8 (2)H8B—C8—H8C109.00
C6—C7—C9122.8 (2)C9—C11—H11120.00
C2—C7—C9119.4 (2)C12—C11—H11120.00
O10—C9—C11119.2 (2)C11—C12—H12116.00
C7—C9—C11121.3 (2)C13—C12—H12116.00
O10—C9—C7119.5 (2)S14—C15—H15123.00
C9—C11—C12119.3 (2)C16—C15—H15124.00
C11—C12—C13129.0 (2)C15—C16—H16123.00
S14—C13—C12123.37 (18)C17—C16—H16123.00
C12—C13—C17125.2 (2)C17—C18—H18A110.00
S14—C13—C17111.37 (19)C17—C18—H18B109.00
S14—C15—C16113.1 (3)C17—C18—H18C110.00
C15—C16—C17113.4 (3)H18A—C18—H18B109.00
C13—C17—C18124.7 (2)H18A—C18—H18C109.00
C16—C17—C18124.1 (2)H18B—C18—H18C109.00
C13—C17—C16111.2 (2)
C15—S14—C13—C12177.8 (2)C2—C7—C9—C11170.9 (2)
C15—S14—C13—C170.4 (2)C6—C7—C9—C117.2 (4)
C13—S14—C15—C160.7 (3)C2—C7—C9—O106.3 (4)
O1—C2—C7—C6180.0 (2)C6—C7—C9—O10175.6 (2)
C3—C2—C7—C61.1 (4)O10—C9—C11—C122.1 (3)
C3—C2—C7—C9177.1 (2)C7—C9—C11—C12175.2 (2)
O1—C2—C7—C91.8 (4)C9—C11—C12—C13177.0 (2)
O1—C2—C3—C4179.9 (3)C11—C12—C13—S144.3 (4)
C7—C2—C3—C41.3 (4)C11—C12—C13—C17177.8 (2)
C2—C3—C4—C50.3 (5)S14—C13—C17—C160.0 (3)
C3—C4—C5—C8179.1 (3)C12—C13—C17—C16178.1 (2)
C3—C4—C5—C60.8 (4)C12—C13—C17—C181.7 (4)
C8—C5—C6—C7179.0 (2)S14—C13—C17—C18179.8 (2)
C4—C5—C6—C70.9 (4)S14—C15—C16—C170.8 (4)
C5—C6—C7—C20.1 (4)C15—C16—C17—C130.5 (4)
C5—C6—C7—C9178.1 (2)C15—C16—C17—C18179.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O100.821.792.518 (3)147

Experimental details

Crystal data
Chemical formulaC15H14O2S
Mr258.33
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)13.6680 (12), 13.3750 (8), 14.5410 (14)
V3)2658.2 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.27 × 0.25 × 0.23
Data collection
DiffractometerMacScience DIPLabo 32001
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4360, 2335, 1742
Rint0.016
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.182, 1.07
No. of reflections2335
No. of parameters166
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.35

Computer programs: XPRESS (MacScience, 2002), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and ORTEPII (Johnson, 1976), PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
S14—C131.721 (3)O1—C21.350 (3)
S14—C151.699 (4)O10—C91.251 (3)
C13—S14—C1590.98 (16)O10—C9—C7119.5 (2)
O1—C2—C7121.9 (2)S14—C13—C12123.37 (18)
O1—C2—C3119.1 (3)S14—C13—C17111.37 (19)
O10—C9—C11119.2 (2)S14—C15—C16113.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O100.82001.79002.518 (3)147.00
 

Acknowledgements

The authors are grateful to the Department of Science and Technology and the Government of India (project SP/I2/FOO/93) and the University of Mysore for financial assistance. The authors duly acknowledge Manipal College of Pharmaceutical Sciences for providing facilities to carry out the synthetic work.

References

First citationGerdin, B. & Srensso, E. (1983). Int J. Microcir. Clin. Exp. 2, 39–46.  CAS Google Scholar
First citationJasinski, J. P., Butcher, R. J., Mayekar, A. N., Yathirajan, H. S. & Narayana, B. (2009). J. Chem. Crystallogr. 39, 157–162.  Web of Science CSD CrossRef CAS Google Scholar
First citationJasinski, J. P., Butcher, R. J., Narayana, B., Veena, K. & Yathirajan, H. S. (2010). Acta Cryst. E66, o158.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJayashree, B. S., Noor Fathima, A., Yogendra, N. & Vijay Kumar, D. (2008). Pharmacology Online, 3, 586–595.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL–5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMacScience (2002). XPRESS. MacScience Co. Ltd, Yokohama, Japan.  Google Scholar
First citationMurakami, S., Muramatsu, M. & Otomo, S. (1992). J. Pharmacol. 44, 926–928.  CrossRef CAS Google Scholar
First citationNijveldt, R. J., van Nood, E., van Hoom, D. E. C., Boelens, P. G., van Norren, K. & van Leeuwen, P. A. (2001). Am. J. Clin. Nutr. 74, 418–425.  Web of Science PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRatty, A. K. (1988). Biochem. Med. Metab. Biol. 39 , 67–79.  CrossRef Web of Science Google Scholar
First citationSato, M., Fujiwara, S., Tsuchiya, H., Fujii, T., Iinuma, M., Tosa, H. & Ohkawa, Y. (1996). J. Ethnopharmacol. 54, 171–176.  CrossRef CAS PubMed Web of Science Google Scholar
First citationShahidi, F., Yang, Z. & Saleemi, Z. O. (1988). J. Food Lipids, 1, 69–75.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTencate, J. W., Van Haeringen, N. J., Gerritsen, J. & Glasius, E. (1973). Clin. Chem. 19, 31–35.  CAS PubMed Google Scholar
First citationVarma, S. D. & Kinoshita, J. H. (1976). Biochem. Pharmacol. 25, 2505–2510.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds