organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(4-fluoro­phen­yl)urea

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India
*Correspondence e-mail: hkfun@usm.my

(Received 28 April 2010; accepted 5 May 2010; online 12 May 2010)

The asymmetric unit of the title compound, C13H10F2N2O, contains one and a half N,N′-bis­(4-fluoro­phen­yl)urea mol­ecules. One of the mol­ecules has crystallographic twofold rotation symmetry. The benzene rings are twisted from each other by dihedral angles of 29.69 (6)° for the mol­ecule in a general position and 89.83 (6)° for the symmetry-generated mol­ecule. In the crystal structure, a pair of inter­molecular N—H⋯O hydrogen bonds link symmetry-related mol­ecules into chains along the b axis, forming R21(6) ring motifs.

Related literature

For background to and the biological activity of bis-aryl­ureas, see: Khire et al. (2004[Khire, U. R., Bankston, D., Barbosa, J., Brittelli, D. R., Caringal, Y., Carlson, R., Dumass, J., Gane, T., Heald, S. L., Hibner, B., Johnson, J. S., Katz, M. E., Kennure, N., Wood, K. J., Lee, W., Liu, X. G., Lowinger, T. B., McAlexander, I., Monahan, M. K., Natero, R., Renick, J., Riedl, B., Rong, H., Silbley, R. N., Smith, R. A. & Wolanin, D. (2004). Bioorg. Med. Chem. Lett. 14, 783-786.]); McDonnell et al. (2008[McDonnell, M. E., Zhang, S. P., Nasser, N., Dubin, A. E. & Dax, S. L. (2008). Bioorg. Med. Chem. Lett. 14, 531-534.]); Francisco et al. (2004[Francisco, G. D., Li, Z., Albright, J. D., Eudy, N. H., Katz, A. H., Petersen, P. J., Labthavikul, P., Singh, G., Yang, Y., Rasmussen, B. A., Lin, Y. I. & Mansour, T. S. (2004). Bioorg. Med. Chem. Lett. 14, 235-238.]); Bigi et al. (1998[Bigi, F., Maggi, R., Sartori, G. & Zambonin, E. (1998). Chem. Commun. 4, 513-514.]). For the synthetic method, see: Sarveswari & Raja (2006[Sarveswari, S. & Raja, T. K. (2006). Indian J. Chem. Sect. B, 45, 546-547.]). For a related structure, see: Jai-nhuknan et al. (1997[Jai-nhuknan, J., Karipides, A. G., Hughes, J. M. & Cantrell, J. S. (1997). Acta Cryst. C53, 455-457.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10F2N2O

  • Mr = 248.23

  • Monoclinic, C 2/c

  • a = 67.541 (4) Å

  • b = 4.5750 (3) Å

  • c = 10.7098 (6) Å

  • β = 95.969 (2)°

  • V = 3291.4 (3) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.59 × 0.12 × 0.09 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.932, Tmax = 0.990

  • 21915 measured reflections

  • 5986 independent reflections

  • 4304 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.159

  • S = 1.05

  • 5986 reflections

  • 257 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1NA⋯O1Ai 0.83 (2) 2.08 (2) 2.8331 (13) 151.7 (18)
N1B—H1NB⋯O1Bi 0.89 (3) 2.02 (3) 2.8392 (18) 153.3 (19)
N2A—H2NA⋯O1Ai 0.855 (18) 2.080 (17) 2.8547 (16) 150.5 (13)
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The synthesis of bis-arylureas has received considerable attention due to their wide range of biological applications. They act as potential Raf kinase inhibitors (Khire et al., 2004) and antagonists of human vanilloid receptor 1 (VR 1) (McDonnell et al., 2008). Phenyl thiazolylurea derivatives have been reported as inhibitors of Murine receptor A and Murine receptor B (Francisco et al., 2004). Some substituted ureas are used as antidiabetic and tranquilizing drugs, antioxidants in gasoline, corrosion inhibitor and herbicides (Bigi et al., 1998).

The asymmetric unit of the title compound (Fig. 1), comprises of one and a half N,N'-bis-(4-fluorophenyl)urea molecules. The half molecule has a twofold rotation symmetry, generated by symmetry code -x, y, -z+3/2. In the molecule with suffix A, both benzene rings (C1A–C6A and C8A–C13A) are twisted from each other with a dihedral angle of 29.69 (6)° whereas in molecule with suffix B, the dihedral angle between the benzene rings (C1B–C6B and C1BA–C6BA) is 89.83 (6)°. The structure is comparable to the related structure (Jai-nhuknan et al., 1997).

In the crystal packing (Fig. 2), intermolecular N1A—H1NA···O1A and N2A—H2NA···O1A hydrogen bonds (Table 1) link the adjacent molecules into chains along the b axis, forming R21(6) ring motifs (Bernstein et al., 1995).

Related literature top

For background to and the biological activity of bis-arylureas, see: Khire et al. (2004); McDonnell et al. (2008); Francisco et al. (2004); Bigi et al. (1998). For the synthetic method, see: Sarveswari & Raja (2006). For a related structure, see: Jai-nhuknan et al. (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

The compound N,N'-bis-(4-fluorophenyl)urea was synthesized using the method available in the literature (Sarveswari & Raja, 2006) and the obtained crude product was recrystallized from absolute ethanol. M.P.: 519 K. Yield: 56%.

Refinement top

H1NA, H1NB and H2NA were located from a difference Fourier map and refined freely [N–H = 0.83 (2) to 0.88 (3) Å]. The remaining H atoms were positioned geometrically [C–H = 0.93 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). In the final difference Fourier map, the highest peak is 0.20 Å from atom O1B and the deepest hole is 0.45 Å from atom C7B.

Structure description top

The synthesis of bis-arylureas has received considerable attention due to their wide range of biological applications. They act as potential Raf kinase inhibitors (Khire et al., 2004) and antagonists of human vanilloid receptor 1 (VR 1) (McDonnell et al., 2008). Phenyl thiazolylurea derivatives have been reported as inhibitors of Murine receptor A and Murine receptor B (Francisco et al., 2004). Some substituted ureas are used as antidiabetic and tranquilizing drugs, antioxidants in gasoline, corrosion inhibitor and herbicides (Bigi et al., 1998).

The asymmetric unit of the title compound (Fig. 1), comprises of one and a half N,N'-bis-(4-fluorophenyl)urea molecules. The half molecule has a twofold rotation symmetry, generated by symmetry code -x, y, -z+3/2. In the molecule with suffix A, both benzene rings (C1A–C6A and C8A–C13A) are twisted from each other with a dihedral angle of 29.69 (6)° whereas in molecule with suffix B, the dihedral angle between the benzene rings (C1B–C6B and C1BA–C6BA) is 89.83 (6)°. The structure is comparable to the related structure (Jai-nhuknan et al., 1997).

In the crystal packing (Fig. 2), intermolecular N1A—H1NA···O1A and N2A—H2NA···O1A hydrogen bonds (Table 1) link the adjacent molecules into chains along the b axis, forming R21(6) ring motifs (Bernstein et al., 1995).

For background to and the biological activity of bis-arylureas, see: Khire et al. (2004); McDonnell et al. (2008); Francisco et al. (2004); Bigi et al. (1998). For the synthetic method, see: Sarveswari & Raja (2006). For a related structure, see: Jai-nhuknan et al. (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Atoms with suffix BA [C1BA–C6BA/N1BA/F1BA] are generated by symmetry code -x, y, -z+3/2.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed approximately along the a axis, showing R21(6) ring motifs. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
N,N'-Bis(4-fluorophenyl)urea top
Crystal data top
C13H10F2N2OF(000) = 1536
Mr = 248.23Dx = 1.503 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3635 reflections
a = 67.541 (4) Åθ = 2.4–32.1°
b = 4.5750 (3) ŵ = 0.12 mm1
c = 10.7098 (6) ÅT = 100 K
β = 95.969 (2)°Block, brown
V = 3291.4 (3) Å30.59 × 0.12 × 0.09 mm
Z = 12
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
5986 independent reflections
Radiation source: fine-focus sealed tube4304 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
φ and ω scansθmax = 32.7°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 102102
Tmin = 0.932, Tmax = 0.990k = 66
21915 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0899P)2 + 0.1948P]
where P = (Fo2 + 2Fc2)/3
5986 reflections(Δ/σ)max < 0.001
257 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C13H10F2N2OV = 3291.4 (3) Å3
Mr = 248.23Z = 12
Monoclinic, C2/cMo Kα radiation
a = 67.541 (4) ŵ = 0.12 mm1
b = 4.5750 (3) ÅT = 100 K
c = 10.7098 (6) Å0.59 × 0.12 × 0.09 mm
β = 95.969 (2)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
5986 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4304 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.990Rint = 0.050
21915 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.69 e Å3
5986 reflectionsΔρmin = 0.51 e Å3
257 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F1A0.244179 (12)0.5229 (2)0.33663 (8)0.02522 (19)
O1A0.167883 (13)0.5447 (2)0.62122 (9)0.0198 (2)
N1A0.180685 (15)0.9777 (2)0.55991 (10)0.0162 (2)
N2A0.153498 (15)0.9743 (3)0.67129 (11)0.0175 (2)
C1A0.209007 (17)0.6417 (3)0.56407 (11)0.0163 (2)
H1AA0.20640.57460.64260.020*
C2A0.225076 (17)0.5295 (3)0.50863 (12)0.0180 (2)
H2AA0.23320.38600.54860.022*
C3A0.228714 (17)0.6362 (3)0.39263 (12)0.0178 (2)
C4A0.217243 (18)0.8517 (3)0.33077 (11)0.0184 (2)
H4AA0.22030.92360.25390.022*
C5A0.200924 (18)0.9591 (3)0.38612 (11)0.0172 (2)
H5AA0.19281.10080.34510.021*
C6A0.196784 (16)0.8543 (3)0.50280 (10)0.0142 (2)
C7A0.167422 (16)0.8158 (3)0.61783 (11)0.0150 (2)
C8A0.138631 (16)0.8455 (3)0.73842 (11)0.0154 (2)
C9A0.143599 (18)0.6409 (3)0.83227 (12)0.0187 (2)
H9AA0.15680.58380.85080.022*
C10A0.128905 (18)0.5208 (3)0.89873 (12)0.0207 (3)
H10A0.13200.38180.96100.025*
C11A0.109514 (19)0.6143 (3)0.86946 (12)0.0209 (3)
C12A0.104185 (18)0.8202 (3)0.77910 (12)0.0219 (3)
H12A0.09100.88090.76300.026*
C13A0.118945 (18)0.9362 (3)0.71211 (12)0.0193 (2)
H13A0.11571.07450.64970.023*
F2A0.095139 (12)0.4948 (2)0.93363 (9)0.0309 (2)
F1B0.072613 (12)0.6424 (2)1.16351 (8)0.0289 (2)
O1B0.00000.6661 (3)0.75000.0262 (3)
N1B0.013863 (16)1.0982 (3)0.82126 (11)0.0193 (2)
C1B0.024299 (18)0.7613 (3)0.99248 (12)0.0200 (2)
H1BA0.01120.69610.99190.024*
C2B0.03907 (2)0.6455 (3)1.07851 (12)0.0213 (3)
H2BA0.03620.49981.13430.026*
C3B0.058161 (18)0.7529 (3)1.07883 (12)0.0210 (3)
C4B0.063141 (18)0.9679 (3)0.99790 (12)0.0212 (3)
H4BA0.07611.03851.00180.025*
C5B0.048369 (18)1.0776 (3)0.91008 (12)0.0194 (2)
H5BA0.05151.22000.85330.023*
C6B0.028914 (17)0.9741 (3)0.90722 (12)0.0170 (2)
C7B0.00000.9380 (4)0.75000.0181 (3)
H1NA0.1792 (3)1.157 (5)0.5567 (17)0.028 (5)*
H1NB0.0136 (3)1.289 (6)0.8078 (19)0.043 (6)*
H2NA0.1535 (2)1.160 (4)0.6624 (16)0.022 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F1A0.0210 (3)0.0251 (5)0.0312 (4)0.0051 (3)0.0105 (3)0.0019 (4)
O1A0.0215 (4)0.0090 (4)0.0302 (5)0.0003 (3)0.0084 (3)0.0003 (4)
N1A0.0180 (4)0.0082 (5)0.0231 (5)0.0010 (4)0.0059 (4)0.0014 (4)
N2A0.0184 (4)0.0094 (5)0.0258 (5)0.0014 (4)0.0076 (4)0.0010 (4)
C1A0.0170 (5)0.0144 (6)0.0175 (5)0.0004 (4)0.0018 (4)0.0011 (4)
C2A0.0159 (5)0.0147 (6)0.0232 (6)0.0025 (4)0.0015 (4)0.0012 (5)
C3A0.0148 (5)0.0171 (6)0.0220 (5)0.0005 (4)0.0040 (4)0.0041 (5)
C4A0.0195 (5)0.0187 (6)0.0174 (5)0.0004 (5)0.0046 (4)0.0001 (5)
C5A0.0183 (5)0.0151 (6)0.0181 (5)0.0007 (5)0.0021 (4)0.0006 (4)
C6A0.0150 (4)0.0106 (5)0.0170 (5)0.0005 (4)0.0017 (4)0.0015 (4)
C7A0.0153 (4)0.0119 (5)0.0178 (5)0.0006 (4)0.0015 (4)0.0001 (4)
C8A0.0157 (4)0.0114 (5)0.0195 (5)0.0011 (4)0.0039 (4)0.0013 (4)
C9A0.0178 (5)0.0176 (6)0.0205 (5)0.0003 (5)0.0016 (4)0.0011 (5)
C10A0.0212 (5)0.0207 (7)0.0205 (6)0.0006 (5)0.0039 (4)0.0035 (5)
C11A0.0201 (5)0.0200 (6)0.0239 (6)0.0038 (5)0.0078 (4)0.0015 (5)
C12A0.0161 (5)0.0215 (7)0.0286 (6)0.0010 (5)0.0044 (4)0.0005 (5)
C13A0.0174 (5)0.0168 (6)0.0238 (6)0.0019 (5)0.0030 (4)0.0020 (5)
F2A0.0247 (4)0.0319 (5)0.0384 (5)0.0037 (4)0.0150 (3)0.0060 (4)
F1B0.0284 (4)0.0301 (5)0.0263 (4)0.0062 (4)0.0060 (3)0.0031 (4)
O1B0.0302 (7)0.0107 (6)0.0351 (7)0.0000.0093 (6)0.000
N1B0.0177 (4)0.0112 (5)0.0280 (5)0.0008 (4)0.0017 (4)0.0004 (4)
C1B0.0194 (5)0.0172 (6)0.0235 (6)0.0020 (5)0.0031 (4)0.0001 (5)
C2B0.0275 (6)0.0165 (6)0.0200 (5)0.0009 (5)0.0029 (4)0.0015 (5)
C3B0.0216 (5)0.0203 (6)0.0201 (5)0.0039 (5)0.0024 (4)0.0008 (5)
C4B0.0168 (5)0.0223 (7)0.0244 (6)0.0004 (5)0.0011 (4)0.0012 (5)
C5B0.0184 (5)0.0180 (6)0.0218 (5)0.0010 (5)0.0022 (4)0.0007 (5)
C6B0.0171 (5)0.0123 (6)0.0213 (5)0.0007 (4)0.0010 (4)0.0016 (4)
C7B0.0170 (7)0.0136 (8)0.0234 (8)0.0000.0005 (6)0.000
Geometric parameters (Å, º) top
F1A—C3A1.3601 (13)C10A—H10A0.9300
O1A—C7A1.2412 (15)C11A—F2A1.3611 (14)
N1A—C7A1.3606 (15)C11A—C12A1.371 (2)
N1A—C6A1.4190 (15)C12A—C13A1.3925 (17)
N1A—H1NA0.83 (2)C12A—H12A0.9300
N2A—C7A1.3602 (15)C13A—H13A0.9300
N2A—C8A1.4223 (15)F1B—C3B1.3589 (15)
N2A—H2NA0.85 (2)O1B—C7B1.244 (2)
C1A—C2A1.3886 (16)N1B—C7B1.3593 (15)
C1A—C6A1.3948 (17)N1B—C6B1.4173 (16)
C1A—H1AA0.9300N1B—H1NB0.88 (3)
C2A—C3A1.3805 (18)C1B—C2B1.3902 (18)
C2A—H2AA0.9300C1B—C6B1.3921 (18)
C3A—C4A1.3799 (18)C1B—H1BA0.9300
C4A—C5A1.3941 (16)C2B—C3B1.3798 (19)
C4A—H4AA0.9300C2B—H2BA0.9300
C5A—C6A1.3937 (16)C3B—C4B1.376 (2)
C5A—H5AA0.9300C4B—C5B1.3916 (18)
C8A—C9A1.3888 (18)C4B—H4BA0.9300
C8A—C13A1.3935 (16)C5B—C6B1.3942 (17)
C9A—C10A1.3929 (17)C5B—H5BA0.9300
C9A—H9AA0.9300C7B—N1Bi1.3593 (15)
C10A—C11A1.3824 (18)
C7A—N1A—C6A123.39 (11)C9A—C10A—H10A121.0
C7A—N1A—H1NA118.3 (13)F2A—C11A—C12A118.92 (12)
C6A—N1A—H1NA118.3 (13)F2A—C11A—C10A118.03 (12)
C7A—N2A—C8A123.17 (11)C12A—C11A—C10A123.05 (12)
C7A—N2A—H2NA118.4 (11)C11A—C12A—C13A118.42 (12)
C8A—N2A—H2NA118.4 (11)C11A—C12A—H12A120.8
C2A—C1A—C6A120.49 (11)C13A—C12A—H12A120.8
C2A—C1A—H1AA119.8C12A—C13A—C8A120.09 (12)
C6A—C1A—H1AA119.8C12A—C13A—H13A120.0
C3A—C2A—C1A118.30 (11)C8A—C13A—H13A120.0
C3A—C2A—H2AA120.8C7B—N1B—C6B123.66 (12)
C1A—C2A—H2AA120.8C7B—N1B—H1NB116.0 (14)
F1A—C3A—C4A118.63 (11)C6B—N1B—H1NB120.2 (14)
F1A—C3A—C2A118.60 (11)C2B—C1B—C6B120.46 (11)
C4A—C3A—C2A122.77 (11)C2B—C1B—H1BA119.8
C3A—C4A—C5A118.48 (11)C6B—C1B—H1BA119.8
C3A—C4A—H4AA120.8C3B—C2B—C1B118.17 (13)
C5A—C4A—H4AA120.8C3B—C2B—H2BA120.9
C6A—C5A—C4A120.08 (12)C1B—C2B—H2BA120.9
C6A—C5A—H5AA120.0F1B—C3B—C4B118.73 (12)
C4A—C5A—H5AA120.0F1B—C3B—C2B118.40 (13)
C5A—C6A—C1A119.84 (11)C4B—C3B—C2B122.87 (12)
C5A—C6A—N1A118.94 (11)C3B—C4B—C5B118.59 (12)
C1A—C6A—N1A121.14 (10)C3B—C4B—H4BA120.7
O1A—C7A—N2A122.47 (11)C5B—C4B—H4BA120.7
O1A—C7A—N1A122.79 (11)C4B—C5B—C6B120.01 (13)
N2A—C7A—N1A114.74 (11)C4B—C5B—H5BA120.0
C9A—C8A—C13A120.06 (11)C6B—C5B—H5BA120.0
C9A—C8A—N2A121.00 (10)C1B—C6B—C5B119.87 (12)
C13A—C8A—N2A118.90 (11)C1B—C6B—N1B120.79 (11)
C8A—C9A—C10A120.28 (11)C5B—C6B—N1B119.26 (12)
C8A—C9A—H9AA119.9O1B—C7B—N1Bi122.63 (9)
C10A—C9A—H9AA119.9O1B—C7B—N1B122.63 (8)
C11A—C10A—C9A118.08 (12)N1Bi—C7B—N1B114.74 (17)
C11A—C10A—H10A121.0
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O1Aii0.83 (2)2.08 (2)2.8331 (13)151.7 (18)
N1B—H1NB···O1Bii0.89 (3)2.02 (3)2.8392 (18)153.3 (19)
N2A—H2NA···O1Aii0.855 (18)2.080 (17)2.8547 (16)150.5 (13)
Symmetry code: (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H10F2N2O
Mr248.23
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)67.541 (4), 4.5750 (3), 10.7098 (6)
β (°) 95.969 (2)
V3)3291.4 (3)
Z12
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.59 × 0.12 × 0.09
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.932, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
21915, 5986, 4304
Rint0.050
(sin θ/λ)max1)0.761
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.159, 1.05
No. of reflections5986
No. of parameters257
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.69, 0.51

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O1Ai0.83 (2)2.08 (2)2.8331 (13)151.7 (18)
N1B—H1NB···O1Bi0.89 (3)2.02 (3)2.8392 (18)153.3 (19)
N2A—H2NA···O1Ai0.855 (18)2.080 (17)2.8547 (16)150.5 (13)
Symmetry code: (i) x, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: C-7581-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). WSL thanks the Malaysian Government and USM for the award of Research Fellowship. VV is grateful to the DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBigi, F., Maggi, R., Sartori, G. & Zambonin, E. (1998). Chem. Commun. 4, 513–514.  Web of Science CrossRef Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFrancisco, G. D., Li, Z., Albright, J. D., Eudy, N. H., Katz, A. H., Petersen, P. J., Labthavikul, P., Singh, G., Yang, Y., Rasmussen, B. A., Lin, Y. I. & Mansour, T. S. (2004). Bioorg. Med. Chem. Lett. 14, 235–238.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJai-nhuknan, J., Karipides, A. G., Hughes, J. M. & Cantrell, J. S. (1997). Acta Cryst. C53, 455–457.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKhire, U. R., Bankston, D., Barbosa, J., Brittelli, D. R., Caringal, Y., Carlson, R., Dumass, J., Gane, T., Heald, S. L., Hibner, B., Johnson, J. S., Katz, M. E., Kennure, N., Wood, K. J., Lee, W., Liu, X. G., Lowinger, T. B., McAlexander, I., Monahan, M. K., Natero, R., Renick, J., Riedl, B., Rong, H., Silbley, R. N., Smith, R. A. & Wolanin, D. (2004). Bioorg. Med. Chem. Lett. 14, 783–786.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMcDonnell, M. E., Zhang, S. P., Nasser, N., Dubin, A. E. & Dax, S. L. (2008). Bioorg. Med. Chem. Lett. 14, 531–534.  Web of Science CrossRef Google Scholar
First citationSarveswari, S. & Raja, T. K. (2006). Indian J. Chem. Sect. B, 45, 546–547.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds