organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 6| June 2010| Pages o1313-o1314

9-(4-Bromo­phen­oxy­carbon­yl)-10-methyl­acridinium tri­fluoro­methane­sulfonate

aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: bla@chem.univ.gda.pl

(Received 15 April 2010; accepted 4 May 2010; online 12 May 2010)

In the crystal structure of the title compound, C21H15BrNO2+·CF3SO3, the cations form inversion dimers through ππ inter­actions between the acridine ring systems. These dimers are further linked by C—H⋯π and C—Br⋯π inter­actions. The cations and anions are connected by multidirectional C—H⋯O and C—F⋯π inter­actions. The acridine and benzene ring systems are oriented at 10.8 (1)°. The carboxyl group is twisted at an angle of 85.2 (1)° relative to the acridine skeleton. The mean planes of adjacent acridine units are parallel or almost parallel [inclined at an angle of 1.4 (1)°] in the crystal structure.

Related literature

For background to the chemiluminogenic properties of 9-phenoxy­carbonyl-10-methyl­acridinium trifluoro­methane­sulf­onates, see: Adamczyk & Mattingly (2002[Adamczyk, M. & Mattingly, P. G. (2002). Luminescence Biotechnology Instruments and Applications, edited by K. Van Dyke, C. Van Dyke & K. Woodfork, pp. 77-105. Boca Raton, London, New York, Washington, DC: CRC Press.]); King et al. (2007[King, D. W., Cooper, W. J., Rusak, S. A., Peake, B. M., Kiddle, J. J., O'Sullivan, D. W., Melamed, M. L., Morgan, C. R. & Theberge, S. M. (2007). Anal. Chem. 79, 4169-4176.]); Rak et al. (1999[Rak, J., Skurski, P. & Błażejowski, J. (1999). J. Org. Chem. 64, 3002-3008.]); Roda et al. (2003[Roda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem. A75, 462-470.]); Zomer & Jacquemijns (2001[Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529-549. New York: Marcel Dekker.]). For related structures, see: Sikorski et al. (2005a[Sikorski, A., Krzymiński, K., Konitz, A. & Błażejowski, J. (2005a). Acta Cryst. E61, o2131-o2133.],b[Sikorski, A., Krzymiński, K., Konitz, A. & Błażejowski, J. (2005b). Acta Cryst. E61, o3112-o3114.]). For inter­molecular inter­actions, see: Bianchi et al. (2004[Bianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559-568.]); Dorn et al. (2005[Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633-641.]); Hunter et al. (2001[Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651-669.]); Novoa et al. (2006[Novoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding - New Insights, edited by S. Grabowski, pp. 193-244. The Netherlands: Springer.]); Seo et al. (2009[Seo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o2302.]); Takahashi et al. (2001[Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421-2430.]). For the synthesis, see: Sato (1996[Sato, N. (1996). Tetrahedron Lett. 37, 8519-8522.]); Sikorski et al. (2005a[Sikorski, A., Krzymiński, K., Konitz, A. & Błażejowski, J. (2005a). Acta Cryst. E61, o2131-o2133.],b[Sikorski, A., Krzymiński, K., Konitz, A. & Błażejowski, J. (2005b). Acta Cryst. E61, o3112-o3114.]).

[Scheme 1]

Experimental

Crystal data
  • C21H15BrNO2+·CF3O3S

  • Mr = 542.32

  • Monoclinic, P 21 /c

  • a = 9.5755 (2) Å

  • b = 20.4912 (7) Å

  • c = 11.6241 (5) Å

  • β = 104.011 (3)°

  • V = 2212.95 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.01 mm−1

  • T = 295 K

  • 0.37 × 0.15 × 0.05 mm

Data collection
  • Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.77, Tmax = 0.92

  • 50472 measured reflections

  • 3910 independent reflections

  • 2200 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.112

  • S = 0.98

  • 3910 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C18–C23 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O27i 0.93 2.59 3.361 (5) 141
C4—H4⋯O28ii 0.93 2.50 3.365 (4) 155
C20—H20⋯O27 0.93 2.50 3.176 (4) 130
C25—H25ACg4iii 0.96 2.81 3.569 (4) 136
C25—H25B⋯O28ii 0.96 2.53 3.472 (5) 167
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x-1, y, z.

Table 2
C–Br⋯π and C–F⋯π inter­actions (Å,°)

Cg1, Cg3 and Cg4 are the centroids of the C9/N10/C11–C14, C5–C8/C13/C14 and C18–C23 rings, respectively.

X I J IJ XJ XIJ
C21 Br24 Cg1iv 3.958 (2) 4.158 (3) 82.3 (1)
C21 Br24 Cg3iv 3.937 (2) 4.235 (4) 85.4 (2)
C30 F31 Cg4v 3.212 (4) 4.305 (5) 137.5 (3)
Symmetry codes: (iv) x+1, y, z; (v) [x, -y+{3\over 2}, z-{1\over 2}].

Table 3
ππ inter­actions (Å,°)

Cg1 and Cg2 are the centroids of the C9/N10/C11–C14 and C1–C4/C11/C12 rings, respectively. CgICgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I.

I J CgICgJ Dihedral angle CgI_Perp CgI_Offset
1 2vi 3.650 (2) 2.82 (16) 3.623 (2) 0.444 (2)
Symmetry code: (vi) -x, -y+1, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The cations of 9-(phenoxycarbonyl)-10-methylacridinium salts react efficiently with H2O2 in alkaline media producing light (Zomer & Jacquemijns, 2001; Adamczyk & Mattingly, 2002). This effect means that the compounds can serve as chemiluminescent indicators or as chemiluminogenic fragments of chemiluminescent labels in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Zomer & Jacquemijns, 2001; Adamczyk & Mattingly, 2002; Roda et al. , 2003; King et al., 2007). The chemiluminogenic features of the compounds depend on the structure of the cations, particularly the phenoxycarbonyl fragment which is removed during their oxidation leading to electronically excited 10-methyl-9-acridinone molecules (Rak et al., 1999; Zomer & Jacquemijns, 2001). It has been found that the efficiency of chemiluminescence – crucial for analytical applications – is influenced by the constitution of the phenyl fragment (Zomer & Jacquemijns, 2001). This prompted us to synthesize and investigate derivatives substituted in this latter fragment. In this paper, a continuation of a series on bromo-substituted derivatives (Sikorski et al., 2005a), we present the structure of the title compound.

In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2005a,b). With respective average deviations from planarity of 0.0442 (3) Å and 0.0046 (3) Å, the acridine and benzene ring systems are oriented at 10.8 (1)°. The carboxyl group is twisted at an angle of 85.2 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (remain at an angle of 0.0 (1)°) or almost parallel (remain at an angle of 1.4 (1)°) in the lattice.

In the crystal structure, the inversely oriented cations form dimers through ππ interactions involving acridine moieties (Table 3, Fig. 2). These dimers are further linked by C–H···π (Table 1, Fig. 2) and C–Br···π (Table 2, Fig. 2) interactions. The cations and anions are connected by multidirectional C–H···O (Table 1, Fig. 2) and C–F···π (Table 2, Fig. 2) interactions. The C–H···O interactions are of the hydrogen bond type (Bianchi et al., 2004; Novoa et al., 2006). The C–H···π interactions should be of an attractive nature (Takahashi et al., 2001), like the C–F···π (Dorn et al., 2005) and ππ (Hunter et al., 2001) interactions. The C–Br···π interactions have been reported by others (Seo et al., 2009). The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.

Related literature top

For background to the chemiluminogenic properties of 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates, see: Adamczyk & Mattingly (2002); King et al. (2007); Rak et al. (1999); Roda et al. (2003); Zomer & Jacquemijns (2001). For related structures, see: Sikorski et al. (2005a,b). For intermolecular interactions, see: Bianchi et al. (2004); Dorn et al. (2005); Hunter et al. (2001); Novoa et al. (2006); Seo et al. (2009); Takahashi et al. (2001). For the synthesis, see: Sato (1996); Sikorski et al. (2005a,b).

Experimental top

The title compound was obtained by treating 4-bromophenyl acridine-9-carboxylate [synthesized by heating acridine-9-carboxylic acid with a tenfold molar excess of thionyl chloride and reacting the product thus obtained with an equimolar amount of 4-bromophenol (Sato, 1996; Sikorski et al., 2005b)] with a fivefold molar excess of methyl trifluoromethanesulfonate dissolved in dichloromethane (Sikorski et al., 2005a). The crude 9-(4-bromophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate was dissolved in a small amount of ethanol, filtered and precipitated with a 25 v/v excess of diethyl ether. Yellow crystals suitable for X-ray investigations were grown from anhydrous ethanol (m.p. 504 - 505 K).

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 Å and 0.96 Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the methyl H atoms.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2, Cg3 and Cg4 denote the ring centroids. The C–H···O hydrogen bond is represented by a dashed line.
[Figure 2] Fig. 2. The arrangement of the ions in the crystal structure. The C–H···O interactions are represented by dashed lines, the C–H···π, C–F···π, C–Br–π and ππ contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) –x + 1, y – 1/2, –z + 1/2; (ii) –x, y – 1/2, –z + 1/2; (iii) x – 1, y, z; (iv) x + 1, y, z; (v) x, –y + 3/2, z – 1/2; (vi) –x, –y + 1, –z.]
9-(4-Bromophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate top
Crystal data top
C21H15BrNO2+·CF3O3SF(000) = 1088
Mr = 542.32Dx = 1.628 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 14728 reflections
a = 9.5755 (2) Åθ = 3.0–29.2°
b = 20.4912 (7) ŵ = 2.01 mm1
c = 11.6241 (5) ÅT = 295 K
β = 104.011 (3)°Plate, yellow
V = 2212.95 (13) Å30.37 × 0.15 × 0.05 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
3910 independent reflections
Radiation source: enhanced (Mo) X-ray Source2200 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 10.4002 pixels mm-1θmax = 25.1°, θmin = 3.0°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 2424
Tmin = 0.77, Tmax = 0.92l = 1313
50472 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0642P)2]
where P = (Fo2 + 2Fc2)/3
3910 reflections(Δ/σ)max = 0.001
299 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
C21H15BrNO2+·CF3O3SV = 2212.95 (13) Å3
Mr = 542.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5755 (2) ŵ = 2.01 mm1
b = 20.4912 (7) ÅT = 295 K
c = 11.6241 (5) Å0.37 × 0.15 × 0.05 mm
β = 104.011 (3)°
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
3910 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
2200 reflections with I > 2σ(I)
Tmin = 0.77, Tmax = 0.92Rint = 0.048
50472 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 0.98Δρmax = 0.56 e Å3
3910 reflectionsΔρmin = 0.62 e Å3
299 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1494 (3)0.43387 (19)0.1754 (3)0.0703 (10)
H10.24930.43590.19100.084*
C20.0842 (4)0.3755 (2)0.1601 (4)0.0794 (11)
H20.13870.33760.16420.095*
C30.0654 (4)0.3715 (2)0.1382 (3)0.0787 (11)
H30.10920.33070.12830.094*
C40.1483 (3)0.4255 (2)0.1309 (3)0.0684 (10)
H40.24770.42130.11710.082*
C50.1859 (4)0.6625 (2)0.1220 (3)0.0773 (11)
H50.28580.65990.10220.093*
C60.1200 (4)0.7217 (2)0.1332 (4)0.0902 (12)
H60.17660.75910.12050.108*
C70.0303 (4)0.7284 (2)0.1631 (4)0.0896 (12)
H70.07250.76960.17080.108*
C80.1126 (4)0.67394 (19)0.1808 (3)0.0734 (10)
H80.21230.67810.20090.088*
C90.1328 (3)0.55402 (17)0.1829 (3)0.0544 (8)
N100.1650 (2)0.54462 (15)0.1304 (2)0.0582 (7)
C110.0688 (3)0.49303 (17)0.1682 (3)0.0574 (9)
C120.0853 (3)0.48819 (17)0.1439 (3)0.0553 (8)
C130.0508 (3)0.61081 (17)0.1694 (3)0.0601 (9)
C140.1030 (3)0.60523 (18)0.1404 (3)0.0596 (9)
C150.2939 (3)0.56004 (16)0.2072 (3)0.0573 (8)
O160.35203 (19)0.56616 (11)0.32302 (19)0.0620 (6)
O170.3586 (2)0.55888 (15)0.1321 (2)0.0855 (8)
C180.5032 (3)0.57634 (17)0.3564 (3)0.0521 (8)
C190.5556 (3)0.63811 (17)0.3571 (3)0.0606 (9)
H190.49340.67300.33320.073*
C200.7017 (3)0.64830 (17)0.3934 (3)0.0647 (9)
H200.73960.69010.39330.078*
C210.7905 (3)0.59614 (18)0.4296 (3)0.0639 (9)
C220.7375 (4)0.5340 (2)0.4306 (3)0.0796 (11)
H220.79950.49920.45660.095*
C230.5906 (4)0.52369 (18)0.3924 (3)0.0713 (10)
H230.55220.48190.39130.086*
Br240.99257 (4)0.61111 (2)0.48030 (5)0.1038 (2)
C250.3252 (3)0.5406 (2)0.1034 (3)0.0775 (11)
H25A0.36090.57160.15110.116*
H25B0.35330.49740.12050.116*
H25C0.36440.55010.02100.116*
S260.47869 (9)0.82754 (4)0.30872 (9)0.0676 (3)
O270.6132 (3)0.79768 (13)0.3588 (3)0.0980 (9)
O280.4780 (3)0.89700 (12)0.3260 (3)0.1005 (9)
O290.3556 (3)0.79269 (14)0.3249 (3)0.1026 (9)
C300.4620 (5)0.8203 (3)0.1534 (4)0.1024 (14)
F310.5746 (4)0.8502 (2)0.1247 (3)0.1619 (13)
F320.4639 (4)0.75825 (19)0.1220 (3)0.1721 (14)
F330.3479 (4)0.8468 (2)0.0881 (3)0.1719 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0475 (17)0.081 (3)0.084 (3)0.0049 (19)0.0198 (16)0.009 (2)
C20.066 (2)0.077 (3)0.098 (3)0.009 (2)0.025 (2)0.010 (2)
C30.068 (2)0.074 (3)0.094 (3)0.007 (2)0.019 (2)0.005 (2)
C40.0476 (17)0.095 (3)0.065 (2)0.013 (2)0.0176 (15)0.004 (2)
C50.053 (2)0.092 (3)0.086 (3)0.016 (2)0.0137 (18)0.001 (2)
C60.077 (3)0.082 (3)0.108 (3)0.027 (2)0.016 (2)0.007 (3)
C70.073 (2)0.074 (3)0.121 (3)0.004 (2)0.023 (2)0.002 (2)
C80.0522 (18)0.075 (3)0.093 (3)0.0007 (19)0.0168 (17)0.001 (2)
C90.0341 (14)0.074 (2)0.056 (2)0.0012 (15)0.0129 (13)0.0011 (16)
N100.0343 (12)0.083 (2)0.0595 (17)0.0019 (14)0.0148 (11)0.0024 (14)
C110.0371 (16)0.078 (3)0.059 (2)0.0031 (16)0.0150 (14)0.0038 (17)
C120.0378 (15)0.078 (3)0.051 (2)0.0011 (16)0.0126 (13)0.0025 (16)
C130.0408 (16)0.077 (3)0.064 (2)0.0013 (17)0.0166 (14)0.0001 (17)
C140.0418 (16)0.077 (3)0.060 (2)0.0079 (17)0.0122 (14)0.0007 (17)
C150.0400 (16)0.068 (2)0.065 (2)0.0002 (14)0.0159 (17)0.0015 (17)
O160.0393 (10)0.0869 (17)0.0597 (15)0.0019 (10)0.0119 (10)0.0009 (12)
O170.0402 (12)0.157 (3)0.0613 (15)0.0036 (13)0.0155 (11)0.0026 (15)
C180.0389 (15)0.064 (2)0.0523 (19)0.0018 (15)0.0094 (13)0.0004 (16)
C190.0491 (18)0.061 (2)0.069 (2)0.0097 (16)0.0088 (15)0.0051 (18)
C200.0501 (18)0.060 (2)0.079 (2)0.0022 (16)0.0066 (16)0.0022 (18)
C210.0429 (16)0.072 (3)0.072 (2)0.0043 (16)0.0035 (15)0.0055 (18)
C220.059 (2)0.067 (3)0.102 (3)0.0148 (19)0.0019 (19)0.004 (2)
C230.060 (2)0.058 (2)0.092 (3)0.0033 (17)0.0100 (18)0.0055 (19)
Br240.0442 (2)0.1080 (4)0.1442 (5)0.00493 (19)0.0065 (2)0.0176 (3)
C250.0321 (15)0.104 (3)0.093 (3)0.0019 (17)0.0103 (15)0.012 (2)
S260.0539 (5)0.0615 (6)0.0876 (7)0.0009 (4)0.0176 (4)0.0017 (5)
O270.0639 (14)0.086 (2)0.130 (2)0.0090 (13)0.0052 (14)0.0217 (16)
O280.0918 (18)0.0651 (19)0.150 (3)0.0001 (13)0.0394 (18)0.0211 (16)
O290.0775 (16)0.098 (2)0.144 (3)0.0196 (14)0.0486 (16)0.0098 (18)
C300.104 (3)0.100 (4)0.102 (4)0.001 (3)0.020 (3)0.001 (3)
F310.162 (3)0.227 (4)0.115 (2)0.019 (3)0.069 (2)0.029 (2)
F320.250 (4)0.141 (3)0.120 (2)0.006 (3)0.034 (2)0.052 (2)
F330.139 (3)0.201 (4)0.134 (3)0.005 (2)0.048 (2)0.047 (2)
Geometric parameters (Å, º) top
C1—C21.342 (5)C13—C141.433 (4)
C1—C111.429 (5)C15—O171.187 (4)
C1—H10.9300C15—O161.332 (4)
C2—C31.395 (5)O16—C181.421 (3)
C2—H20.9300C18—C191.361 (4)
C3—C41.352 (5)C18—C231.367 (4)
C3—H30.9300C19—C201.376 (4)
C4—C121.411 (5)C19—H190.9300
C4—H40.9300C20—C211.367 (5)
C5—C61.359 (5)C20—H200.9300
C5—C141.403 (5)C21—C221.372 (5)
C5—H50.9300C21—Br241.906 (3)
C6—C71.403 (5)C22—C231.385 (5)
C6—H60.9300C22—H220.9300
C7—C81.353 (5)C23—H230.9300
C7—H70.9300C25—H25A0.9600
C8—C131.415 (5)C25—H25B0.9600
C8—H80.9300C25—H25C0.9600
C9—C111.384 (4)S26—O271.418 (2)
C9—C131.391 (4)S26—O291.429 (2)
C9—C151.505 (4)S26—O281.438 (3)
N10—C141.369 (4)S26—C301.779 (5)
N10—C121.374 (4)C30—F331.290 (5)
N10—C251.491 (3)C30—F321.325 (5)
C11—C121.437 (4)C30—F311.350 (5)
C2—C1—C11121.5 (3)C5—C14—C13118.7 (3)
C2—C1—H1119.3O17—C15—O16125.5 (3)
C11—C1—H1119.3O17—C15—C9123.6 (3)
C1—C2—C3120.0 (4)O16—C15—C9110.8 (3)
C1—C2—H2120.0C15—O16—C18116.0 (2)
C3—C2—H2120.0C19—C18—C23122.3 (3)
C4—C3—C2121.7 (4)C19—C18—O16119.2 (3)
C4—C3—H3119.1C23—C18—O16118.4 (3)
C2—C3—H3119.1C18—C19—C20119.3 (3)
C3—C4—C12120.6 (3)C18—C19—H19120.4
C3—C4—H4119.7C20—C19—H19120.4
C12—C4—H4119.7C21—C20—C19119.1 (3)
C6—C5—C14120.0 (3)C21—C20—H20120.5
C6—C5—H5120.0C19—C20—H20120.5
C14—C5—H5120.0C20—C21—C22121.7 (3)
C5—C6—C7122.4 (4)C20—C21—Br24118.6 (3)
C5—C6—H6118.8C22—C21—Br24119.8 (2)
C7—C6—H6118.8C21—C22—C23119.2 (3)
C8—C7—C6118.8 (4)C21—C22—H22120.4
C8—C7—H7120.6C23—C22—H22120.4
C6—C7—H7120.6C18—C23—C22118.4 (3)
C7—C8—C13121.6 (3)C18—C23—H23120.8
C7—C8—H8119.2C22—C23—H23120.8
C13—C8—H8119.2N10—C25—H25A109.5
C11—C9—C13121.4 (3)N10—C25—H25B109.5
C11—C9—C15120.0 (3)H25A—C25—H25B109.5
C13—C9—C15118.5 (3)N10—C25—H25C109.5
C14—N10—C12122.4 (2)H25A—C25—H25C109.5
C14—N10—C25118.1 (3)H25B—C25—H25C109.5
C12—N10—C25119.5 (3)O27—S26—O29115.25 (18)
C9—C11—C1122.9 (3)O27—S26—O28113.86 (17)
C9—C11—C12119.3 (3)O29—S26—O28116.39 (17)
C1—C11—C12117.9 (3)O27—S26—C30103.3 (2)
N10—C12—C4122.8 (3)O29—S26—C30102.6 (2)
N10—C12—C11118.7 (3)O28—S26—C30102.8 (2)
C4—C12—C11118.4 (3)F33—C30—F32107.9 (4)
C9—C13—C8122.8 (3)F33—C30—F31106.0 (4)
C9—C13—C14118.6 (3)F32—C30—F31107.6 (5)
C8—C13—C14118.5 (3)F33—C30—S26114.7 (4)
N10—C14—C5121.8 (3)F32—C30—S26110.9 (4)
N10—C14—C13119.5 (3)F31—C30—S26109.4 (3)
C11—C1—C2—C30.8 (6)C6—C5—C14—C130.8 (5)
C1—C2—C3—C40.4 (6)C9—C13—C14—N102.0 (5)
C2—C3—C4—C120.8 (6)C8—C13—C14—N10179.2 (3)
C14—C5—C6—C70.2 (6)C9—C13—C14—C5177.4 (3)
C5—C6—C7—C80.5 (7)C8—C13—C14—C51.4 (5)
C6—C7—C8—C130.2 (6)C11—C9—C15—O1782.6 (4)
C13—C9—C11—C1176.7 (3)C13—C9—C15—O1793.9 (4)
C15—C9—C11—C10.3 (5)C11—C9—C15—O1696.8 (3)
C13—C9—C11—C122.9 (5)C13—C9—C15—O1686.6 (4)
C15—C9—C11—C12179.4 (3)O17—C15—O16—C184.3 (5)
C2—C1—C11—C9179.7 (3)C9—C15—O16—C18176.2 (3)
C2—C1—C11—C120.1 (5)C15—O16—C18—C1985.8 (4)
C14—N10—C12—C4178.4 (3)C15—O16—C18—C2397.4 (3)
C25—N10—C12—C41.3 (4)C23—C18—C19—C201.0 (5)
C14—N10—C12—C110.6 (4)O16—C18—C19—C20177.7 (3)
C25—N10—C12—C11179.1 (3)C18—C19—C20—C211.0 (5)
C3—C4—C12—N10176.1 (3)C19—C20—C21—C220.0 (5)
C3—C4—C12—C111.7 (5)C19—C20—C21—Br24179.7 (3)
C9—C11—C12—N103.0 (4)C20—C21—C22—C230.9 (6)
C1—C11—C12—N10176.6 (3)Br24—C21—C22—C23179.4 (3)
C9—C11—C12—C4179.1 (3)C19—C18—C23—C220.1 (5)
C1—C11—C12—C41.3 (4)O16—C18—C23—C22176.8 (3)
C11—C9—C13—C8178.3 (3)C21—C22—C23—C180.9 (6)
C15—C9—C13—C81.8 (5)O27—S26—C30—F33177.5 (4)
C11—C9—C13—C140.5 (5)O29—S26—C30—F3362.4 (4)
C15—C9—C13—C14176.9 (3)O28—S26—C30—F3358.8 (4)
C7—C8—C13—C9177.7 (4)O27—S26—C30—F3260.0 (4)
C7—C8—C13—C141.1 (5)O29—S26—C30—F3260.2 (4)
C12—N10—C14—C5177.5 (3)O28—S26—C30—F32178.7 (4)
C25—N10—C14—C52.2 (5)O27—S26—C30—F3158.5 (4)
C12—N10—C14—C131.9 (5)O29—S26—C30—F31178.6 (3)
C25—N10—C14—C13178.4 (3)O28—S26—C30—F3160.2 (4)
C6—C5—C14—N10179.8 (3)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O27i0.932.593.361 (5)141
C4—H4···O28ii0.932.503.365 (4)155
C20—H20···O270.932.503.176 (4)130
C25—H25A···Cg4iii0.962.813.569 (4)136
C25—H25B···O28ii0.962.533.472 (5)167
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC21H15BrNO2+·CF3O3S
Mr542.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)9.5755 (2), 20.4912 (7), 11.6241 (5)
β (°) 104.011 (3)
V3)2212.95 (13)
Z4
Radiation typeMo Kα
µ (mm1)2.01
Crystal size (mm)0.37 × 0.15 × 0.05
Data collection
DiffractometerOxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.77, 0.92
No. of measured, independent and
observed [I > 2σ(I)] reflections
50472, 3910, 2200
Rint0.048
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.112, 0.98
No. of reflections3910
No. of parameters299
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.62

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O27i0.932.593.361 (5)141
C4—H4···O28ii0.932.503.365 (4)155
C20—H20···O270.932.503.176 (4)130
C25—H25A···Cg4iii0.962.813.569 (4)136
C25—H25B···O28ii0.962.533.472 (5)167
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x1, y, z.
C–Br···π and C–F···π interactions (Å,°). top
XIJI···JX···JXI···J
C21Br24Cg1iv3.958 (2)4.158 (3)82.3 (1)
C21Br24Cg3iv3.937 (2)4.235 (4)85.4 (2)
C30F31Cg4v3.212 (4)4.305 (5)137.5 (3)
Symmetry codes: (iv) x + 1, y, z; (v) x, –y + 3/2, z – 1/2.

Notes: Cg1, Cg3 and Cg4 are the centroids of the C9/N10/C11–C14, C5–C8/C13/C14 and C18–C23 rings, respectively.
ππ interactions (Å,°). top
IJCgI···CgJDihedral angleCgI_PerpCgI_Offset
12vi3.650 (2)2.82 (16)3.623 (2)0.444 (2)
21vi3.650 (2)2.82 (16)3.623 (2)0.444 (2)
Symmetry code: (vi) –x, –y + 1, –z.

Notes: Cg1 and Cg2 are the centroids of the C9/N10/C11–C14 and C1–C4/C11/C12 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I.
 

Acknowledgements

This study was financed by the State Funds for Scientific Research (grant No. N204 123 32/3143, contract No. 3143/H03/2007/32, of the Polish Ministry of Research and Higher Education) for the period 2007–2010.

References

First citationAdamczyk, M. & Mattingly, P. G. (2002). Luminescence Biotechnology Instruments and Applications, edited by K. Van Dyke, C. Van Dyke & K. Woodfork, pp. 77–105. Boca Raton, London, New York, Washington, DC: CRC Press.
First citationBianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559–568.  Web of Science CSD CrossRef CAS IUCr Journals
First citationDorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641.  Web of Science CSD CrossRef CAS
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals
First citationHunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669.  Web of Science CrossRef
First citationKing, D. W., Cooper, W. J., Rusak, S. A., Peake, B. M., Kiddle, J. J., O'Sullivan, D. W., Melamed, M. L., Morgan, C. R. & Theberge, S. M. (2007). Anal. Chem. 79, 4169–4176.  Web of Science CrossRef PubMed CAS
First citationNovoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding – New Insights, edited by S. Grabowski, pp. 193–244. The Netherlands: Springer.
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
First citationRak, J., Skurski, P. & Błażejowski, J. (1999). J. Org. Chem. 64, 3002–3008.  Web of Science CrossRef PubMed CAS
First citationRoda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem. A75, 462–470.
First citationSato, N. (1996). Tetrahedron Lett. 37, 8519–8522.  CrossRef CAS Web of Science
First citationSeo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o2302.  Web of Science CSD CrossRef IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSikorski, A., Krzymiński, K., Konitz, A. & Błażejowski, J. (2005a). Acta Cryst. E61, o2131–o2133.  Web of Science CSD CrossRef IUCr Journals
First citationSikorski, A., Krzymiński, K., Konitz, A. & Błażejowski, J. (2005b). Acta Cryst. E61, o3112–o3114.  Web of Science CSD CrossRef IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationTakahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430.  Web of Science CrossRef CAS
First citationZomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529–549. New York: Marcel Dekker.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 6| June 2010| Pages o1313-o1314
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds