organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(3-Chloro­phen­yl)-1-(4-meth­oxy­phen­yl)prop-2-en-1-one

aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, bApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore-54600, Pakistan, and cDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: rehman_pcsir@hotmail.com

(Received 9 May 2010; accepted 10 May 2010; online 15 May 2010)

The title mol­ecule, C16H13ClO2, is trans with respect to the C=C double bond. The dihedral angles between the mean plane of the prop-2-en-1-one unit and those of the 3-chloro- and 4-meth­oxy-substituted benzene rings are 20.93 (9) and 20.42 (10)°, respectively, and the dihedral angle between the mean planes of the two benzene rings is 40.96 (5)°. The crystal structure is stabilized by weak inter­molecular C—H⋯O hydrogen bonds, forming chains along the b axis.

Related literature

For the biological activity of chalcones, see: Dimmock et al. (1999[Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.]); Opletalova & Sedivy (1999[Opletalova, V. & Sedivy, D. (1999). Ceska Slov. Farm. 48, 252-255.]); Lin et al. (2002[Lin, Y. M., Zhou, Y., Flavin, M. T., Zhou, L. M., Nie, W. & Chen, F. C. (2002). Bioorg. Med. Chem. 10, 2795-2802.]); Nowakowska (2007[Nowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125-137.]). For the synthesis and biological activity of related chalcone derivatives, see: Hussain et al. (2009[Hussain, T., Siddiqui, H. L., Zia-ur-Rehman, M., Yasinzai, M. M. & Pervez, M. (2009). Eur. J. Med. Chem. 44, 4654-4660.]). For non-linear optical studies of chalcones, see: Sarojini et al. (2006[Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, 295, 54-59.]); Poornesh et al. (2009[Poornesh, P., Shettigar, S., Umesh, G., Manjunatha, K. B., Prakash Kamath, K., Sarojini, B. K. & Narayana, B. (2009). Opt. Mater. 31, 854-859.]); Shettigar et al. (2006[Shettigar, S., Chandrasekharan, K., Umesh, G., Sarojini, B. K. & Narayana, B. (2006). Polymer, 47, 3565-3567.]; 2008[Shettigar, S., Umesh, G., Chandrasekharan, K., Sarojini, B. K. & Narayana, B. (2008). Opt. Mater. 30, 1297-1303.]). For related structures, see: Rosli et al. (2006[Rosli, M. M., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o1466-o1468.]); Patil et al. (2006[Patil, P. S., Dharmaprakash, S. M., Fun, H.-K. & Karthikeyan, M. S. (2006). J. Cryst. Growth, 297, 111-116.]); Harrison et al. (2006[Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Indira, J. (2006). Acta Cryst. E62, o1647-o1649.]); Fun et al. (2008[Fun, H.-K., Jebas, S. R., Patil, P. S. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1525.]); Jasinski et al. (2010[Jasinski, J. P., Butcher, R. J., Narayana, B., Samshuddin, S. & Yathirajan, H. S. (2010). Acta Cryst. E66, o269-o270.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13ClO2

  • Mr = 272.71

  • Monoclinic, P 21

  • a = 10.3415 (6) Å

  • b = 3.8938 (1) Å

  • c = 16.9152 (10) Å

  • β = 107.582 (2)°

  • V = 649.32 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 173 K

  • 0.18 × 0.16 × 0.04 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.950, Tmax = 0.989

  • 2099 measured reflections

  • 2099 independent reflections

  • 2075 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.073

  • S = 1.15

  • 2099 reflections

  • 173 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 687 Friedel pairs

  • Flack parameter: 0.08 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯O2i 0.98 2.58 3.545 (2) 168
C16—H16⋯O1ii 0.95 2.51 3.424 (2) 162
Symmetry codes: (i) x+1, y, z; (ii) x-1, y+1, z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Chalcones are well known for their biological activities (Dimmock et al., 1999). These have been reported as potential anti-fungal chemotherapeutic (Opletalova & Sedivy, 1999), anti-tuberculosis (Lin et al., 2002) and anti-infective & anti-inflammatory agents (Nowakowska, 2007). In addition, few among these have found their use as organic non-linear optical materials (NLO) due to their good SHG (second-harmonic generation) conversion efficiencies (Sarojini et al., 2006; Poornesh et al., 2009; Shettigar et al., 2006; 2008). In continuation of our work on chalcones (Hussain et al., 2009) and in view of the importance of chloro chalcones, the synthesis and crystal structure of the title compound, (I), is presented in this article.

The title molecule (Fig. 1) exhibits an E configuration with respect to the CC double bond, the torsion angle C–CC–C being -177.75 (17)°. The dihedral angle between the mean planes of the 3-chloro and 4-methoxy substituted benzene rings is 40.96 (5)°. The dihedral angles between the mean planes of the prop-2-en-1-one unit and those of the 3-chloro and 4-methoxy substitued benzene rings are 20.93 (9) and 20.42 (10)°, respectively. The geometrical parameters for (I) are consistent with those of some recently reported chalcone derivatives closely related to (I) (Rosli et al., 2006; Patil et al., 2006; Harrison et al., 2006; Fun et al.; 2008; Jasinski et al., 2010). The structure is stabilized by intermolecular interactions of the type C—H···O resulting in polymeric chains along the b-axis (Fig. 2, Tab. 1)

Related literature top

For the biological activity of chalcones, see: Dimmock et al. (1999); Opletalova & Sedivy (1999); Lin et al. (2002); Nowakowska (2007). For the synthesis and biological activity of related chalcone derivatives, see: Hussain et al. (2009). For non-linear optical studies of chalcones, see: Sarojini et al. (2006); Poornesh et al. (2009); Shettigar et al. (2006; 2008). For related structures, see: Rosli et al. (2006); Patil et al. (2006); Harrison et al. (2006); Fun et al. (2008); Jasinski et al. (2010).

Experimental top

A mixture of 3-chlorobenzaldehyde (0.01 moles, 1.13 g), 4-methoxyacetophenone (0.01 moles, 1.37 ml) and sodium hydroxide solution (10%, 30 ml) was stirred at room temperature for 6 hrs. Precipitates obtained were poured into ice-cold water (500 ml) and left to stand for 2 hours followed by filtration of the resultant solid which was dried and crystallized from ethanol by slow evaporation.

Refinement top

The H-atoms were clocated from difference Fourier maps and were included in the refinement at geometrically idealized positions in riding-model approximation with C—H = 0.95 and 0.98 Å for aryl and methyl type H-atoms, respectively; the Uiso(H) were allowed at 1.2Ueq(C). The final difference map was essentially featurless.

Structure description top

Chalcones are well known for their biological activities (Dimmock et al., 1999). These have been reported as potential anti-fungal chemotherapeutic (Opletalova & Sedivy, 1999), anti-tuberculosis (Lin et al., 2002) and anti-infective & anti-inflammatory agents (Nowakowska, 2007). In addition, few among these have found their use as organic non-linear optical materials (NLO) due to their good SHG (second-harmonic generation) conversion efficiencies (Sarojini et al., 2006; Poornesh et al., 2009; Shettigar et al., 2006; 2008). In continuation of our work on chalcones (Hussain et al., 2009) and in view of the importance of chloro chalcones, the synthesis and crystal structure of the title compound, (I), is presented in this article.

The title molecule (Fig. 1) exhibits an E configuration with respect to the CC double bond, the torsion angle C–CC–C being -177.75 (17)°. The dihedral angle between the mean planes of the 3-chloro and 4-methoxy substituted benzene rings is 40.96 (5)°. The dihedral angles between the mean planes of the prop-2-en-1-one unit and those of the 3-chloro and 4-methoxy substitued benzene rings are 20.93 (9) and 20.42 (10)°, respectively. The geometrical parameters for (I) are consistent with those of some recently reported chalcone derivatives closely related to (I) (Rosli et al., 2006; Patil et al., 2006; Harrison et al., 2006; Fun et al.; 2008; Jasinski et al., 2010). The structure is stabilized by intermolecular interactions of the type C—H···O resulting in polymeric chains along the b-axis (Fig. 2, Tab. 1)

For the biological activity of chalcones, see: Dimmock et al. (1999); Opletalova & Sedivy (1999); Lin et al. (2002); Nowakowska (2007). For the synthesis and biological activity of related chalcone derivatives, see: Hussain et al. (2009). For non-linear optical studies of chalcones, see: Sarojini et al. (2006); Poornesh et al. (2009); Shettigar et al. (2006; 2008). For related structures, see: Rosli et al. (2006); Patil et al. (2006); Harrison et al. (2006); Fun et al. (2008); Jasinski et al. (2010).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule plotted with the displacement ellipsoids at 50% probability level (Farrugia, 1997).
[Figure 2] Fig. 2. Unit cell packing of the title molecule, viewed down the b-axis. Intramolecular interactions of the type C—H···O are shown as dashed lines and H-atoms not involved in hydrogen bonding interactions have been excluded.
(E)-3-(3-Chlorophenyl)-1-(4-methoxyphenyl)prop-2-en-1-one top
Crystal data top
C16H13ClO2F(000) = 284
Mr = 272.71Dx = 1.395 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1186 reflections
a = 10.3415 (6) Åθ = 1.0–27.5°
b = 3.8938 (1) ŵ = 0.29 mm1
c = 16.9152 (10) ÅT = 173 K
β = 107.582 (2)°Plate, colourless
V = 649.32 (6) Å30.18 × 0.16 × 0.04 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
2099 independent reflections
Radiation source: fine-focus sealed tube2075 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
ω and φ scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1212
Tmin = 0.950, Tmax = 0.989k = 44
2099 measured reflectionsl = 2019
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0313P)2 + 0.151P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
2099 reflectionsΔρmax = 0.13 e Å3
173 parametersΔρmin = 0.14 e Å3
1 restraintAbsolute structure: Flack (1983), 687 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (6)
Crystal data top
C16H13ClO2V = 649.32 (6) Å3
Mr = 272.71Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.3415 (6) ŵ = 0.29 mm1
b = 3.8938 (1) ÅT = 173 K
c = 16.9152 (10) Å0.18 × 0.16 × 0.04 mm
β = 107.582 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2099 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
2075 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.989Rint = 0.000
2099 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.073Δρmax = 0.13 e Å3
S = 1.15Δρmin = 0.14 e Å3
2099 reflectionsAbsolute structure: Flack (1983), 687 Friedel pairs
173 parametersAbsolute structure parameter: 0.08 (6)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.28612 (5)0.84356 (13)0.07337 (2)0.03991 (15)
O11.26882 (11)0.5880 (4)0.35589 (7)0.0330 (3)
O20.67938 (12)0.6392 (4)0.39544 (8)0.0413 (4)
C10.85889 (16)0.6328 (4)0.33613 (10)0.0247 (4)
C20.90929 (17)0.7521 (4)0.27311 (10)0.0267 (4)
H20.84900.84860.22420.032*
C31.04622 (18)0.7304 (5)0.28148 (10)0.0290 (4)
H31.07970.81250.23850.035*
C41.13507 (16)0.5884 (4)0.35290 (10)0.0253 (4)
C51.08649 (17)0.4606 (5)0.41555 (10)0.0264 (4)
H51.14650.35850.46370.032*
C60.94934 (17)0.4851 (5)0.40622 (10)0.0261 (4)
H60.91580.39890.44880.031*
C71.36446 (17)0.4448 (5)0.42797 (12)0.0365 (5)
H7A1.45610.46450.42290.044*
H7B1.34300.20220.43300.044*
H7C1.35980.56970.47730.044*
C80.71475 (17)0.6756 (5)0.33309 (10)0.0287 (4)
C90.61392 (17)0.7636 (5)0.25241 (10)0.0284 (4)
H90.63570.72070.20260.034*
C100.49465 (16)0.9000 (5)0.24782 (10)0.0276 (4)
H100.47800.94680.29900.033*
C110.38516 (17)0.9868 (5)0.17214 (11)0.0252 (3)
C120.38969 (16)0.8919 (5)0.09297 (10)0.0267 (4)
H120.46620.77350.08650.032*
C130.28167 (17)0.9727 (5)0.02468 (10)0.0280 (4)
C140.16803 (17)1.1442 (5)0.03152 (11)0.0311 (4)
H140.09461.19600.01640.037*
C150.16385 (18)1.2383 (5)0.10952 (12)0.0325 (4)
H150.08701.35670.11540.039*
C160.27161 (17)1.1606 (5)0.17948 (11)0.0290 (4)
H160.26771.22680.23280.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0526 (3)0.0409 (3)0.0234 (2)0.0034 (2)0.00716 (18)0.0004 (2)
O10.0243 (6)0.0444 (8)0.0294 (6)0.0004 (6)0.0068 (5)0.0020 (6)
O20.0302 (6)0.0675 (10)0.0268 (6)0.0045 (7)0.0093 (5)0.0055 (7)
C10.0258 (8)0.0247 (8)0.0214 (8)0.0002 (7)0.0037 (6)0.0034 (7)
C20.0300 (9)0.0279 (9)0.0201 (8)0.0004 (7)0.0044 (6)0.0020 (7)
C30.0323 (8)0.0330 (9)0.0217 (8)0.0033 (7)0.0082 (6)0.0001 (7)
C40.0255 (8)0.0254 (8)0.0242 (8)0.0018 (7)0.0061 (6)0.0042 (7)
C50.0280 (8)0.0268 (8)0.0216 (8)0.0014 (7)0.0034 (6)0.0002 (7)
C60.0313 (8)0.0264 (8)0.0207 (8)0.0007 (7)0.0080 (6)0.0009 (7)
C70.0260 (8)0.0436 (12)0.0349 (10)0.0017 (8)0.0017 (7)0.0037 (9)
C80.0284 (8)0.0325 (9)0.0235 (8)0.0005 (8)0.0055 (7)0.0017 (8)
C90.0262 (8)0.0349 (10)0.0227 (8)0.0006 (7)0.0053 (6)0.0029 (8)
C100.0294 (8)0.0307 (10)0.0222 (8)0.0002 (8)0.0071 (6)0.0001 (7)
C110.0244 (7)0.0245 (8)0.0263 (8)0.0041 (7)0.0069 (6)0.0010 (7)
C120.0259 (8)0.0266 (9)0.0270 (8)0.0022 (7)0.0070 (6)0.0001 (8)
C130.0331 (9)0.0246 (8)0.0250 (8)0.0075 (7)0.0067 (7)0.0008 (7)
C140.0276 (8)0.0280 (9)0.0319 (9)0.0034 (8)0.0003 (7)0.0064 (8)
C150.0249 (8)0.0292 (10)0.0427 (10)0.0014 (7)0.0090 (7)0.0026 (8)
C160.0284 (8)0.0298 (9)0.0291 (9)0.0014 (8)0.0091 (7)0.0001 (8)
Geometric parameters (Å, º) top
Cl1—C131.747 (2)C7—H7C0.9800
O1—C41.369 (2)C8—C91.486 (2)
O1—C71.431 (2)C9—C101.323 (2)
O2—C81.225 (2)C9—H90.9500
C1—C61.393 (2)C10—C111.470 (2)
C1—C21.400 (2)C10—H100.9500
C1—C81.485 (2)C11—C161.393 (2)
C2—C31.383 (2)C11—C121.404 (2)
C2—H20.9500C12—C131.379 (2)
C3—C41.393 (2)C12—H120.9500
C3—H30.9500C13—C141.387 (3)
C4—C51.395 (2)C14—C151.383 (3)
C5—C61.382 (2)C14—H140.9500
C5—H50.9500C15—C161.392 (2)
C6—H60.9500C15—H150.9500
C7—H7A0.9800C16—H160.9500
C7—H7B0.9800
C4—O1—C7117.56 (13)O2—C8—C9120.56 (15)
C6—C1—C2118.44 (15)C1—C8—C9118.44 (14)
C6—C1—C8118.99 (14)C10—C9—C8121.97 (15)
C2—C1—C8122.48 (14)C10—C9—H9119.0
C3—C2—C1120.48 (15)C8—C9—H9119.0
C3—C2—H2119.8C9—C10—C11127.06 (15)
C1—C2—H2119.8C9—C10—H10116.5
C2—C3—C4120.00 (15)C11—C10—H10116.5
C2—C3—H3120.0C16—C11—C12119.01 (16)
C4—C3—H3120.0C16—C11—C10118.85 (15)
O1—C4—C3115.28 (14)C12—C11—C10122.11 (15)
O1—C4—C5124.30 (15)C13—C12—C11119.15 (16)
C3—C4—C5120.42 (15)C13—C12—H12120.4
C6—C5—C4118.77 (15)C11—C12—H12120.4
C6—C5—H5120.6C12—C13—C14122.17 (16)
C4—C5—H5120.6C12—C13—Cl1118.86 (14)
C5—C6—C1121.85 (15)C14—C13—Cl1118.94 (13)
C5—C6—H6119.1C15—C14—C13118.62 (15)
C1—C6—H6119.1C15—C14—H14120.7
O1—C7—H7A109.5C13—C14—H14120.7
O1—C7—H7B109.5C14—C15—C16120.40 (16)
H7A—C7—H7B109.5C14—C15—H15119.8
O1—C7—H7C109.5C16—C15—H15119.8
H7A—C7—H7C109.5C15—C16—C11120.65 (16)
H7B—C7—H7C109.5C15—C16—H16119.7
O2—C8—C1120.99 (15)C11—C16—H16119.7
C6—C1—C2—C31.5 (3)O2—C8—C9—C1019.7 (3)
C8—C1—C2—C3174.97 (16)C1—C8—C9—C10160.40 (17)
C1—C2—C3—C40.2 (3)C8—C9—C10—C11177.75 (17)
C7—O1—C4—C3179.98 (16)C9—C10—C11—C16173.68 (18)
C7—O1—C4—C50.4 (2)C9—C10—C11—C128.1 (3)
C2—C3—C4—O1178.27 (15)C16—C11—C12—C130.1 (3)
C2—C3—C4—C51.4 (3)C10—C11—C12—C13178.09 (16)
O1—C4—C5—C6178.08 (17)C11—C12—C13—C140.2 (3)
C3—C4—C5—C61.5 (2)C11—C12—C13—Cl1178.31 (13)
C4—C5—C6—C10.2 (3)C12—C13—C14—C150.4 (3)
C2—C1—C6—C51.4 (3)Cl1—C13—C14—C15178.47 (14)
C8—C1—C6—C5175.25 (16)C13—C14—C15—C160.2 (3)
C6—C1—C8—O212.6 (3)C14—C15—C16—C110.1 (3)
C2—C1—C8—O2163.87 (19)C12—C11—C16—C150.2 (3)
C6—C1—C8—C9167.35 (17)C10—C11—C16—C15178.02 (16)
C2—C1—C8—C916.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O2i0.982.583.545 (2)168
C16—H16···O1ii0.952.513.424 (2)162
Symmetry codes: (i) x+1, y, z; (ii) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H13ClO2
Mr272.71
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)10.3415 (6), 3.8938 (1), 16.9152 (10)
β (°) 107.582 (2)
V3)649.32 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.18 × 0.16 × 0.04
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.950, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
2099, 2099, 2075
Rint0.000
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.073, 1.15
No. of reflections2099
No. of parameters173
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.14
Absolute structureFlack (1983), 687 Friedel pairs
Absolute structure parameter0.08 (6)

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O2i0.982.583.545 (2)168
C16—H16···O1ii0.952.513.424 (2)162
Symmetry codes: (i) x+1, y, z; (ii) x1, y+1, z.
 

Acknowledgements

The authors are grateful to the Institute of Chemistry, University of the Punjab, Lahore, and the PCSIR Laboratories Complex, Lahore, for the provision of necessary facilities.

References

First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.  Web of Science PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Jebas, S. R., Patil, P. S. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1525.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Indira, J. (2006). Acta Cryst. E62, o1647–o1649.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationHussain, T., Siddiqui, H. L., Zia-ur-Rehman, M., Yasinzai, M. M. & Pervez, M. (2009). Eur. J. Med. Chem. 44, 4654–4660.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJasinski, J. P., Butcher, R. J., Narayana, B., Samshuddin, S. & Yathirajan, H. S. (2010). Acta Cryst. E66, o269–o270.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLin, Y. M., Zhou, Y., Flavin, M. T., Zhou, L. M., Nie, W. & Chen, F. C. (2002). Bioorg. Med. Chem. 10, 2795–2802.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125–137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOpletalova, V. & Sedivy, D. (1999). Ceska Slov. Farm. 48, 252–255.  PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.  Google Scholar
First citationPatil, P. S., Dharmaprakash, S. M., Fun, H.-K. & Karthikeyan, M. S. (2006). J. Cryst. Growth, 297, 111–116.  Web of Science CrossRef CAS Google Scholar
First citationPoornesh, P., Shettigar, S., Umesh, G., Manjunatha, K. B., Prakash Kamath, K., Sarojini, B. K. & Narayana, B. (2009). Opt. Mater. 31, 854–859.  Web of Science CrossRef CAS Google Scholar
First citationRosli, M. M., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o1466–o1468.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, 295, 54–59.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShettigar, S., Chandrasekharan, K., Umesh, G., Sarojini, B. K. & Narayana, B. (2006). Polymer, 47, 3565–3567.  Web of Science CrossRef CAS Google Scholar
First citationShettigar, S., Umesh, G., Chandrasekharan, K., Sarojini, B. K. & Narayana, B. (2008). Opt. Mater. 30, 1297–1303.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds