organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(2,4-Di­hydroxy­benzyl­­idene)amino]-3′,6′-bis­­(ethyl­amino)spiro­[isoindoline-1,9′-xanthen]-3-one

aCollege of Chemistry and Chemical Engineering, Xuchang University, Xuchang, Henan Province 461000, People's Republic of China
*Correspondence e-mail: xuzhihong1980@yahoo.cn

(Received 20 April 2010; accepted 25 April 2010; online 29 May 2010)

The title compound, C35H36N4O4, was prepared as a spiro­lactam ring formation of rhodamine B dye for comparison with a ring-opened form. The xanthene ring system is approximately planar. The r.m.s. deviation from planarity is 0.064 (6) Å for the xanthene ring. The dihedral angles formed by the spiro­lactam and 2,4-dihydroxy­benzene rings with the xanthene ring system are 86.6 (9) and 88.0 (9)°, respectively.

Related literature

For the structures of rhodamine derivatives bearing a lactam moiety, see: Deng et al. (2009[Deng, W.-J., Sun, D., Su, B.-Y., Wang, S.-P. & Zheng, H. (2009). Acta Cryst. E65, o1464.]); Kwon et al. (2005[Kwon, J. Y., Jang, Y. J., Lee, Y. J., Kim, K. M., Seo, M. S., Nam, W. & Yoon, I. (2005). J. Am. Chem. Soc. 127, 10107-10111.]); Tian & Peng (2008[Tian, M.-Z. & Peng, X.-J. (2008). Acta Cryst. E64, o1645.]); Wu et al. (2007[Wu, D., Huang, W., Duan, C.-Y., Lin, Z.-H. & Meng, Q.-J. (2007). Inorg. Chem. 46, 1538-1540.]); Xu et al. (2009[Xu, Z.-H., Wang, H.-S., Tao, L.-T. & Wang, H.-W. (2009). Acta Cryst. E65, o1876.]); Zhang et al. (2008[Zhang, L.-Z., Peng, X.-J., Gao, S. & Fan, J.-L. (2008). Acta Cryst. E64, o403.]).

[Scheme 1]

Experimental

Crystal data
  • C35H36N4O4

  • Mr = 576.68

  • Monoclinic, P 21 /c

  • a = 9.4461 (4) Å

  • b = 26.6905 (12) Å

  • c = 12.2453 (5) Å

  • β = 104.423 (2)°

  • V = 2990.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.25 × 0.23 × 0.21 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.979, Tmax = 0.982

  • 15630 measured reflections

  • 5310 independent reflections

  • 2162 reflections with I > 2σ(I)

  • Rint = 0.087

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.215

  • S = 1.02

  • 5310 reflections

  • 393 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Among many fluorescent compounds, rhodamine dyes are known to have excellent photophysical properties, and they are one of the most widely used fluorophores for labeling and sensing biomolecules. There are a few single-crystal reports about rhodamine derivatives bearing a lactam moiety (Xu et al., 2009; Kwon et al., 2005; Wu et al., 2007; Zhang et al., 2008; Tian et al., 2008; Deng et al., 2009). Detailed information on their molecular and crystal structures is necessary to understand their photophysical and photochemical properties.

In agreement with other reported models , (Xu et al., 2009; Wu et al., 2007; Zhang et al., 2008; Tian et al., 2008;) the main skeleton of the molecule is formed by the xanthene ring and the spirolactam-ring. As shown in Figure 1, The atoms of the xanthene ring or the spirolactam-ring are both nearly planar and are almost perpendicular to each other. The dihedral angle between the xanthene mean planes and the spirolactam ring fragment is 86.6 (9)°. The dihedral angle between the xanthene mean planes and the 2,4-dihydroxybenzene ring is 88.0 (9)°.

Related literature top

For the structures of rhodamine derivatives bearing a lactam moiety, see: Deng et al. (2009); Kwon et al. (2005); Tian & Peng (2008); Wu et al. (2007); Xu et al. (2009); Zhang et al. (2008).

Experimental top

A portion of rhodamine B hydrazide (0.46 g, 1 mmol) and 2,4-dihydroxybenzaldehyde (0.16 g, 1.2 mmol) were mixed in 20 ml e thanol and three drops HAc was added. The reaction solution was refluxed for 3 hours under N2 atmosphere, the reslulting solution was evaporated to 10 ml and allowed to stand at room temperature overnight. The reddish crystals which appeared next day were filtered and washed by ethanol to give 0.46 g of the title compound in 80% yield. Single crystals suitable for X-ray measurements were obtained from mother liquid by slow evaporation at room temperature.

Refinement top

The H atoms attached to C, N and O atoms were placed in geometrically calculated positions (C—H = 0.93–0.97 Å and O—H = 0.82 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(methyl C, O).

Structure description top

Among many fluorescent compounds, rhodamine dyes are known to have excellent photophysical properties, and they are one of the most widely used fluorophores for labeling and sensing biomolecules. There are a few single-crystal reports about rhodamine derivatives bearing a lactam moiety (Xu et al., 2009; Kwon et al., 2005; Wu et al., 2007; Zhang et al., 2008; Tian et al., 2008; Deng et al., 2009). Detailed information on their molecular and crystal structures is necessary to understand their photophysical and photochemical properties.

In agreement with other reported models , (Xu et al., 2009; Wu et al., 2007; Zhang et al., 2008; Tian et al., 2008;) the main skeleton of the molecule is formed by the xanthene ring and the spirolactam-ring. As shown in Figure 1, The atoms of the xanthene ring or the spirolactam-ring are both nearly planar and are almost perpendicular to each other. The dihedral angle between the xanthene mean planes and the spirolactam ring fragment is 86.6 (9)°. The dihedral angle between the xanthene mean planes and the 2,4-dihydroxybenzene ring is 88.0 (9)°.

For the structures of rhodamine derivatives bearing a lactam moiety, see: Deng et al. (2009); Kwon et al. (2005); Tian & Peng (2008); Wu et al. (2007); Xu et al. (2009); Zhang et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at 30% probability level.
2-[(2,4-Dihydroxybenzylidene)amino]-3',6'-bis(ethylamino)spiro[isoindoline- 1,9'-xanthen]-3-one top
Crystal data top
C35H36N4O4F(000) = 1224
Mr = 576.68Dx = 1.281 Mg m3
Dm = 1.281 Mg m3
Dm measured by not measured
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.4461 (4) ÅCell parameters from 922 reflections
b = 26.6905 (12) Åθ = 2.3–17.5°
c = 12.2453 (5) ŵ = 0.09 mm1
β = 104.423 (2)°T = 296 K
V = 2990.0 (2) Å3Block, colorless
Z = 40.25 × 0.23 × 0.21 mm
Data collection top
Bruker APEXII CCD
diffractometer
5310 independent reflections
Radiation source: fine-focus sealed tube2162 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
φ and ω scansθmax = 25.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 117
Tmin = 0.979, Tmax = 0.982k = 3130
15630 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.215H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0857P)2]
where P = (Fo2 + 2Fc2)/3
5310 reflections(Δ/σ)max < 0.001
393 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C35H36N4O4V = 2990.0 (2) Å3
Mr = 576.68Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4461 (4) ŵ = 0.09 mm1
b = 26.6905 (12) ÅT = 296 K
c = 12.2453 (5) Å0.25 × 0.23 × 0.21 mm
β = 104.423 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
5310 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2162 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.982Rint = 0.087
15630 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.215H-atom parameters constrained
S = 1.02Δρmax = 0.25 e Å3
5310 reflectionsΔρmin = 0.22 e Å3
393 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3223 (7)0.6153 (3)0.9041 (5)0.133 (2)
H1A0.33700.61380.82940.199*
H1B0.39210.59400.95320.199*
H1C0.33480.64910.93130.199*
C20.1753 (7)0.5984 (2)0.9018 (4)0.103 (2)
H2A0.16040.59900.97740.124*
H2B0.16130.56440.87360.124*
C30.0711 (7)0.6969 (3)0.9716 (6)0.157 (3)
H3A0.00600.72230.98610.236*
H3B0.15980.71230.96350.236*
H3C0.09320.67371.03350.236*
C40.0080 (7)0.6728 (3)0.8778 (5)0.142 (3)
H4A0.01790.69830.81990.170*
H4B0.08350.66010.88920.170*
C50.0391 (5)0.62734 (19)0.7115 (4)0.0658 (13)
C60.0518 (5)0.66052 (17)0.6381 (4)0.0682 (14)
H60.09080.68790.66750.082*
C70.0847 (4)0.65369 (17)0.5250 (4)0.0619 (12)
H70.14720.67640.47920.074*
C80.0288 (4)0.61409 (15)0.4742 (3)0.0472 (10)
C90.0635 (4)0.58217 (15)0.5468 (3)0.0501 (11)
C100.0969 (5)0.58814 (18)0.6619 (4)0.0651 (13)
H100.15950.56540.70760.078*
C110.1123 (4)0.53531 (15)0.3966 (3)0.0490 (11)
C120.1954 (5)0.49728 (16)0.3683 (4)0.0580 (12)
H120.25690.47890.42530.070*
C130.1896 (4)0.48581 (17)0.2564 (4)0.0562 (11)
C140.3593 (6)0.41531 (19)0.3137 (4)0.0833 (16)
H14A0.37370.38350.27970.100*
H14B0.30580.40880.37030.100*
C150.5050 (6)0.4366 (2)0.3703 (5)0.110 (2)
H15A0.56030.44200.31540.165*
H15B0.55630.41350.42650.165*
H15C0.49200.46780.40530.165*
C160.3493 (8)0.4691 (3)0.0552 (6)0.142 (3)
H16A0.30510.50180.04580.213*
H16B0.35260.45600.01720.213*
H16C0.44680.47160.10230.213*
C170.2632 (7)0.4358 (2)0.1076 (5)0.1038 (19)
H17A0.29710.40170.10330.125*
H17B0.16190.43730.06500.125*
C180.0957 (5)0.51575 (18)0.1741 (4)0.0656 (13)
H180.08840.50990.09800.079*
C190.0150 (5)0.55344 (17)0.2056 (4)0.0637 (13)
H190.04550.57260.14960.076*
C200.0197 (4)0.56410 (15)0.3172 (3)0.0471 (10)
C210.0665 (4)0.60681 (15)0.3484 (3)0.0477 (10)
C220.2316 (4)0.60356 (16)0.2994 (3)0.0493 (10)
C230.3254 (5)0.56787 (17)0.3198 (3)0.0613 (12)
H230.29160.53980.36350.074*
C240.4729 (5)0.57535 (19)0.2726 (4)0.0709 (14)
H240.53960.55190.28590.085*
C250.5239 (5)0.6164 (2)0.2065 (4)0.0705 (14)
H250.62400.62060.17770.085*
C260.4286 (5)0.65122 (17)0.1826 (4)0.0640 (13)
H260.46210.67850.13590.077*
C270.2806 (4)0.64420 (15)0.2306 (3)0.0489 (11)
C280.1560 (4)0.67624 (17)0.2241 (4)0.0535 (11)
C290.1563 (5)0.70297 (18)0.2756 (4)0.0663 (13)
H290.09970.71420.20660.080*
C300.3057 (5)0.72331 (17)0.3196 (4)0.0587 (12)
C310.3612 (6)0.75637 (19)0.2560 (4)0.0783 (15)
H310.30670.76500.18420.094*
C320.4987 (6)0.7771 (2)0.2981 (5)0.0872 (17)
H320.53750.79900.25410.105*
C330.5776 (5)0.7650 (2)0.4060 (5)0.0733 (14)
C340.5267 (5)0.73148 (19)0.4713 (4)0.0706 (14)
H340.58220.72280.54270.085*
C350.3870 (5)0.71047 (17)0.4268 (4)0.0649 (13)
N10.0690 (5)0.63236 (18)0.8272 (4)0.0940 (15)
N20.2709 (4)0.44784 (15)0.2266 (3)0.0749 (12)
N30.0361 (3)0.65359 (12)0.2909 (3)0.0519 (9)
N40.1058 (4)0.67119 (13)0.3293 (3)0.0587 (10)
O10.1568 (3)0.71531 (11)0.1705 (3)0.0705 (9)
O20.7101 (4)0.78780 (16)0.4427 (3)0.1002 (13)
H20.74110.78320.51060.150*
O30.3414 (4)0.67909 (15)0.4958 (3)0.0928 (12)
H30.25950.66870.46470.139*
O40.1295 (3)0.54163 (11)0.5103 (2)0.0666 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.120 (6)0.175 (7)0.096 (5)0.019 (5)0.013 (4)0.032 (5)
C20.098 (5)0.142 (6)0.069 (4)0.001 (4)0.022 (4)0.030 (4)
C30.114 (6)0.197 (8)0.153 (7)0.006 (5)0.019 (5)0.095 (6)
C40.121 (5)0.196 (8)0.091 (5)0.065 (5)0.009 (4)0.077 (5)
C50.049 (3)0.086 (4)0.056 (3)0.009 (3)0.000 (2)0.021 (3)
C60.054 (3)0.072 (4)0.074 (3)0.012 (2)0.006 (3)0.022 (3)
C70.055 (3)0.058 (3)0.064 (3)0.013 (2)0.003 (2)0.001 (2)
C80.038 (2)0.048 (3)0.050 (3)0.0026 (19)0.001 (2)0.000 (2)
C90.044 (3)0.050 (3)0.051 (3)0.010 (2)0.002 (2)0.004 (2)
C100.060 (3)0.079 (4)0.048 (3)0.016 (2)0.002 (2)0.006 (3)
C110.055 (3)0.050 (3)0.038 (3)0.001 (2)0.003 (2)0.002 (2)
C120.059 (3)0.060 (3)0.049 (3)0.008 (2)0.002 (2)0.004 (2)
C130.051 (3)0.058 (3)0.057 (3)0.001 (2)0.009 (2)0.002 (2)
C140.096 (4)0.068 (4)0.090 (4)0.023 (3)0.032 (3)0.011 (3)
C150.078 (4)0.108 (5)0.139 (5)0.017 (4)0.018 (4)0.001 (4)
C160.118 (6)0.199 (8)0.121 (6)0.016 (5)0.053 (5)0.015 (5)
C170.114 (5)0.110 (5)0.093 (5)0.028 (4)0.037 (4)0.003 (4)
C180.068 (3)0.080 (4)0.045 (3)0.013 (3)0.008 (2)0.000 (2)
C190.063 (3)0.070 (3)0.051 (3)0.015 (2)0.001 (2)0.010 (2)
C200.045 (3)0.051 (3)0.043 (2)0.000 (2)0.006 (2)0.006 (2)
C210.037 (2)0.049 (3)0.051 (3)0.0030 (19)0.0008 (19)0.004 (2)
C220.043 (3)0.051 (3)0.048 (2)0.006 (2)0.000 (2)0.003 (2)
C230.047 (3)0.068 (3)0.062 (3)0.007 (2)0.000 (2)0.009 (2)
C240.054 (3)0.078 (4)0.075 (3)0.017 (2)0.003 (3)0.005 (3)
C250.040 (3)0.087 (4)0.076 (3)0.007 (3)0.003 (2)0.006 (3)
C260.048 (3)0.066 (3)0.071 (3)0.006 (2)0.002 (2)0.010 (3)
C270.039 (3)0.049 (3)0.052 (3)0.001 (2)0.000 (2)0.006 (2)
C280.051 (3)0.051 (3)0.055 (3)0.003 (2)0.006 (2)0.004 (2)
C290.061 (3)0.068 (4)0.063 (3)0.003 (3)0.002 (3)0.003 (3)
C300.058 (3)0.062 (3)0.053 (3)0.003 (2)0.007 (2)0.001 (2)
C310.087 (4)0.085 (4)0.066 (3)0.012 (3)0.026 (3)0.009 (3)
C320.079 (4)0.102 (5)0.081 (4)0.039 (3)0.021 (3)0.010 (3)
C330.052 (3)0.092 (4)0.077 (4)0.024 (3)0.018 (3)0.018 (3)
C340.054 (3)0.084 (4)0.071 (3)0.018 (3)0.012 (3)0.009 (3)
C350.069 (3)0.055 (3)0.078 (4)0.009 (2)0.032 (3)0.005 (3)
N10.084 (3)0.123 (4)0.063 (3)0.032 (3)0.004 (2)0.031 (3)
N20.083 (3)0.080 (3)0.061 (3)0.027 (2)0.016 (2)0.002 (2)
N30.037 (2)0.051 (2)0.062 (2)0.0056 (17)0.0025 (17)0.0110 (18)
N40.053 (2)0.050 (2)0.072 (3)0.0094 (18)0.015 (2)0.010 (2)
O10.058 (2)0.061 (2)0.084 (2)0.0002 (15)0.0007 (16)0.0266 (18)
O20.070 (2)0.137 (3)0.092 (3)0.056 (2)0.016 (2)0.017 (3)
O30.075 (3)0.109 (3)0.081 (2)0.028 (2)0.0046 (19)0.027 (2)
O40.078 (2)0.069 (2)0.0468 (19)0.0292 (17)0.0047 (16)0.0023 (16)
Geometric parameters (Å, º) top
C1—C21.453 (7)C16—H16B0.9600
C1—H1A0.9600C16—H16C0.9600
C1—H1B0.9600C17—N21.476 (6)
C1—H1C0.9600C17—H17A0.9700
C2—N11.486 (7)C17—H17B0.9700
C2—H2A0.9700C18—C191.374 (6)
C2—H2B0.9700C18—H180.9300
C3—C41.323 (7)C19—C201.386 (5)
C3—H3A0.9600C19—H190.9300
C3—H3B0.9600C20—C211.504 (5)
C3—H3C0.9600C21—N31.496 (5)
C4—N11.434 (6)C21—C221.527 (5)
C4—H4A0.9700C22—C231.366 (5)
C4—H4B0.9700C22—C271.381 (5)
C5—N11.380 (5)C23—C241.384 (6)
C5—C101.388 (6)C23—H230.9300
C5—C61.395 (6)C24—C251.376 (6)
C6—C71.354 (5)C24—H240.9300
C6—H60.9300C25—C261.376 (6)
C7—C81.396 (5)C25—H250.9300
C7—H70.9300C26—C271.388 (5)
C8—C91.375 (5)C26—H260.9300
C8—C211.504 (5)C27—C281.473 (5)
C9—C101.375 (5)C28—O11.231 (5)
C9—O41.377 (4)C28—N31.362 (5)
C10—H100.9300C29—N41.240 (5)
C11—C201.370 (5)C29—C301.482 (6)
C11—O41.371 (4)C29—H290.9300
C11—C121.380 (5)C30—C311.365 (6)
C12—C131.391 (5)C30—C351.389 (6)
C12—H120.9300C31—C321.388 (6)
C13—N21.374 (5)C31—H310.9300
C13—C181.413 (6)C32—C331.385 (7)
C14—N21.465 (6)C32—H320.9300
C14—C151.490 (7)C33—O21.363 (5)
C14—H14A0.9700C33—C341.364 (6)
C14—H14B0.9700C34—C351.413 (6)
C15—H15A0.9600C34—H340.9300
C15—H15B0.9600C35—O31.335 (5)
C15—H15C0.9600N3—N41.388 (4)
C16—C171.458 (7)O2—H20.8200
C16—H16A0.9600O3—H30.8200
C2—C1—H1A109.5N2—C17—H17B108.8
C2—C1—H1B109.5H17A—C17—H17B107.7
H1A—C1—H1B109.5C19—C18—C13120.5 (4)
C2—C1—H1C109.5C19—C18—H18119.8
H1A—C1—H1C109.5C13—C18—H18119.8
H1B—C1—H1C109.5C18—C19—C20122.9 (4)
C1—C2—N1108.6 (5)C18—C19—H19118.5
C1—C2—H2A110.0C20—C19—H19118.5
N1—C2—H2A110.0C11—C20—C19116.3 (4)
C1—C2—H2B110.0C11—C20—C21122.3 (4)
N1—C2—H2B110.0C19—C20—C21121.3 (4)
H2A—C2—H2B108.3N3—C21—C8110.5 (3)
C4—C3—H3A109.5N3—C21—C20109.5 (3)
C4—C3—H3B109.5C8—C21—C20110.6 (3)
H3A—C3—H3B109.5N3—C21—C2299.2 (3)
C4—C3—H3C109.5C8—C21—C22111.6 (3)
H3A—C3—H3C109.5C20—C21—C22114.9 (3)
H3B—C3—H3C109.5C23—C22—C27121.7 (4)
C3—C4—N1126.8 (6)C23—C22—C21127.8 (4)
C3—C4—H4A105.6C27—C22—C21110.5 (3)
N1—C4—H4A105.6C22—C23—C24117.1 (4)
C3—C4—H4B105.6C22—C23—H23121.5
N1—C4—H4B105.6C24—C23—H23121.5
H4A—C4—H4B106.1C25—C24—C23121.9 (4)
N1—C5—C10121.3 (4)C25—C24—H24119.0
N1—C5—C6122.4 (4)C23—C24—H24119.0
C10—C5—C6116.3 (4)C26—C25—C24120.8 (4)
C7—C6—C5121.4 (4)C26—C25—H25119.6
C7—C6—H6119.3C24—C25—H25119.6
C5—C6—H6119.3C25—C26—C27117.5 (4)
C6—C7—C8122.9 (4)C25—C26—H26121.2
C6—C7—H7118.6C27—C26—H26121.2
C8—C7—H7118.6C22—C27—C26120.9 (4)
C9—C8—C7115.5 (4)C22—C27—C28109.7 (4)
C9—C8—C21122.2 (4)C26—C27—C28129.3 (4)
C7—C8—C21122.4 (4)O1—C28—N3126.1 (4)
C8—C9—C10122.5 (4)O1—C28—C27128.4 (4)
C8—C9—O4122.8 (4)N3—C28—C27105.4 (4)
C10—C9—O4114.6 (4)N4—C29—C30121.0 (4)
C9—C10—C5121.4 (4)N4—C29—H29119.5
C9—C10—H10119.3C30—C29—H29119.5
C5—C10—H10119.3C31—C30—C35119.9 (4)
C20—C11—O4123.0 (4)C31—C30—C29119.7 (4)
C20—C11—C12122.4 (4)C35—C30—C29120.4 (4)
O4—C11—C12114.5 (4)C30—C31—C32120.2 (5)
C11—C12—C13121.6 (4)C30—C31—H31119.9
C11—C12—H12119.2C32—C31—H31119.9
C13—C12—H12119.2C33—C32—C31119.6 (5)
N2—C13—C12122.4 (4)C33—C32—H32120.2
N2—C13—C18121.4 (4)C31—C32—H32120.2
C12—C13—C18116.2 (4)O2—C33—C34121.9 (5)
N2—C14—C15114.0 (5)O2—C33—C32116.2 (5)
N2—C14—H14A108.8C34—C33—C32121.9 (4)
C15—C14—H14A108.8C33—C34—C35117.8 (4)
N2—C14—H14B108.8C33—C34—H34121.1
C15—C14—H14B108.8C35—C34—H34121.1
H14A—C14—H14B107.7O3—C35—C30124.3 (4)
C14—C15—H15A109.5O3—C35—C34115.0 (4)
C14—C15—H15B109.5C30—C35—C34120.7 (4)
H15A—C15—H15B109.5C5—N1—C4121.0 (5)
C14—C15—H15C109.5C5—N1—C2120.4 (4)
H15A—C15—H15C109.5C4—N1—C2118.4 (4)
H15B—C15—H15C109.5C13—N2—C14119.9 (4)
C17—C16—H16A109.5C13—N2—C17121.9 (4)
C17—C16—H16B109.5C14—N2—C17117.9 (4)
H16A—C16—H16B109.5C28—N3—N4129.9 (3)
C17—C16—H16C109.5C28—N3—C21115.1 (3)
H16A—C16—H16C109.5N4—N3—C21113.9 (3)
H16B—C16—H16C109.5C29—N4—N3121.3 (4)
C16—C17—N2114.0 (5)C33—O2—H2109.5
C16—C17—H17A108.8C35—O3—H3109.5
N2—C17—H17A108.8C11—O4—C9118.5 (3)
C16—C17—H17B108.8
N1—C5—C6—C7177.1 (4)C25—C26—C27—C28176.9 (4)
C10—C5—C6—C71.8 (7)C22—C27—C28—O1179.4 (4)
C5—C6—C7—C81.2 (7)C26—C27—C28—O13.2 (8)
C6—C7—C8—C90.3 (6)C22—C27—C28—N30.6 (5)
C6—C7—C8—C21179.8 (4)C26—C27—C28—N3176.8 (4)
C7—C8—C9—C101.1 (6)N4—C29—C30—C31176.7 (4)
C21—C8—C9—C10179.0 (4)N4—C29—C30—C355.8 (7)
C7—C8—C9—O4179.2 (4)C35—C30—C31—C320.1 (7)
C21—C8—C9—O40.7 (6)C29—C30—C31—C32177.6 (5)
C8—C9—C10—C50.4 (7)C30—C31—C32—C331.6 (8)
O4—C9—C10—C5179.8 (4)C31—C32—C33—O2178.3 (5)
N1—C5—C10—C9177.9 (4)C31—C32—C33—C342.7 (8)
C6—C5—C10—C91.1 (7)O2—C33—C34—C35178.8 (4)
C20—C11—C12—C130.2 (7)C32—C33—C34—C352.2 (8)
O4—C11—C12—C13179.5 (4)C31—C30—C35—O3179.1 (5)
C11—C12—C13—N2179.5 (4)C29—C30—C35—O31.6 (7)
C11—C12—C13—C180.9 (6)C31—C30—C35—C340.3 (7)
N2—C13—C18—C19179.8 (4)C29—C30—C35—C34177.1 (4)
C12—C13—C18—C190.7 (7)C33—C34—C35—O3178.1 (4)
C13—C18—C19—C200.3 (7)C33—C34—C35—C300.7 (7)
O4—C11—C20—C19179.6 (4)C10—C5—N1—C4179.5 (5)
C12—C11—C20—C190.8 (6)C6—C5—N1—C40.6 (8)
O4—C11—C20—C212.7 (6)C10—C5—N1—C25.7 (7)
C12—C11—C20—C21177.6 (4)C6—C5—N1—C2175.4 (5)
C18—C19—C20—C111.0 (6)C3—C4—N1—C5145.1 (8)
C18—C19—C20—C21177.9 (4)C3—C4—N1—C229.7 (12)
C9—C8—C21—N3126.4 (4)C1—C2—N1—C578.6 (6)
C7—C8—C21—N353.5 (5)C1—C2—N1—C496.3 (7)
C9—C8—C21—C205.0 (5)C12—C13—N2—C144.7 (7)
C7—C8—C21—C20174.9 (4)C18—C13—N2—C14175.8 (4)
C9—C8—C21—C22124.3 (4)C12—C13—N2—C17179.7 (5)
C7—C8—C21—C2255.8 (5)C18—C13—N2—C170.8 (7)
C11—C20—C21—N3125.3 (4)C15—C14—N2—C1383.1 (6)
C19—C20—C21—N351.4 (5)C15—C14—N2—C17101.7 (6)
C11—C20—C21—C83.4 (5)C16—C17—N2—C1379.7 (7)
C19—C20—C21—C8173.3 (4)C16—C17—N2—C14105.3 (6)
C11—C20—C21—C22124.1 (4)O1—C28—N3—N411.1 (7)
C19—C20—C21—C2259.2 (5)C27—C28—N3—N4168.9 (4)
N3—C21—C22—C23179.7 (4)O1—C28—N3—C21178.8 (4)
C8—C21—C22—C2363.9 (6)C27—C28—N3—C211.2 (5)
C20—C21—C22—C2363.1 (6)C8—C21—N3—C28115.0 (4)
N3—C21—C22—C272.5 (4)C20—C21—N3—C28122.9 (4)
C8—C21—C22—C27113.9 (4)C22—C21—N3—C282.2 (4)
C20—C21—C22—C27119.1 (4)C8—C21—N3—N454.7 (4)
C27—C22—C23—C242.9 (7)C20—C21—N3—N467.4 (4)
C21—C22—C23—C24174.6 (4)C22—C21—N3—N4171.9 (3)
C22—C23—C24—C251.0 (7)C30—C29—N4—N3177.2 (4)
C23—C24—C25—C261.6 (8)C28—N3—N4—C2927.2 (7)
C24—C25—C26—C272.2 (7)C21—N3—N4—C29165.0 (4)
C23—C22—C27—C262.3 (7)C20—C11—O4—C97.5 (6)
C21—C22—C27—C26175.6 (4)C12—C11—O4—C9172.8 (4)
C23—C22—C27—C28180.0 (4)C8—C9—O4—C115.7 (6)
C21—C22—C27—C282.1 (5)C10—C9—O4—C11174.5 (4)
C25—C26—C27—C220.3 (6)

Experimental details

Crystal data
Chemical formulaC35H36N4O4
Mr576.68
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.4461 (4), 26.6905 (12), 12.2453 (5)
β (°) 104.423 (2)
V3)2990.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.23 × 0.21
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.979, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
15630, 5310, 2162
Rint0.087
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.215, 1.02
No. of reflections5310
No. of parameters393
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.22

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Natural Science Foundation of the Education Department of Henan Province (2010B150029) and Science and Technique Foundation of Henan Province (0624290013, 082300420110) for support.

References

First citationBruker (1998). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeng, W.-J., Sun, D., Su, B.-Y., Wang, S.-P. & Zheng, H. (2009). Acta Cryst. E65, o1464.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKwon, J. Y., Jang, Y. J., Lee, Y. J., Kim, K. M., Seo, M. S., Nam, W. & Yoon, I. (2005). J. Am. Chem. Soc. 127, 10107–10111.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, M.-Z. & Peng, X.-J. (2008). Acta Cryst. E64, o1645.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWu, D., Huang, W., Duan, C.-Y., Lin, Z.-H. & Meng, Q.-J. (2007). Inorg. Chem. 46, 1538–1540.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationXu, Z.-H., Wang, H.-S., Tao, L.-T. & Wang, H.-W. (2009). Acta Cryst. E65, o1876.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, L.-Z., Peng, X.-J., Gao, S. & Fan, J.-L. (2008). Acta Cryst. E64, o403.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds