metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1,10-Phenanthroline-κ2N,N′)bis­­(2-thioxo-1,2-di­hydro­pyridine-3-car­box­yl­ato-κ2O,S)manganese(II)

aJinhua Radio and Television University, Jinhua, Zhejiang 321022, People's Republic of China
*Correspondence e-mail: lwq8113@163.com

(Received 11 April 2010; accepted 25 April 2010; online 15 May 2010)

In the title complex, [Mn(C6H4NO2S)2(C12H8N2)] or [MnL2(phen)] (L = 2-mercaptonicotinate and phen = 1,10-phenanthroline), the central MnII atom is coordinated by two carboxylic O atoms and two thiol­ate S atoms of two L ligands and two N atoms from one phen mol­ecule, giving a distorted octa­hedral geometry. The pyridyl H atoms form strong N—H⋯O hydrogen bonds with the carbonyl O atoms of the adjacent mol­ecules, generating a chain structure propagating in [100].

Related literature

For solvothermal synthesis with compounds containing carboxylate ligand systems see: Bröll et al. (1999[Bröll, D., Kaul, C., Krämmer, A., Krämmer, P., Richter, T., Jung, M., Vogel, H. & Zehner, P. (1999). Angew. Chem. Int. Ed. 38, 2998-3014.]). For the different structural forms and potential multiple bidentate coordinate possibilities of the H2L ligand, see: Ma et al. (2003[Ma, C., Jiang, Q., Zhang, R. F. & Wang, D. Q. (2003). Dalton Trans. pp. 2975-2978.]); Saleh et al. (1996[Saleh, M. S., Kamal, A. I., Abu-Bakr, M. S. & Hashem, E. Y. (1996). Analyst, 35, 69-69.]); Zachariadis et al. (2003[Zachariadis, P. C., Hadjikakou, S. K., Hadjiliadis, N., Michaelides, A., Skoulika, S., Yang, M. & Yu, X. (2003). Inorg. Chim. Acta, 343, 361-365.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C6H4NO2S)2(C12H8N2)]

  • Mr = 543.47

  • Triclinic, [P \overline 1]

  • a = 7.2369 (7) Å

  • b = 11.0966 (12) Å

  • c = 15.1290 (17) Å

  • α = 105.177 (6)°

  • β = 90.079 (5)°

  • γ = 102.429 (5)°

  • V = 1142.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 296 K

  • 0.43 × 0.09 × 0.07 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.918, Tmax = 0.946

  • 16022 measured reflections

  • 4600 independent reflections

  • 3945 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.093

  • S = 1.06

  • 4600 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 1.86 2.654 (2) 152
N2—H2A⋯O4ii 0.86 2.00 2.7476 (19) 145
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In contrast to a great deal of work on solvothermal synthesis with carboxylate ligands (Bröll et al., 1999), there have been few reports of studies on mixed thiolato-pyridinecarboxylic ligands. 2-Mercaptonicotinic acid (H2L) is a multifunctional ligand containing one carboxyl group, one thiol group and a pyridyl N donor atom. In addition, as an equilibrium mixture of thiol and thione forms in solution, H2L is an interesting ligand in the thiolatopyridine system because of its different structural forms and potential multiple bidentate coordinate possibilities (Ma et al., 2003; Saleh et al., 1996; Zachariadis et al.; 2003). Herein in this article, the synthesis and structure of a new compound, [MnL2(phen)], is reported.

A perspective view of the title complex (I) is presented in Fig. 1. The central MnII atom is six-coordinated by two carboxylic O atoms of two L2- ligands [Mn—O 2.0868 (14) and 2.0975 (13) Å], two thiolato S atoms of two L2- ligands [Mn—S 2.6067 (6) and 2.6347 (5) Å] and two N atoms from one phen [Mn—N 2.2627 (15) and 2.2822 (15) Å], giving a distorted octahedral geometry. The adjacent molecules are linked by N—H···O intermolecular hydrogen bonds to form a one dimensional chain structure (Fig. 2).

Related literature top

For solvothermal synthesis with carboxylate ligands, see: Bröll et al. (1999). For the different structural forms and potential multiple bidentate coordinate possibilities of the H2L ligand, see: Ma et al. (2003); Saleh et al. (1996); Zachariadis et al. (2003).

Experimental top

A mixture of H2L (0.155 g, 1.0 mmol), MnCl2.4H2O (0.198 g, 1.0 mmol), phen (0.099 g, 0.5 mmol), and Na2CO3 (0.053 g, 0.5 mmol) in C2H5OH (2 ml)/H2O (16 ml) was placed in a Teflon-lined stainless steel vessel and heated at 433 K for 72 h, and then cooled to room temperature over 3 days. The resulting red crystals suitable for X-ray analysis were obtained in 30% yield.

Refinement top

The H-atoms were positioned geometrically and included in the refinement using a riding model with N—H = 0.86 Å and C—H = 0.93 Å and Uiso(H) = 1.2Ueq(N/C).

Structure description top

In contrast to a great deal of work on solvothermal synthesis with carboxylate ligands (Bröll et al., 1999), there have been few reports of studies on mixed thiolato-pyridinecarboxylic ligands. 2-Mercaptonicotinic acid (H2L) is a multifunctional ligand containing one carboxyl group, one thiol group and a pyridyl N donor atom. In addition, as an equilibrium mixture of thiol and thione forms in solution, H2L is an interesting ligand in the thiolatopyridine system because of its different structural forms and potential multiple bidentate coordinate possibilities (Ma et al., 2003; Saleh et al., 1996; Zachariadis et al.; 2003). Herein in this article, the synthesis and structure of a new compound, [MnL2(phen)], is reported.

A perspective view of the title complex (I) is presented in Fig. 1. The central MnII atom is six-coordinated by two carboxylic O atoms of two L2- ligands [Mn—O 2.0868 (14) and 2.0975 (13) Å], two thiolato S atoms of two L2- ligands [Mn—S 2.6067 (6) and 2.6347 (5) Å] and two N atoms from one phen [Mn—N 2.2627 (15) and 2.2822 (15) Å], giving a distorted octahedral geometry. The adjacent molecules are linked by N—H···O intermolecular hydrogen bonds to form a one dimensional chain structure (Fig. 2).

For solvothermal synthesis with carboxylate ligands, see: Bröll et al. (1999). For the different structural forms and potential multiple bidentate coordinate possibilities of the H2L ligand, see: Ma et al. (2003); Saleh et al. (1996); Zachariadis et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the one-dimensional chain structure of (I). The N—H···O interactions are depicted by dashed lines.
(1,10-Phenanthroline-κ2N,N')bis(2-thioxo-1,2- dihydropyridine-3-carboxylato-κ2O,S)manganese(II) top
Crystal data top
[Mn(C6H4NO2S)2(C12H8N2)]Z = 2
Mr = 543.47F(000) = 554
Triclinic, P1Dx = 1.579 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2369 (7) ÅCell parameters from 7683 reflections
b = 11.0966 (12) Åθ = 2.0–26.5°
c = 15.1290 (17) ŵ = 0.80 mm1
α = 105.177 (6)°T = 296 K
β = 90.079 (5)°Needle, red
γ = 102.429 (5)°0.43 × 0.09 × 0.07 mm
V = 1142.9 (2) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
4600 independent reflections
Radiation source: fine-focus sealed tube3945 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 26.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.918, Tmax = 0.946k = 1313
16022 measured reflectionsl = 1518
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0545P)2 + 0.2746P]
where P = (Fo2 + 2Fc2)/3
4600 reflections(Δ/σ)max = 0.001
316 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Mn(C6H4NO2S)2(C12H8N2)]γ = 102.429 (5)°
Mr = 543.47V = 1142.9 (2) Å3
Triclinic, P1Z = 2
a = 7.2369 (7) ÅMo Kα radiation
b = 11.0966 (12) ŵ = 0.80 mm1
c = 15.1290 (17) ÅT = 296 K
α = 105.177 (6)°0.43 × 0.09 × 0.07 mm
β = 90.079 (5)°
Data collection top
Bruker APEXII area-detector
diffractometer
4600 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3945 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 0.946Rint = 0.020
16022 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.06Δρmax = 0.50 e Å3
4600 reflectionsΔρmin = 0.45 e Å3
316 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.19275 (4)0.18006 (3)0.772122 (17)0.03375 (10)
S10.00472 (7)0.35983 (5)0.78952 (4)0.04714 (14)
S20.36963 (7)0.00932 (5)0.74720 (3)0.04092 (13)
O10.3743 (2)0.28650 (14)0.69924 (10)0.0498 (4)
O20.5749 (2)0.46218 (16)0.68907 (15)0.0721 (5)
O30.01444 (18)0.04438 (13)0.67939 (9)0.0439 (3)
O40.17076 (19)0.15020 (15)0.60409 (12)0.0582 (4)
N10.0514 (2)0.49770 (16)0.68254 (12)0.0444 (4)
H1A0.16320.48420.70250.053*
N20.4711 (2)0.11197 (14)0.58227 (10)0.0343 (3)
H2A0.57610.10480.61200.041*
N30.3797 (2)0.27032 (14)0.90459 (10)0.0371 (3)
N40.0141 (2)0.14250 (14)0.88879 (10)0.0358 (3)
C10.2553 (2)0.45880 (16)0.67164 (12)0.0337 (4)
C20.0761 (2)0.43864 (17)0.70980 (12)0.0348 (4)
C30.0163 (3)0.5755 (2)0.62681 (17)0.0537 (5)
H3A0.11040.61370.61230.064*
C40.1556 (3)0.5983 (2)0.59186 (18)0.0577 (6)
H4A0.18170.65180.55320.069*
C50.2918 (3)0.5393 (2)0.61535 (15)0.0484 (5)
H5A0.41120.55470.59240.058*
C60.4134 (2)0.39785 (18)0.68957 (13)0.0382 (4)
C70.1537 (2)0.09387 (15)0.58063 (11)0.0299 (3)
C80.3275 (2)0.07335 (15)0.63130 (11)0.0296 (3)
C90.4617 (3)0.16086 (18)0.49032 (13)0.0410 (4)
H9A0.56720.18360.46140.049*
C100.2993 (3)0.17670 (18)0.44038 (13)0.0426 (4)
H10A0.29210.20760.37680.051*
C110.1431 (3)0.14547 (17)0.48677 (12)0.0371 (4)
H11A0.02850.15970.45370.045*
C120.0237 (2)0.06449 (17)0.62609 (12)0.0348 (4)
C130.5588 (3)0.3343 (2)0.91191 (15)0.0478 (5)
H13A0.61750.34490.85890.057*
C140.6625 (3)0.3863 (2)0.99610 (18)0.0597 (6)
H14A0.78720.43190.99900.072*
C150.5799 (3)0.3698 (2)1.07374 (16)0.0605 (6)
H15A0.64890.40331.13000.073*
C160.3900 (3)0.30230 (19)1.06979 (14)0.0487 (5)
C170.2905 (4)0.2797 (2)1.14779 (14)0.0637 (7)
H17A0.35420.30821.20540.076*
C180.1066 (4)0.2179 (2)1.13941 (14)0.0627 (6)
H18A0.04550.20551.19140.075*
C190.0049 (3)0.17163 (19)1.05273 (13)0.0457 (5)
C200.1876 (3)0.1079 (2)1.03977 (16)0.0551 (5)
H20A0.25630.09571.08980.066*
C210.2720 (3)0.0644 (2)0.95414 (16)0.0555 (5)
H21A0.39930.02260.94500.067*
C220.1675 (3)0.0825 (2)0.87992 (14)0.0453 (5)
H22A0.22730.05120.82140.054*
C230.2953 (3)0.25494 (16)0.98230 (12)0.0361 (4)
C240.0995 (3)0.18802 (16)0.97393 (11)0.0353 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.02949 (16)0.04268 (17)0.03019 (15)0.00816 (12)0.00431 (11)0.01164 (11)
S10.0363 (3)0.0591 (3)0.0559 (3)0.0184 (2)0.0149 (2)0.0262 (2)
S20.0370 (3)0.0583 (3)0.0304 (2)0.0211 (2)0.00322 (18)0.0087 (2)
O10.0458 (8)0.0585 (9)0.0614 (9)0.0264 (7)0.0261 (7)0.0324 (7)
O20.0258 (7)0.0607 (10)0.1294 (16)0.0085 (7)0.0033 (8)0.0257 (10)
O30.0338 (7)0.0520 (8)0.0431 (7)0.0175 (6)0.0025 (6)0.0015 (6)
O40.0251 (7)0.0556 (9)0.0845 (11)0.0056 (6)0.0012 (7)0.0055 (8)
N10.0258 (8)0.0488 (9)0.0600 (10)0.0101 (7)0.0018 (7)0.0155 (8)
N20.0237 (7)0.0384 (8)0.0398 (8)0.0068 (6)0.0034 (6)0.0088 (6)
N30.0309 (8)0.0392 (8)0.0397 (8)0.0069 (6)0.0023 (6)0.0091 (6)
N40.0312 (8)0.0431 (8)0.0337 (7)0.0068 (6)0.0039 (6)0.0126 (6)
C10.0252 (8)0.0355 (9)0.0390 (9)0.0051 (7)0.0017 (7)0.0093 (7)
C20.0256 (8)0.0366 (9)0.0396 (9)0.0069 (7)0.0006 (7)0.0056 (7)
C30.0442 (12)0.0476 (12)0.0755 (15)0.0130 (9)0.0049 (11)0.0249 (11)
C40.0528 (13)0.0516 (13)0.0778 (16)0.0087 (10)0.0017 (11)0.0356 (11)
C50.0365 (10)0.0503 (12)0.0627 (13)0.0071 (9)0.0080 (9)0.0246 (10)
C60.0277 (9)0.0465 (11)0.0408 (10)0.0121 (8)0.0068 (7)0.0093 (8)
C70.0272 (8)0.0311 (8)0.0327 (8)0.0059 (7)0.0008 (7)0.0116 (7)
C80.0251 (8)0.0325 (8)0.0331 (8)0.0065 (7)0.0037 (6)0.0122 (7)
C90.0351 (10)0.0434 (10)0.0412 (10)0.0068 (8)0.0134 (8)0.0070 (8)
C100.0505 (11)0.0438 (10)0.0316 (9)0.0081 (9)0.0064 (8)0.0085 (8)
C110.0384 (10)0.0388 (9)0.0348 (9)0.0073 (8)0.0041 (8)0.0121 (7)
C120.0268 (9)0.0444 (10)0.0365 (9)0.0113 (8)0.0026 (7)0.0138 (8)
C130.0350 (10)0.0499 (11)0.0556 (12)0.0067 (9)0.0013 (9)0.0116 (9)
C140.0373 (11)0.0523 (13)0.0772 (16)0.0003 (9)0.0113 (11)0.0038 (11)
C150.0576 (14)0.0582 (14)0.0522 (13)0.0084 (11)0.0176 (11)0.0050 (11)
C160.0562 (13)0.0429 (11)0.0398 (10)0.0100 (9)0.0091 (9)0.0005 (8)
C170.0877 (19)0.0659 (15)0.0296 (10)0.0140 (14)0.0078 (11)0.0014 (9)
C180.0849 (18)0.0659 (15)0.0326 (10)0.0115 (13)0.0107 (11)0.0096 (10)
C190.0589 (13)0.0445 (11)0.0364 (10)0.0150 (10)0.0125 (9)0.0125 (8)
C200.0552 (13)0.0636 (14)0.0526 (12)0.0130 (11)0.0249 (11)0.0261 (10)
C210.0379 (11)0.0710 (15)0.0595 (13)0.0040 (10)0.0136 (10)0.0274 (11)
C220.0320 (10)0.0594 (12)0.0453 (11)0.0054 (9)0.0049 (8)0.0192 (9)
C230.0403 (10)0.0333 (9)0.0329 (9)0.0099 (8)0.0004 (7)0.0045 (7)
C240.0399 (10)0.0355 (9)0.0319 (9)0.0112 (8)0.0058 (7)0.0093 (7)
Geometric parameters (Å, º) top
Mn1—O12.0868 (14)C5—H5A0.9300
Mn1—O32.0975 (13)C7—C111.380 (2)
Mn1—N42.2627 (15)C7—C81.416 (2)
Mn1—N32.2822 (15)C7—C121.514 (2)
Mn1—S12.6067 (6)C9—C101.350 (3)
Mn1—S22.6347 (5)C9—H9A0.9300
S1—C21.687 (2)C10—C111.391 (3)
S2—C81.7104 (17)C10—H10A0.9300
O1—C61.254 (2)C11—H11A0.9300
O2—C61.232 (2)C13—C141.394 (3)
O3—C121.253 (2)C13—H13A0.9300
O4—C121.243 (2)C14—C151.356 (4)
N1—C31.345 (3)C14—H14A0.9300
N1—C21.361 (2)C15—C161.409 (3)
N1—H1A0.8600C15—H15A0.9300
N2—C91.350 (2)C16—C231.406 (3)
N2—C81.357 (2)C16—C171.433 (3)
N2—H2A0.8600C17—C181.349 (4)
N3—C131.326 (3)C17—H17A0.9300
N3—C231.359 (2)C18—C191.417 (3)
N4—C221.329 (2)C18—H18A0.9300
N4—C241.349 (2)C19—C201.408 (3)
C1—C51.375 (3)C19—C241.409 (3)
C1—C21.417 (2)C20—C211.352 (3)
C1—C61.506 (2)C20—H20A0.9300
C3—C41.352 (3)C21—C221.388 (3)
C3—H3A0.9300C21—H21A0.9300
C4—C51.387 (3)C22—H22A0.9300
C4—H4A0.9300C23—C241.440 (3)
O1—Mn1—O3108.58 (6)N2—C8—C7115.82 (15)
O1—Mn1—N4157.47 (6)N2—C8—S2117.91 (12)
O3—Mn1—N489.03 (6)C7—C8—S2126.25 (13)
O1—Mn1—N392.51 (6)C10—C9—N2120.07 (16)
O3—Mn1—N3157.48 (6)C10—C9—H9A120.0
N4—Mn1—N372.80 (5)N2—C9—H9A120.0
O1—Mn1—S184.17 (4)C9—C10—C11118.06 (17)
O3—Mn1—S193.10 (4)C9—C10—H10A121.0
N4—Mn1—S180.87 (4)C11—C10—H10A121.0
N3—Mn1—S196.91 (4)C7—C11—C10121.77 (16)
O1—Mn1—S296.30 (4)C7—C11—H11A119.1
O3—Mn1—S283.86 (4)C10—C11—H11A119.1
N4—Mn1—S299.54 (4)O4—C12—O3124.89 (17)
N3—Mn1—S286.13 (4)O4—C12—C7116.47 (16)
S1—Mn1—S2176.912 (18)O3—C12—C7118.57 (16)
C2—S1—Mn1107.54 (6)N3—C13—C14122.4 (2)
C8—S2—Mn1100.09 (6)N3—C13—H13A118.8
C6—O1—Mn1138.96 (12)C14—C13—H13A118.8
C12—O3—Mn1135.54 (11)C15—C14—C13119.5 (2)
C3—N1—C2125.06 (17)C15—C14—H14A120.3
C3—N1—H1A117.5C13—C14—H14A120.3
C2—N1—H1A117.5C14—C15—C16120.4 (2)
C9—N2—C8124.92 (15)C14—C15—H15A119.8
C9—N2—H2A117.5C16—C15—H15A119.8
C8—N2—H2A117.5C23—C16—C15116.3 (2)
C13—N3—C23118.40 (17)C23—C16—C17119.1 (2)
C13—N3—Mn1126.38 (14)C15—C16—C17124.6 (2)
C23—N3—Mn1115.22 (12)C18—C17—C16121.4 (2)
C22—N4—C24118.14 (16)C18—C17—H17A119.3
C22—N4—Mn1125.20 (12)C16—C17—H17A119.3
C24—N4—Mn1116.64 (12)C17—C18—C19121.1 (2)
C5—C1—C2119.49 (16)C17—C18—H18A119.4
C5—C1—C6116.59 (16)C19—C18—H18A119.4
C2—C1—C6123.92 (16)C20—C19—C24117.10 (18)
N1—C2—C1115.39 (17)C20—C19—C18123.7 (2)
N1—C2—S1115.66 (14)C24—C19—C18119.2 (2)
C1—C2—S1128.81 (13)C21—C20—C19119.64 (19)
N1—C3—C4120.12 (19)C21—C20—H20A120.2
N1—C3—H3A119.9C19—C20—H20A120.2
C4—C3—H3A119.9C20—C21—C22119.6 (2)
C3—C4—C5118.0 (2)C20—C21—H21A120.2
C3—C4—H4A121.0C22—C21—H21A120.2
C5—C4—H4A121.0N4—C22—C21122.91 (19)
C1—C5—C4121.8 (2)N4—C22—H22A118.5
C1—C5—H5A119.1C21—C22—H22A118.5
C4—C5—H5A119.1N3—C23—C16122.99 (18)
O2—C6—O1125.14 (17)N3—C23—C24118.00 (15)
O2—C6—C1115.33 (18)C16—C23—C24119.01 (18)
O1—C6—C1119.43 (17)N4—C24—C19122.58 (18)
C11—C7—C8119.22 (15)N4—C24—C23117.32 (16)
C11—C7—C12118.48 (14)C19—C24—C23120.10 (17)
C8—C7—C12122.28 (14)
O1—Mn1—S1—C217.56 (8)C9—N2—C8—C73.7 (3)
O3—Mn1—S1—C290.82 (8)C9—N2—C8—S2178.04 (14)
N4—Mn1—S1—C2179.34 (8)C11—C7—C8—N22.6 (2)
N3—Mn1—S1—C2109.40 (8)C12—C7—C8—N2175.75 (15)
O1—Mn1—S2—C866.71 (8)C11—C7—C8—S2179.31 (13)
O3—Mn1—S2—C841.38 (7)C12—C7—C8—S22.4 (2)
N4—Mn1—S2—C8129.35 (7)Mn1—S2—C8—N2139.27 (12)
N3—Mn1—S2—C8158.82 (7)Mn1—S2—C8—C742.63 (16)
O3—Mn1—O1—C6110.0 (2)C8—N2—C9—C101.3 (3)
N4—Mn1—O1—C629.8 (3)N2—C9—C10—C112.1 (3)
N3—Mn1—O1—C678.0 (2)C8—C7—C11—C100.7 (3)
S1—Mn1—O1—C618.7 (2)C12—C7—C11—C10179.05 (17)
S2—Mn1—O1—C6164.4 (2)C9—C10—C11—C73.1 (3)
O1—Mn1—O3—C1282.40 (19)Mn1—O3—C12—O4149.82 (16)
N4—Mn1—O3—C12111.92 (19)Mn1—O3—C12—C733.4 (3)
N3—Mn1—O3—C1276.3 (2)C11—C7—C12—O447.6 (2)
S1—Mn1—O3—C12167.29 (18)C8—C7—C12—O4130.75 (18)
S2—Mn1—O3—C1212.21 (18)C11—C7—C12—O3129.52 (18)
O1—Mn1—N3—C1316.56 (16)C8—C7—C12—O352.2 (2)
O3—Mn1—N3—C13143.27 (15)C23—N3—C13—C140.2 (3)
N4—Mn1—N3—C13179.17 (16)Mn1—N3—C13—C14179.96 (15)
S1—Mn1—N3—C13100.99 (15)N3—C13—C14—C151.1 (3)
S2—Mn1—N3—C1379.59 (15)C13—C14—C15—C160.9 (4)
O1—Mn1—N3—C23163.68 (12)C14—C15—C16—C230.1 (3)
O3—Mn1—N3—C2336.5 (2)C14—C15—C16—C17179.9 (2)
N4—Mn1—N3—C231.07 (12)C23—C16—C17—C182.3 (4)
S1—Mn1—N3—C2379.25 (12)C15—C16—C17—C18177.7 (2)
S2—Mn1—N3—C23100.17 (12)C16—C17—C18—C190.7 (4)
O1—Mn1—N4—C22126.74 (18)C17—C18—C19—C20179.2 (2)
O3—Mn1—N4—C2215.55 (16)C17—C18—C19—C241.5 (3)
N3—Mn1—N4—C22177.95 (17)C24—C19—C20—C210.8 (3)
S1—Mn1—N4—C2277.74 (15)C18—C19—C20—C21178.5 (2)
S2—Mn1—N4—C2299.16 (15)C19—C20—C21—C220.4 (4)
O1—Mn1—N4—C2451.5 (2)C24—N4—C22—C210.3 (3)
O3—Mn1—N4—C24166.18 (12)Mn1—N4—C22—C21178.51 (16)
N3—Mn1—N4—C240.32 (12)C20—C21—C22—N40.7 (4)
S1—Mn1—N4—C24100.53 (12)C13—N3—C23—C160.9 (3)
S2—Mn1—N4—C2482.57 (12)Mn1—N3—C23—C16178.93 (14)
C3—N1—C2—C12.9 (3)C13—N3—C23—C24178.52 (16)
C3—N1—C2—S1173.17 (17)Mn1—N3—C23—C241.7 (2)
C5—C1—C2—N13.4 (3)C15—C16—C23—N31.0 (3)
C6—C1—C2—N1177.32 (16)C17—C16—C23—N3178.98 (18)
C5—C1—C2—S1172.10 (15)C15—C16—C23—C24178.36 (18)
C6—C1—C2—S17.2 (3)C17—C16—C23—C241.7 (3)
Mn1—S1—C2—N1154.39 (12)C22—N4—C24—C191.5 (3)
Mn1—S1—C2—C130.14 (18)Mn1—N4—C24—C19179.91 (14)
C2—N1—C3—C41.3 (3)C22—N4—C24—C23178.83 (17)
N1—C3—C4—C50.0 (4)Mn1—N4—C24—C230.4 (2)
C2—C1—C5—C42.4 (3)C20—C19—C24—N41.8 (3)
C6—C1—C5—C4178.2 (2)C18—C19—C24—N4177.53 (18)
C3—C4—C5—C10.7 (4)C20—C19—C24—C23178.59 (18)
Mn1—O1—C6—O2135.3 (2)C18—C19—C24—C232.1 (3)
Mn1—O1—C6—C148.4 (3)N3—C23—C24—N41.4 (2)
C5—C1—C6—O230.9 (3)C16—C23—C24—N4179.16 (16)
C2—C1—C6—O2148.4 (2)N3—C23—C24—C19178.88 (16)
C5—C1—C6—O1145.71 (19)C16—C23—C24—C190.5 (3)
C2—C1—C6—O135.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.861.862.654 (2)152
N2—H2A···O4ii0.862.002.7476 (19)145
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Mn(C6H4NO2S)2(C12H8N2)]
Mr543.47
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.2369 (7), 11.0966 (12), 15.1290 (17)
α, β, γ (°)105.177 (6), 90.079 (5), 102.429 (5)
V3)1142.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.43 × 0.09 × 0.07
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.918, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
16022, 4600, 3945
Rint0.020
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.093, 1.06
No. of reflections4600
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.45

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.861.862.654 (2)152.2
N2—H2A···O4ii0.862.002.7476 (19)145.1
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Acknowledgements

The author is grateful to the projects of the Central Radio and Television University for financial support of this project (No. GEQ1621).

References

First citationBröll, D., Kaul, C., Krämmer, A., Krämmer, P., Richter, T., Jung, M., Vogel, H. & Zehner, P. (1999). Angew. Chem. Int. Ed. 38, 2998–3014.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMa, C., Jiang, Q., Zhang, R. F. & Wang, D. Q. (2003). Dalton Trans. pp. 2975–2978.  Web of Science CSD CrossRef Google Scholar
First citationSaleh, M. S., Kamal, A. I., Abu-Bakr, M. S. & Hashem, E. Y. (1996). Analyst, 35, 69–69.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZachariadis, P. C., Hadjikakou, S. K., Hadjiliadis, N., Michaelides, A., Skoulika, S., Yang, M. & Yu, X. (2003). Inorg. Chim. Acta, 343, 361–365.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds