metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aceto­nitrile­tri­aqua­[3-eth­­oxy-1,8-(3,6,9-trioxaundecane-1,11-diyldi­­oxy)-9H-xanthen-9-one]terbium(III) tris­­(perchlorate)

aCollege of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
*Correspondence e-mail: tangn@lzu.edu.cn

(Received 26 April 2010; accepted 17 May 2010; online 22 May 2010)

In the title compound, [Tb(CH3CN)(C23H26O8)(H2O)3](ClO4)3, the Tb3+ atom is eight-coordinated by one N atom of an acetonitrile molecule, three water O atoms and four ligand O atoms. The Tb3+ atom is located on one side of the macrocycle and the carbonyl oxygen coordinated to the terbium [Tb1—O1= 2.210 (3) Å] is bent out of the xanthone plane by 0.514 (3) Å. The geometry around terbium is a distorted two-capped trigonal prism.

Related literature

For a previous study of xanthone–ether, see: Shen, Pan, Wang, Wu et al. (2008[Shen, R., Pan, X. B., Wang, H. F., Wu, J. C., Tang, N. (2008). Inorg. Chem. Commun. 11, 318-322.]); Wu et al. (2009[Wu, J. C., Pan, X. B., Yao, L. H., Wang, L., Tang, N. (2009). Supramolecul. Chem. 21, 707-716.]). For the synthesis of similar xanthone–ether compounds, see: Shen, Pan, Wang, Yao et al. (2008[Shen, R., Pan, X. B., Wang, H. F., Yao, L. H., Wu, J. C., Tang, N. (2008). Dalton Trans. pp. 3574-3581.]); Mills et al. (1995[Mills, O. S., Mooney, N. J., Robinson, P. M., Watt, C. F. & Box, B. G. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 697-706.]).

[Scheme 1]

Experimental

Crystal data
  • [Tb(C2H3N)(C23H26O8)(H2O)3](ClO4)3

  • Mr = 982.81

  • Triclinic, [P \overline 1]

  • a = 10.2838 (2) Å

  • b = 11.7932 (3) Å

  • c = 15.4680 (4) Å

  • α = 85.933 (1)°

  • β = 84.813 (1)°

  • γ = 77.363 (1)°

  • V = 1820.48 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.25 mm−1

  • T = 296 K

  • 0.25 × 0.21 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Winconsin, USA.]) Tmin = 0.575, Tmax = 0.713

  • 11523 measured reflections

  • 8058 independent reflections

  • 6378 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.113

  • S = 1.03

  • 8058 reflections

  • 495 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.96 e Å−3

  • Δρmin = −0.85 e Å−3

Table 1
Selected bond lengths (Å)

Tb1—O1 2.210 (3)
Tb1—O23 2.359 (5)
Tb1—O22 2.391 (4)
Tb1—O21 2.412 (4)
Tb1—O4 2.442 (4)
Tb1—N1 2.467 (5)
Tb1—O3 2.467 (4)
Tb1—O5 2.477 (4)

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Winconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Winconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The xanthone derivatives show good properties in pharmacology and selectively recognition of guest species. A series of alkali metal and alkaline earth metal complexes derived from xanthone-crown ether have been synthesised and studied as fluorescent sensors. However, the rare earth complexes with novel structure derived from xanthone-crown ether have rarely been reported. Herein, we report the synthesis and structure of the title compound, 3-ethoxy-1,8-(3,6,9-trioxaundecane-1,11-diylioxy)xanthone terbium(III) perchlorate. The Tb3+ is located on one side of the macrocycle and the carbonyl oxygen coordinated to the terbium (Tb1—O1= 2.210 (3) Å) is bent out of the xanthone plane as to increase the coordination space. Tb3+ is eight coordinated by one nitrogen of CH3CN (Tb1—N1= 2.467 (5) Å), three oxygens from three water molecule (Tb1—O21= 2.412 (4) Å, Tb1—O22= 2.391 (4) Å, Tb1—O23= 2.359 (5) Å) and four ligand oxygens (Tb1—O1= 2.210 (3) Å, Tb1—O3= 2.467 (4) Å, Tb1—O4= 2.442 (4) Å, and Tb1—O5= 2.477 (4) Å) (Fig. 1 and Table 1). The selected bond angles around Tb3+ were listed as following: O1—Tb1—O3 = 105.85°, O1—Tb1—O4 = 148.44°, O1—Tb1—O5 = 106.73°, O3—Tb1—O4 = 66.29°, O4—Tb1—O5 = 66.27°, O3—Tb1—O5 = 130.40°, O21—Tb1—O22 = 132.39°, O21—Tb1—O23 = 141.50°, O22—Tb1—O23 = 75.57°. Geometry around terbium is a distorted two-capped trigonal prism.

Related literature top

For related literature, see: Mills et al. (1995); Shen, Pan, Wang, Wu, Tang & Ning (2008); Shen, Pan, Wang, Yao, Wu, Tang & Ning (2008); Wu et al. (2009). It would be much more useful to readers if the "Related literature" section had some kind of simple sub-division, so that, instead of just "For related literature, see···" it said, for example, "For general background, see···. For related structures, see···.? etc. Please revise this section as indicated.

Experimental top

3-ethoxy-1,8-trihydroxyxanthone was prepared as follows: 1,3,8-trihydroxyxanthone (2.44 g, 10 mmol) was dissolved in acethone (150 ml). Bromoethane (1.64 g, 15 mmol) and anhydrous potassium carbonate (2 g) was added. Then the mixture was stirred at 333 K for 12 h. The resulting mixture was filtrated and the filtration was evaporated.The residue was purified by column chromatography(SiO2, EtOAc/petroleum ether, 1:9). Then light-yellow powder was obtained. Yield: 61.20%. MS (ESI) m/z(%): 272.0 [M], 1H NMR(300 MHz, CDCl3): 7.60-7.51 (t, 1 H), 6.89-6.76 (m, 2 H), 6.40-6.17 (d, 2 H), 4.18-4.07(m, 2 H), 1.56-1.43(m, 3 H).

3-Ethoxy-1,8-(3,6,9-trioxaundecane-1,11-diylioxy)xanthone was prepared as follows: 3-ethoxy-1,8-trihydroxyxanthone (1.36 g, 5 mmol) was dissolved in the dry DMF (350 ml), and anhydrous potassium carbonate (2.07 g,15 mmol) was added under N2. 1,11-Dibromo-3,6,9-trioxaundecane (3.20 g, 10 mmol) was added and the mixture refluxed for 14 h. Most of the DMF was evaporated. The resulting mixture was diluted with water (60 ml), extracted several times with chloroform and the chloroform extracts evaporated. The residue was purified by column chromatography (SiO2, CHCl3/EtOH, 10:1), and then recrystallized from dry toluene afforded L as light-yellow crystals. Yield: 40.60%. M.p. 434-436 K. MS (ESI) m/z(%): 430.3 [M]. 1H NMR (400 MHz, CDCl3, ppm): 7.45-7.41 (t, 1H); 6.91-6.89 (d, 1H); 6.68-6.66 (d, 1H); 6.38-6.37 (s, 1H); 6.24-6.23 (s, 1H); 4.20-4.14 (m, 4H); 4.02-3.97 (m, 8 H); 3.85-3.81 (m, 4 H); 4.20-4.14 (m, 4H); 4.11-4.05 (m, 2H); 1.46-1.42 (m, 3H); IR (KBr, cm-1): 3426(s), 2869(s), 1661(s), 1566(s), 1473(s), 1322(s), 1268(s), 1114(s), 893(s), 772(s).

The title compound was prepared as follows: ligand (86.1 mg, 0.2 mmol) was dissolved in 7 ml of acetonitrile. Terbium(III) perchlorate hexahydrate (113.1 mg, 0.2 mmol) was dissolved in 4 ml of acetonitrile and added dropwise to the above solution. After the solution was stirred for 2 h, all the solvent was evaporated. The residue was redissolved in 3 ml of acetonitrile and layered with diethyl ether. Fine yellowish-block crystal was obtained. Yield: 50%. M.p. 447-449 K. Elemental anal. calcd for C25H35O23Cl3NTb: C, 30.55%; H, 3.59%; N, 1.43%. Found: C, 30.70%; H, 3.41%; N, 1.59%. IR (KBr, cm-1): 3357(s), 2934(s), 2869(s), 1625(s), 1564(s), 1474(s), 1319(s), 1273(s), 1112(s), 889(s), 778(s).

Structure description top

The xanthone derivatives show good properties in pharmacology and selectively recognition of guest species. A series of alkali metal and alkaline earth metal complexes derived from xanthone-crown ether have been synthesised and studied as fluorescent sensors. However, the rare earth complexes with novel structure derived from xanthone-crown ether have rarely been reported. Herein, we report the synthesis and structure of the title compound, 3-ethoxy-1,8-(3,6,9-trioxaundecane-1,11-diylioxy)xanthone terbium(III) perchlorate. The Tb3+ is located on one side of the macrocycle and the carbonyl oxygen coordinated to the terbium (Tb1—O1= 2.210 (3) Å) is bent out of the xanthone plane as to increase the coordination space. Tb3+ is eight coordinated by one nitrogen of CH3CN (Tb1—N1= 2.467 (5) Å), three oxygens from three water molecule (Tb1—O21= 2.412 (4) Å, Tb1—O22= 2.391 (4) Å, Tb1—O23= 2.359 (5) Å) and four ligand oxygens (Tb1—O1= 2.210 (3) Å, Tb1—O3= 2.467 (4) Å, Tb1—O4= 2.442 (4) Å, and Tb1—O5= 2.477 (4) Å) (Fig. 1 and Table 1). The selected bond angles around Tb3+ were listed as following: O1—Tb1—O3 = 105.85°, O1—Tb1—O4 = 148.44°, O1—Tb1—O5 = 106.73°, O3—Tb1—O4 = 66.29°, O4—Tb1—O5 = 66.27°, O3—Tb1—O5 = 130.40°, O21—Tb1—O22 = 132.39°, O21—Tb1—O23 = 141.50°, O22—Tb1—O23 = 75.57°. Geometry around terbium is a distorted two-capped trigonal prism.

For related literature, see: Mills et al. (1995); Shen, Pan, Wang, Wu, Tang & Ning (2008); Shen, Pan, Wang, Yao, Wu, Tang & Ning (2008); Wu et al. (2009). It would be much more useful to readers if the "Related literature" section had some kind of simple sub-division, so that, instead of just "For related literature, see···" it said, for example, "For general background, see···. For related structures, see···.? etc. Please revise this section as indicated.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid (30%) diagram of the title compound. Hydrogen atoms have been excluded for clarity.
[Figure 2] Fig. 2. The eight-coordination with a distorted two-capped trigonal prism around terbium in the title compound.
Acetonitriletriaqua[3-ethoxy-1,8-(3,6,9-trioxaundecane-1,11- diyldioxy)-9H-xanthen-9-one]terbium(III) tris(perchlorate) top
Crystal data top
[Tb(C2H3N)(C23H26O8)(H2O)3](ClO4)3Z = 2
Mr = 982.81F(000) = 984
Triclinic, P1Dx = 1.793 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.2838 (2) ÅCell parameters from 5453 reflections
b = 11.7932 (3) Åθ = 1.3–27.6°
c = 15.4680 (4) ŵ = 2.25 mm1
α = 85.933 (1)°T = 296 K
β = 84.813 (1)°Block, light yellow
γ = 77.363 (1)°0.25 × 0.21 × 0.15 mm
V = 1820.48 (7) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
8058 independent reflections
Radiation source: fine-focus sealed tube6378 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
phi and ω scansθmax = 27.6°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1311
Tmin = 0.575, Tmax = 0.713k = 1315
11523 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0551P)2 + 2.2597P]
where P = (Fo2 + 2Fc2)/3
8058 reflections(Δ/σ)max = 0.001
495 parametersΔρmax = 0.96 e Å3
0 restraintsΔρmin = 0.85 e Å3
Crystal data top
[Tb(C2H3N)(C23H26O8)(H2O)3](ClO4)3γ = 77.363 (1)°
Mr = 982.81V = 1820.48 (7) Å3
Triclinic, P1Z = 2
a = 10.2838 (2) ÅMo Kα radiation
b = 11.7932 (3) ŵ = 2.25 mm1
c = 15.4680 (4) ÅT = 296 K
α = 85.933 (1)°0.25 × 0.21 × 0.15 mm
β = 84.813 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
8058 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
6378 reflections with I > 2σ(I)
Tmin = 0.575, Tmax = 0.713Rint = 0.019
11523 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.96 e Å3
8058 reflectionsΔρmin = 0.85 e Å3
495 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tb10.62956 (3)0.68996 (2)0.713567 (15)0.04133 (9)
O10.8255 (3)0.6826 (3)0.7643 (2)0.0450 (8)
O210.6216 (5)0.5850 (4)0.8529 (3)0.0566 (10)
H210.64300.51490.84600.085*
O30.4659 (3)0.8280 (3)0.8027 (2)0.0532 (9)
O40.4088 (4)0.6427 (4)0.7352 (2)0.0583 (10)
O220.7823 (5)0.6600 (4)0.5871 (3)0.0629 (11)
H220.74030.66930.54360.094*
O50.6272 (5)0.4898 (4)0.6758 (3)0.0645 (11)
Cl30.58766 (14)0.28177 (12)0.93099 (9)0.0524 (3)
O71.1022 (3)0.5922 (3)0.9413 (2)0.0450 (8)
O20.6953 (3)0.8444 (3)0.8646 (2)0.0479 (8)
O230.4973 (5)0.7627 (6)0.5967 (3)0.0722 (16)
H230.52680.81510.56960.108*
C81.0050 (5)0.6910 (4)0.9512 (3)0.0419 (11)
C10.8996 (5)0.6481 (4)0.8254 (3)0.0394 (11)
C120.7988 (5)0.8197 (4)0.9165 (3)0.0426 (11)
C140.5776 (5)0.9279 (5)0.8924 (4)0.0479 (12)
H14A0.60021.00180.90080.058*
H14B0.53750.90060.94690.058*
C150.4839 (6)0.9414 (5)0.8238 (4)0.0567 (14)
H15A0.39840.98900.84360.068*
H15B0.51860.98030.77230.068*
Cl10.12202 (18)0.72796 (18)0.58648 (11)0.0746 (5)
O60.8842 (4)0.4699 (3)0.7159 (3)0.0592 (10)
O170.6598 (4)0.1902 (4)0.9828 (3)0.0781 (14)
O90.2559 (5)0.7073 (6)0.5564 (3)0.0971 (17)
C20.9915 (5)0.5367 (4)0.8252 (3)0.0400 (11)
C30.9880 (5)0.4490 (5)0.7672 (3)0.0474 (12)
C110.8093 (5)0.8861 (5)0.9839 (3)0.0456 (12)
H110.74210.95050.99730.055*
C71.0918 (5)0.5144 (5)0.8830 (3)0.0435 (11)
O190.4947 (7)0.3609 (6)0.9798 (4)0.119 (2)
C61.1903 (5)0.4127 (5)0.8834 (4)0.0508 (13)
H61.25620.39940.92260.061*
C221.0381 (6)0.9085 (5)1.1451 (4)0.0578 (14)
H22A1.11630.91581.10690.069*
H22B1.05330.83071.17250.069*
O80.9219 (4)0.9290 (3)1.0964 (2)0.0556 (9)
N10.6831 (5)0.8781 (4)0.6609 (3)0.0579 (12)
O180.6795 (6)0.3394 (5)0.8823 (4)0.111 (2)
C160.3279 (6)0.8247 (7)0.7959 (4)0.0669 (18)
H16A0.29830.86240.74120.080*
H16B0.27230.86560.84290.080*
C41.0872 (6)0.3490 (5)0.7670 (4)0.0590 (15)
H41.08720.29210.72830.071*
C51.1868 (6)0.3329 (5)0.8241 (4)0.0594 (16)
H51.25360.26550.82200.071*
C240.7305 (8)0.9440 (7)0.6198 (5)0.0745 (19)
C170.3163 (6)0.7015 (7)0.8009 (4)0.0716 (19)
H17A0.33690.66590.85790.086*
H17B0.22590.69640.79120.086*
C231.0136 (7)0.9969 (7)1.2126 (4)0.077 (2)
H23A0.99241.07351.18510.115*
H23B1.09230.98891.24340.115*
H23C0.94020.98511.25270.115*
C180.4008 (8)0.5229 (6)0.7296 (5)0.085 (2)
H18A0.31130.51840.71730.102*
H18B0.42130.47980.78420.102*
C200.7348 (8)0.4169 (6)0.6267 (5)0.082 (2)
H20A0.76100.46060.57510.098*
H20B0.70390.35110.60820.098*
C190.4985 (8)0.4731 (7)0.6589 (5)0.083 (2)
H19A0.50070.39070.65640.099*
H19B0.47300.51140.60350.099*
C210.8518 (8)0.3737 (6)0.6776 (5)0.0717 (18)
H21A0.83190.31730.72270.086*
H21B0.92720.33600.64010.086*
O200.5193 (8)0.2364 (6)0.8729 (6)0.155 (3)
O110.0459 (7)0.7624 (8)0.5156 (5)0.150 (3)
Cl20.6453 (2)0.83662 (18)0.38551 (11)0.0855 (6)
O140.5774 (8)0.8979 (6)0.4544 (4)0.124 (2)
O130.7159 (10)0.7302 (8)0.4167 (4)0.191 (5)
O120.0867 (10)0.6318 (8)0.6195 (8)0.214 (5)
C250.7899 (11)1.0288 (9)0.5657 (7)0.123 (4)
H25A0.80341.00600.50660.185*
H25B0.87421.03200.58640.185*
H25C0.73111.10400.56840.185*
O150.7179 (9)0.8940 (7)0.3332 (6)0.169 (4)
O160.5489 (14)0.8129 (8)0.3300 (7)0.228 (6)
O100.0952 (10)0.8067 (11)0.6477 (7)0.236 (6)
C130.8999 (5)0.7188 (4)0.8973 (3)0.0383 (10)
C100.9210 (5)0.8566 (5)1.0321 (3)0.0450 (12)
C91.0207 (5)0.7590 (5)1.0162 (3)0.0458 (12)
H91.09540.74021.04830.055*
H21C0.569 (6)0.614 (5)0.888 (4)0.049 (18)*
H22C0.868 (7)0.639 (6)0.588 (5)0.08 (2)*
H23D0.447 (8)0.747 (8)0.595 (6)0.09 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tb10.04631 (15)0.04543 (15)0.03356 (13)0.01557 (11)0.00238 (9)0.00619 (9)
O10.0435 (19)0.050 (2)0.0392 (18)0.0054 (16)0.0057 (15)0.0032 (15)
O210.079 (3)0.049 (2)0.040 (2)0.017 (2)0.007 (2)0.0028 (17)
O30.0391 (19)0.064 (3)0.057 (2)0.0079 (18)0.0062 (16)0.0111 (19)
O40.060 (2)0.070 (3)0.052 (2)0.033 (2)0.0022 (18)0.0069 (19)
O220.064 (3)0.074 (3)0.047 (2)0.012 (2)0.003 (2)0.004 (2)
O50.077 (3)0.053 (3)0.068 (3)0.022 (2)0.011 (2)0.006 (2)
Cl30.0543 (8)0.0476 (8)0.0520 (7)0.0045 (6)0.0053 (6)0.0023 (6)
O70.0366 (18)0.045 (2)0.049 (2)0.0004 (15)0.0050 (15)0.0018 (16)
O20.0410 (19)0.048 (2)0.049 (2)0.0060 (16)0.0106 (15)0.0079 (16)
O230.062 (3)0.107 (4)0.055 (3)0.042 (3)0.018 (2)0.032 (2)
C80.038 (3)0.042 (3)0.045 (3)0.012 (2)0.001 (2)0.005 (2)
C10.034 (2)0.042 (3)0.039 (2)0.008 (2)0.0051 (19)0.003 (2)
C120.042 (3)0.039 (3)0.045 (3)0.006 (2)0.004 (2)0.003 (2)
C140.045 (3)0.038 (3)0.057 (3)0.001 (2)0.004 (2)0.009 (2)
C150.049 (3)0.051 (3)0.064 (4)0.007 (3)0.014 (3)0.007 (3)
Cl10.0713 (10)0.0992 (13)0.0619 (9)0.0366 (10)0.0023 (8)0.0143 (9)
O60.070 (3)0.047 (2)0.060 (2)0.008 (2)0.009 (2)0.0096 (18)
O170.063 (3)0.074 (3)0.089 (3)0.006 (2)0.005 (2)0.030 (3)
O90.074 (3)0.150 (5)0.080 (3)0.048 (3)0.009 (3)0.012 (3)
C20.039 (3)0.040 (3)0.039 (2)0.008 (2)0.0040 (19)0.002 (2)
C30.050 (3)0.045 (3)0.045 (3)0.010 (2)0.004 (2)0.000 (2)
C110.044 (3)0.042 (3)0.048 (3)0.004 (2)0.001 (2)0.003 (2)
C70.038 (3)0.049 (3)0.042 (3)0.011 (2)0.003 (2)0.005 (2)
O190.126 (5)0.115 (5)0.086 (4)0.032 (4)0.021 (4)0.015 (3)
C60.038 (3)0.052 (3)0.058 (3)0.003 (2)0.001 (2)0.010 (3)
C220.061 (4)0.061 (4)0.056 (3)0.019 (3)0.013 (3)0.004 (3)
O80.061 (2)0.053 (2)0.054 (2)0.0103 (19)0.0105 (18)0.0107 (18)
N10.067 (3)0.052 (3)0.055 (3)0.017 (2)0.010 (2)0.012 (2)
O180.088 (4)0.088 (4)0.139 (5)0.005 (3)0.017 (4)0.051 (4)
C160.038 (3)0.109 (6)0.056 (4)0.019 (3)0.000 (2)0.015 (4)
C40.066 (4)0.045 (3)0.060 (4)0.005 (3)0.015 (3)0.005 (3)
C50.048 (3)0.043 (3)0.077 (4)0.000 (3)0.012 (3)0.008 (3)
C240.085 (5)0.077 (5)0.064 (4)0.026 (4)0.011 (4)0.008 (4)
C170.051 (3)0.114 (6)0.056 (4)0.038 (4)0.006 (3)0.006 (4)
C230.074 (4)0.099 (6)0.067 (4)0.034 (4)0.007 (3)0.023 (4)
C180.085 (5)0.081 (5)0.102 (6)0.053 (4)0.014 (4)0.023 (4)
C200.107 (6)0.062 (4)0.077 (5)0.009 (4)0.011 (4)0.037 (4)
C190.090 (5)0.067 (5)0.103 (6)0.036 (4)0.022 (5)0.008 (4)
C210.091 (5)0.058 (4)0.065 (4)0.007 (4)0.009 (4)0.020 (3)
O200.171 (7)0.114 (5)0.189 (8)0.001 (5)0.114 (6)0.037 (5)
O110.102 (5)0.235 (9)0.121 (6)0.028 (5)0.047 (4)0.036 (6)
Cl20.1145 (15)0.0836 (13)0.0432 (8)0.0040 (11)0.0072 (9)0.0045 (8)
O140.175 (7)0.107 (5)0.070 (4)0.005 (4)0.022 (4)0.016 (3)
O130.240 (10)0.175 (8)0.080 (4)0.104 (7)0.019 (5)0.026 (5)
O120.176 (8)0.158 (8)0.289 (12)0.062 (7)0.077 (8)0.081 (8)
C250.149 (9)0.114 (8)0.122 (8)0.073 (7)0.010 (7)0.033 (6)
O150.168 (8)0.130 (6)0.188 (8)0.038 (6)0.070 (6)0.036 (6)
O160.378 (17)0.152 (8)0.186 (9)0.063 (9)0.161 (11)0.016 (7)
O100.158 (8)0.340 (15)0.215 (10)0.000 (9)0.021 (7)0.211 (11)
C130.037 (2)0.038 (3)0.039 (2)0.007 (2)0.0002 (19)0.0036 (19)
C100.048 (3)0.046 (3)0.044 (3)0.016 (2)0.002 (2)0.001 (2)
C90.043 (3)0.050 (3)0.045 (3)0.011 (2)0.007 (2)0.002 (2)
Geometric parameters (Å, º) top
Tb1—O12.210 (3)C2—C71.395 (7)
Tb1—O232.359 (5)C2—C31.424 (7)
Tb1—O222.391 (4)C3—C41.381 (8)
Tb1—O212.412 (4)C11—C101.393 (7)
Tb1—O42.442 (4)C11—H110.9300
Tb1—N12.467 (5)C7—C61.391 (7)
Tb1—O32.467 (4)C6—C51.368 (8)
Tb1—O52.477 (4)C6—H60.9300
O1—C11.257 (6)C22—O81.437 (7)
O21—H210.8200C22—C231.494 (8)
O21—H21C0.78 (6)C22—H22A0.9700
O3—C161.442 (6)C22—H22B0.9700
O3—C151.453 (7)O8—C101.358 (6)
O4—C171.433 (7)N1—C241.134 (8)
O4—C181.443 (8)C16—C171.480 (10)
O22—H220.8200C16—H16A0.9700
O22—H22C0.86 (7)C16—H16B0.9700
O5—C191.430 (8)C4—C51.386 (9)
O5—C201.437 (8)C4—H40.9300
Cl3—O191.391 (5)C5—H50.9300
Cl3—O201.391 (6)C24—C251.459 (10)
Cl3—O171.411 (5)C17—H17A0.9700
Cl3—O181.415 (5)C17—H17B0.9700
O7—C71.357 (6)C23—H23A0.9600
O7—C81.366 (6)C23—H23B0.9600
O2—C121.359 (6)C23—H23C0.9600
O2—C141.437 (6)C18—C191.478 (11)
O23—H230.8200C18—H18A0.9700
O23—H23D0.59 (8)C18—H18B0.9700
C8—C91.372 (7)C20—C211.474 (10)
C8—C131.393 (7)C20—H20A0.9700
C1—C131.436 (7)C20—H20B0.9700
C1—C21.441 (7)C19—H19A0.9700
C12—C111.373 (7)C19—H19B0.9700
C12—C131.428 (7)C21—H21A0.9700
C14—C151.474 (7)C21—H21B0.9700
C14—H14A0.9700Cl2—O151.306 (7)
C14—H14B0.9700Cl2—O141.378 (5)
C15—H15A0.9700Cl2—O131.383 (7)
C15—H15B0.9700Cl2—O161.452 (9)
Cl1—O121.321 (8)C25—H25A0.9600
Cl1—O101.341 (7)C25—H25B0.9600
Cl1—O91.387 (5)C25—H25C0.9600
Cl1—O111.390 (7)C10—C91.383 (7)
O6—C31.358 (7)C9—H90.9300
O6—C211.428 (7)
O1—Tb1—O23143.59 (15)C4—C3—C2119.1 (5)
O1—Tb1—O2276.61 (15)C12—C11—C10119.8 (5)
O23—Tb1—O2275.57 (18)C12—C11—H11120.1
O1—Tb1—O2174.85 (14)C10—C11—H11120.1
O23—Tb1—O21141.50 (17)O7—C7—C6115.2 (5)
O22—Tb1—O21132.39 (16)O7—C7—C2122.2 (5)
O1—Tb1—O4148.44 (13)C6—C7—C2122.5 (5)
O23—Tb1—O467.93 (16)C5—C6—C7117.6 (5)
O22—Tb1—O4127.08 (15)C5—C6—H6121.2
O21—Tb1—O473.59 (15)C7—C6—H6121.2
O1—Tb1—N176.60 (15)O8—C22—C23107.7 (5)
O23—Tb1—N172.53 (18)O8—C22—H22A110.2
O22—Tb1—N171.28 (17)C23—C22—H22A110.2
O21—Tb1—N1135.07 (15)O8—C22—H22B110.2
O4—Tb1—N1127.39 (16)C23—C22—H22B110.2
O1—Tb1—O3105.85 (12)H22A—C22—H22B108.5
O23—Tb1—O386.31 (18)C10—O8—C22117.9 (4)
O22—Tb1—O3147.85 (15)C24—N1—Tb1160.0 (6)
O21—Tb1—O377.27 (15)O3—C16—C17108.4 (5)
O4—Tb1—O366.29 (13)O3—C16—H16A110.0
N1—Tb1—O378.08 (15)C17—C16—H16A110.0
O1—Tb1—O5106.73 (14)O3—C16—H16B110.0
O23—Tb1—O589.00 (19)C17—C16—H16B110.0
O22—Tb1—O576.39 (15)H16A—C16—H16B108.4
O21—Tb1—O576.40 (14)C3—C4—C5120.3 (6)
O4—Tb1—O566.27 (15)C3—C4—H4119.8
N1—Tb1—O5145.78 (16)C5—C4—H4119.8
O3—Tb1—O5130.40 (14)C6—C5—C4122.3 (6)
C1—O1—Tb1146.5 (3)C6—C5—H5118.8
Tb1—O21—H21109.5C4—C5—H5118.8
Tb1—O21—H21C117 (5)N1—C24—C25178.9 (9)
H21—O21—H21C124.8O4—C17—C16107.8 (5)
C16—O3—C15113.1 (4)O4—C17—H17A110.1
C16—O3—Tb1115.2 (3)C16—C17—H17A110.1
C15—O3—Tb1124.5 (3)O4—C17—H17B110.1
C17—O4—C18113.2 (5)C16—C17—H17B110.1
C17—O4—Tb1117.7 (3)H17A—C17—H17B108.5
C18—O4—Tb1117.8 (4)C22—C23—H23A109.5
Tb1—O22—H22109.5C22—C23—H23B109.5
Tb1—O22—H22C125 (5)H23A—C23—H23B109.5
H22—O22—H22C125.5C22—C23—H23C109.5
C19—O5—C20113.0 (5)H23A—C23—H23C109.5
C19—O5—Tb1114.3 (4)H23B—C23—H23C109.5
C20—O5—Tb1123.9 (4)O4—C18—C19107.9 (5)
O19—Cl3—O20107.9 (5)O4—C18—H18A110.1
O19—Cl3—O17112.7 (4)C19—C18—H18A110.1
O20—Cl3—O17109.5 (4)O4—C18—H18B110.1
O19—Cl3—O18109.9 (4)C19—C18—H18B110.1
O20—Cl3—O18108.0 (5)H18A—C18—H18B108.4
O17—Cl3—O18108.5 (3)O5—C20—C21112.1 (5)
C7—O7—C8120.1 (4)O5—C20—H20A109.2
C12—O2—C14118.2 (4)C21—C20—H20A109.2
Tb1—O23—H23109.5O5—C20—H20B109.2
Tb1—O23—H23D118 (9)C21—C20—H20B109.2
H23—O23—H23D131.4H20A—C20—H20B107.9
O7—C8—C9115.1 (5)O5—C19—C18108.4 (6)
O7—C8—C13121.1 (4)O5—C19—H19A110.0
C9—C8—C13123.8 (5)C18—C19—H19A110.0
O1—C1—C13121.9 (4)O5—C19—H19B110.0
O1—C1—C2121.3 (4)C18—C19—H19B110.0
C13—C1—C2116.8 (4)H19A—C19—H19B108.4
O2—C12—C11123.6 (5)O6—C21—C20108.9 (5)
O2—C12—C13116.2 (4)O6—C21—H21A109.9
C11—C12—C13120.3 (5)C20—C21—H21A109.9
O2—C14—C15107.2 (4)O6—C21—H21B109.9
O2—C14—H14A110.3C20—C21—H21B109.9
C15—C14—H14A110.3H21A—C21—H21B108.3
O2—C14—H14B110.3O15—Cl2—O14114.5 (5)
C15—C14—H14B110.3O15—Cl2—O13113.5 (6)
H14A—C14—H14B108.5O14—Cl2—O13109.1 (4)
O3—C15—C14109.9 (5)O15—Cl2—O16103.4 (7)
O3—C15—H15A109.7O14—Cl2—O16108.8 (7)
C14—C15—H15A109.7O13—Cl2—O16107.0 (7)
O3—C15—H15B109.7C24—C25—H25A109.5
C14—C15—H15B109.7C24—C25—H25B109.5
H15A—C15—H15B108.2H25A—C25—H25B109.5
O12—Cl1—O10108.5 (8)C24—C25—H25C109.5
O12—Cl1—O9111.7 (5)H25A—C25—H25C109.5
O10—Cl1—O9111.1 (5)H25B—C25—H25C109.5
O12—Cl1—O11104.9 (7)C8—C13—C12116.8 (4)
O10—Cl1—O11112.4 (6)C8—C13—C1119.5 (4)
O9—Cl1—O11108.1 (4)C12—C13—C1123.7 (4)
C3—O6—C21118.6 (5)O8—C10—C9123.4 (5)
C7—C2—C3118.0 (5)O8—C10—C11114.8 (5)
C7—C2—C1118.5 (5)C9—C10—C11121.8 (5)
C3—C2—C1123.4 (5)C8—C9—C10117.4 (5)
O6—C3—C4124.2 (5)C8—C9—H9121.3
O6—C3—C2116.7 (5)C10—C9—H9121.3
O23—Tb1—O1—C1177.8 (6)C21—O6—C3—C418.6 (8)
O22—Tb1—O1—C1141.2 (6)C21—O6—C3—C2160.6 (5)
O21—Tb1—O1—C10.3 (6)C7—C2—C3—O6175.7 (4)
O4—Tb1—O1—C11.7 (7)C1—C2—C3—O66.3 (7)
N1—Tb1—O1—C1145.2 (6)C7—C2—C3—C43.5 (7)
O3—Tb1—O1—C172.0 (6)C1—C2—C3—C4174.5 (5)
O5—Tb1—O1—C170.1 (6)O2—C12—C11—C10177.9 (5)
O1—Tb1—O3—C16165.1 (4)C13—C12—C11—C101.8 (7)
O23—Tb1—O3—C1649.8 (4)C8—O7—C7—C6174.9 (4)
O22—Tb1—O3—C16104.9 (5)C8—O7—C7—C26.9 (7)
O21—Tb1—O3—C1695.1 (4)C3—C2—C7—O7179.3 (4)
O4—Tb1—O3—C1617.7 (4)C1—C2—C7—O72.5 (7)
N1—Tb1—O3—C16122.7 (4)C3—C2—C7—C62.7 (7)
O5—Tb1—O3—C1635.7 (5)C1—C2—C7—C6175.5 (4)
O1—Tb1—O3—C1546.9 (4)O7—C7—C6—C5178.0 (5)
O23—Tb1—O3—C1598.2 (4)C2—C7—C6—C50.1 (7)
O22—Tb1—O3—C1543.1 (5)C23—C22—O8—C10178.7 (5)
O21—Tb1—O3—C15116.8 (4)O1—Tb1—N1—C2478.2 (16)
O4—Tb1—O3—C15165.7 (4)O23—Tb1—N1—C2482.3 (16)
N1—Tb1—O3—C1525.3 (4)O22—Tb1—N1—C242.0 (16)
O5—Tb1—O3—C15176.3 (4)O21—Tb1—N1—C24129.9 (15)
O1—Tb1—O4—C1768.2 (5)O4—Tb1—N1—C24124.9 (15)
O23—Tb1—O4—C17109.3 (5)O3—Tb1—N1—C24172.1 (16)
O22—Tb1—O4—C17159.2 (4)O5—Tb1—N1—C2422.0 (17)
O21—Tb1—O4—C1769.6 (4)C15—O3—C16—C17163.3 (5)
N1—Tb1—O4—C1765.2 (5)Tb1—O3—C16—C1745.0 (6)
O3—Tb1—O4—C1713.4 (4)O6—C3—C4—C5177.4 (5)
O5—Tb1—O4—C17151.6 (4)C2—C3—C4—C51.7 (8)
O1—Tb1—O4—C1872.9 (5)C7—C6—C5—C42.1 (8)
O23—Tb1—O4—C18109.6 (5)C3—C4—C5—C61.2 (9)
O22—Tb1—O4—C1859.6 (5)Tb1—N1—C24—C2574 (53)
O21—Tb1—O4—C1871.6 (4)C18—O4—C17—C16176.2 (5)
N1—Tb1—O4—C18153.7 (4)Tb1—O4—C17—C1641.0 (6)
O3—Tb1—O4—C18154.6 (5)O3—C16—C17—O454.6 (6)
O5—Tb1—O4—C1810.5 (4)C17—O4—C18—C19178.9 (6)
O1—Tb1—O5—C19167.7 (4)Tb1—O4—C18—C1938.3 (7)
O23—Tb1—O5—C1945.7 (5)C19—O5—C20—C21142.1 (6)
O22—Tb1—O5—C19121.1 (5)Tb1—O5—C20—C2172.4 (8)
O21—Tb1—O5—C1998.4 (5)C20—O5—C19—C18163.0 (6)
O4—Tb1—O5—C1920.6 (4)Tb1—O5—C19—C1848.0 (7)
N1—Tb1—O5—C19101.6 (5)O4—C18—C19—O555.2 (8)
O3—Tb1—O5—C1938.6 (5)C3—O6—C21—C20178.7 (5)
O1—Tb1—O5—C2047.2 (5)O5—C20—C21—O650.1 (8)
O23—Tb1—O5—C2099.5 (5)O7—C8—C13—C12176.0 (4)
O22—Tb1—O5—C2024.1 (5)C9—C8—C13—C124.9 (7)
O21—Tb1—O5—C20116.5 (5)O7—C8—C13—C15.5 (7)
O4—Tb1—O5—C20165.7 (5)C9—C8—C13—C1173.7 (5)
N1—Tb1—O5—C2043.5 (6)O2—C12—C13—C8178.6 (4)
O3—Tb1—O5—C20176.2 (4)C11—C12—C13—C81.6 (7)
C7—O7—C8—C9175.4 (4)O2—C12—C13—C12.9 (7)
C7—O7—C8—C135.4 (6)C11—C12—C13—C1176.9 (5)
Tb1—O1—C1—C1390.6 (7)O1—C1—C13—C8163.8 (4)
Tb1—O1—C1—C291.4 (6)C2—C1—C13—C814.3 (6)
C14—O2—C12—C1114.1 (7)O1—C1—C13—C1214.6 (7)
C14—O2—C12—C13166.1 (4)C2—C1—C13—C12167.2 (4)
C12—O2—C14—C15178.1 (5)C22—O8—C10—C95.7 (7)
C16—O3—C15—C14134.8 (5)C22—O8—C10—C11175.9 (5)
Tb1—O3—C15—C1476.6 (5)C12—C11—C10—O8179.2 (5)
O2—C14—C15—O351.6 (6)C12—C11—C10—C92.4 (8)
O1—C1—C2—C7165.3 (4)O7—C8—C9—C10176.5 (4)
C13—C1—C2—C712.8 (6)C13—C8—C9—C104.4 (7)
O1—C1—C2—C312.8 (7)O8—C10—C9—C8177.7 (5)
C13—C1—C2—C3169.1 (4)C11—C10—C9—C80.6 (7)

Experimental details

Crystal data
Chemical formula[Tb(C2H3N)(C23H26O8)(H2O)3](ClO4)3
Mr982.81
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.2838 (2), 11.7932 (3), 15.4680 (4)
α, β, γ (°)85.933 (1), 84.813 (1), 77.363 (1)
V3)1820.48 (7)
Z2
Radiation typeMo Kα
µ (mm1)2.25
Crystal size (mm)0.25 × 0.21 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.575, 0.713
No. of measured, independent and
observed [I > 2σ(I)] reflections
11523, 8058, 6378
Rint0.019
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.113, 1.03
No. of reflections8058
No. of parameters495
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.96, 0.85

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Tb1—O12.210 (3)Tb1—O42.442 (4)
Tb1—O232.359 (5)Tb1—N12.467 (5)
Tb1—O222.391 (4)Tb1—O32.467 (4)
Tb1—O212.412 (4)Tb1—O52.477 (4)
 

Acknowledgements

The authors acknowledge the NSFC (grant Nos. 20571035, 20601011) for financial support.

References

First citationBruker (2002). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Winconsin, USA.  Google Scholar
First citationMills, O. S., Mooney, N. J., Robinson, P. M., Watt, C. F. & Box, B. G. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 697–706.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, R., Pan, X. B., Wang, H. F., Wu, J. C., Tang, N. (2008). Inorg. Chem. Commun. 11, 318–322.  Web of Science CSD CrossRef CAS Google Scholar
First citationShen, R., Pan, X. B., Wang, H. F., Yao, L. H., Wu, J. C., Tang, N. (2008). Dalton Trans. pp. 3574–3581.  Web of Science CSD CrossRef Google Scholar
First citationWu, J. C., Pan, X. B., Yao, L. H., Wang, L., Tang, N. (2009). Supramolecul. Chem. 21, 707–716.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds