organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,5,8a-Tri­phenyl­perhydro­pyrimido[4,5-d]pyrimidine-2,7-dione monohydrate

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: yulinzhu2002@yahoo.com.cn

(Received 25 April 2010; accepted 25 May 2010; online 29 May 2010)

The title compound, C24H22N4O2·H2O, was synthesized by the trimethyl­chloro­silane-catalysed reaction between urea, benzaldehyde and acetophenone. The organic mol­ecule comprises two fused tetra­hydro­pyrimidinone rings with phenyl substituents at the 4- and 5-positions on the tetra­hydro­pyrimidinone rings and a third phenyl substituent at the ring junction 8-position. The 4- and 5-substituted phenyl rings are inclined at a dihedral angle of 22.72 (11)° to one another and make angles of 47.95 (7) and 65.76 (7)° with the third phenyl substituent. In the crystal structure, inter­molecular N—H⋯O contacts link pyrimido[4,5-d]pyrimidine mol­ecules into centrosymmetric dimers. Additional N—H⋯O and O—H⋯O hydrogen bonds involving the water mol­ecule generate a three-dimensional network.

Related literature

For the therapeutic and pharmacological properties of pyrimidopyrimidines, see: Agarwal et al. (2005[Agarwal, A., Srivastava, K., Puri, S. K., Sinha, S. & Chauhan, P. M. S. (2005). Bioorg. Med. Chem. Lett. 15, 5218-5221.]); Gangjee et al. (2005[Gangjee, A., Zeng, Y., McGuire, J. J. & Kisliuk, R. L. (2005). J. Med. Chem. 48, 5329-5336.]). For the synthesis of related compounds, see: Shi et al. (2007[Shi, F., Jia, R., Zhang, X., Tu, S., Yan, S., Zhang, Y., Jiang, B., Zhang, J. & Yao, C. (2007). Synthesis, pp. 2782-2791.]); Zhu et al. (2005[Zhu, Y., Huang, S. & Pan, Y. (2005). Eur. J. Org. Chem. pp. 2354-2367.]). For reference bond-length data, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C24H22N4O2·H2O

  • Mr = 416.47

  • Monoclinic, P 21 /c

  • a = 11.3150 (2) Å

  • b = 17.4935 (3) Å

  • c = 10.5794 (2) Å

  • β = 94.731 (1)°

  • V = 2086.94 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.30 × 0.15 × 0.15 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.977, Tmax = 0.981

  • 18167 measured reflections

  • 3768 independent reflections

  • 2835 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.110

  • S = 1.04

  • 3768 reflections

  • 305 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H5⋯O1i 0.87 (2) 2.05 (2) 2.9098 (19) 169.5 (18)
N2—H24⋯O2ii 0.862 (19) 2.16 (2) 2.9774 (19) 157.9 (16)
N3—H4⋯O3ii 0.93 (2) 1.87 (2) 2.787 (2) 168.1 (18)
O3—H1⋯O1iii 0.94 (3) 1.88 (3) 2.747 (2) 152 (3)
O3—H2⋯O2 0.87 (3) 1.99 (3) 2.751 (2) 146 (2)
Symmetry codes: (i) -x+1, -y, -z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x, y, z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyrimidopyrimidine compounds have recently been paid much attention because of their therapeutic and pharmacological properties (Agarwal et al., 2005; Gangjee et al., 2005). As a part of our studies on the synthesis of the Biginelli-type compounds (Zhu et al., 2005), the title compound was synthesized by a one-pot three-component reaction between acetophenone, urea and benzaldehyde in presence of trimethylchlorosilane as a catalyst in a yield of 86% (Fig. 1) (Shi et al., 2007).

The bond lengths and angles in the molecule are normal (Allen et al., 1987). The asymmetric unit contains a pyrimidopyrimidine molecule and a solvate water molecule (Fig. 2). The organic molecule comprises two fused tetrahydropyrimidinone rings with phenyl substituents at the 4, and 5 positions on the tetrahydropyrimidinone rings and a third phenyl substituent at the ring junction 8 position. The 4- and 5- substituted phenyl rings are inclined at a dihedral angle of 22.72 (0.11) to one another and make angles of 47.95(0.07) and 65.76(0.07) with the third phenyl substituent.The molecules in the structure are linked via intermolecular N1—H5···O1 and N2—H24···O2 hydrogen bonds. In addition, the molecule is connected to the water molecule by N3—H4···O3, O3—H1···O1 and O3—H2···O2 hydrogen bonds which generate a three dimensional network (Fig. 3).

Related literature top

For the therapeutic and pharmacological properties of pyrimidopyrimidines, see: Agarwal et al. (2005); Gangjee et al. (2005). For the synthesis of related compounds, see: Shi et al. (2007); Zhu et al. (2005). For reference bond-length data, see Allen et al. (1987).

Experimental top

Acetophenone (0.6 g, 5.0 mmol), urea (0.39 g, 6.5 mmol), benzaldehyde (0.53 g, 5.0 mmol), dimethyl sulfoxide (2.5 ml) and acetonitrile (5.0 ml) were mixed in a 25 ml flask and trimethylchlorosilane (0.54 g, 5.0 mmol) was added dropwise at room temperature (Fig. 1). Then the reaction mixture was stirred under 80°C for 5-6 h while a white precipitate was developing. The product was isolated by filtration through a Büchner funnel and washed first with water, then ethanol. The product was then dried to give a crystalline powder. Colourless, block-shaped single crystals of the title compound were obtained by slow evaporation from ethanol at room temperature.

Refinement top

The H atoms bound to C were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.98 Å and Uiso =1.2 or 1.5Ueq(parent atom). H atoms bound to the N and water O atoms were found in a difference map and refined freely with isotropic displacement parameters.

Structure description top

Pyrimidopyrimidine compounds have recently been paid much attention because of their therapeutic and pharmacological properties (Agarwal et al., 2005; Gangjee et al., 2005). As a part of our studies on the synthesis of the Biginelli-type compounds (Zhu et al., 2005), the title compound was synthesized by a one-pot three-component reaction between acetophenone, urea and benzaldehyde in presence of trimethylchlorosilane as a catalyst in a yield of 86% (Fig. 1) (Shi et al., 2007).

The bond lengths and angles in the molecule are normal (Allen et al., 1987). The asymmetric unit contains a pyrimidopyrimidine molecule and a solvate water molecule (Fig. 2). The organic molecule comprises two fused tetrahydropyrimidinone rings with phenyl substituents at the 4, and 5 positions on the tetrahydropyrimidinone rings and a third phenyl substituent at the ring junction 8 position. The 4- and 5- substituted phenyl rings are inclined at a dihedral angle of 22.72 (0.11) to one another and make angles of 47.95(0.07) and 65.76(0.07) with the third phenyl substituent.The molecules in the structure are linked via intermolecular N1—H5···O1 and N2—H24···O2 hydrogen bonds. In addition, the molecule is connected to the water molecule by N3—H4···O3, O3—H1···O1 and O3—H2···O2 hydrogen bonds which generate a three dimensional network (Fig. 3).

For the therapeutic and pharmacological properties of pyrimidopyrimidines, see: Agarwal et al. (2005); Gangjee et al. (2005). For the synthesis of related compounds, see: Shi et al. (2007); Zhu et al. (2005). For reference bond-length data, see Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Trimethylchlorosilane (TMSCl) catalyzed synthesis of the title compound.
[Figure 2] Fig. 2. View of the title compound showing the atom–labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 3] Fig. 3. The crystal packing of the title compound (I).
4,5,8a-Triphenylperhydropyrimido[4,5-d]pyrimidine-2,7-dione monohydrate top
Crystal data top
C24H22N4O2·H2OF(000) = 880.0
Mr = 416.47Dx = 1.326 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5618 reflections
a = 11.3150 (2) Åθ = 2.3–23.5°
b = 17.4935 (3) ŵ = 0.09 mm1
c = 10.5794 (2) ÅT = 298 K
β = 94.731 (1)°Block, colourless
V = 2086.94 (6) Å30.30 × 0.15 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
3768 independent reflections
Radiation source: fine-focus sealed tube2835 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scansθmax = 25.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1310
Tmin = 0.977, Tmax = 0.981k = 2020
18167 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.5316P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3768 reflectionsΔρmax = 0.25 e Å3
305 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0066 (11)
Crystal data top
C24H22N4O2·H2OV = 2086.94 (6) Å3
Mr = 416.47Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.3150 (2) ŵ = 0.09 mm1
b = 17.4935 (3) ÅT = 298 K
c = 10.5794 (2) Å0.30 × 0.15 × 0.15 mm
β = 94.731 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
3768 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2835 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.981Rint = 0.035
18167 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.25 e Å3
3768 reflectionsΔρmin = 0.20 e Å3
305 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.36015 (14)0.01198 (9)0.26268 (15)0.0391 (4)
H70.40450.04190.32910.047*
C20.23967 (14)0.12916 (9)0.20681 (14)0.0373 (4)
C30.39979 (15)0.08608 (9)0.07274 (15)0.0425 (4)
C40.23326 (14)0.04423 (9)0.24437 (14)0.0372 (4)
H80.19030.01650.17430.045*
C50.16508 (15)0.03406 (9)0.36401 (14)0.0419 (4)
H60.18530.01690.39750.050*
C60.26422 (15)0.15513 (10)0.43883 (15)0.0436 (4)
C70.05756 (18)0.12622 (12)0.05276 (18)0.0632 (6)
H190.08970.08330.01660.076*
C80.0509 (2)0.15353 (16)0.0041 (2)0.0809 (7)
H200.09190.12860.06370.097*
C90.0985 (2)0.21711 (15)0.0550 (2)0.0752 (7)
H210.17190.23540.02250.090*
C100.03787 (19)0.25315 (12)0.1531 (2)0.0709 (6)
H220.06970.29680.18710.085*
C110.07081 (17)0.22610 (10)0.20371 (19)0.0544 (5)
H230.11120.25160.27130.065*
C120.11932 (15)0.16153 (9)0.15439 (14)0.0401 (4)
C130.36784 (14)0.07141 (9)0.30018 (16)0.0411 (4)
C140.33752 (17)0.12905 (10)0.2150 (2)0.0562 (5)
H90.30920.11710.13240.067*
C150.3491 (2)0.20481 (12)0.2519 (3)0.0792 (7)
H120.32740.24330.19400.095*
C160.3920 (2)0.22366 (14)0.3727 (3)0.0882 (9)
H130.40060.27470.39640.106*
C170.42204 (19)0.16715 (15)0.4581 (3)0.0788 (7)
H110.45120.17950.54030.095*
C180.40914 (17)0.09161 (12)0.42245 (19)0.0594 (5)
H100.42860.05340.48170.071*
C190.0248 (2)0.02385 (13)0.26918 (19)0.0676 (6)
H140.02070.06400.24230.081*
C200.03073 (16)0.03569 (10)0.33765 (15)0.0461 (4)
C210.03979 (18)0.09298 (11)0.38007 (19)0.0597 (5)
H180.00560.13270.42880.072*
C220.1615 (2)0.09177 (16)0.3504 (3)0.0835 (8)
H170.20780.13100.37920.100*
C230.2142 (2)0.0342 (2)0.2799 (3)0.0919 (9)
H160.29560.03470.25890.110*
C240.1464 (2)0.02467 (18)0.2401 (2)0.0863 (8)
H150.18190.06500.19390.104*
N10.41552 (14)0.02324 (9)0.14448 (14)0.0510 (4)
N20.32026 (12)0.13779 (8)0.10666 (13)0.0413 (4)
N30.28885 (13)0.17073 (8)0.31879 (12)0.0438 (4)
N40.20999 (14)0.08804 (9)0.45970 (14)0.0523 (4)
O10.45673 (11)0.09641 (7)0.02172 (11)0.0588 (4)
O20.29450 (12)0.19940 (7)0.52711 (11)0.0574 (4)
O30.33428 (16)0.17446 (9)0.78386 (16)0.0704 (4)
H40.3149 (17)0.2203 (12)0.3069 (18)0.065 (6)*
H240.3154 (16)0.1796 (11)0.0634 (17)0.053 (5)*
H50.4604 (17)0.0120 (11)0.1161 (18)0.059 (6)*
H30.1959 (18)0.0816 (12)0.538 (2)0.068 (6)*
H20.348 (2)0.1705 (15)0.705 (3)0.105 (10)*
H10.396 (3)0.1510 (18)0.834 (3)0.134 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0430 (10)0.0364 (9)0.0385 (8)0.0023 (7)0.0078 (7)0.0025 (7)
C20.0451 (10)0.0350 (9)0.0329 (8)0.0041 (7)0.0102 (7)0.0003 (7)
C30.0454 (10)0.0415 (10)0.0419 (9)0.0079 (8)0.0128 (8)0.0058 (7)
C40.0441 (10)0.0349 (9)0.0337 (8)0.0029 (7)0.0087 (7)0.0011 (7)
C50.0520 (11)0.0367 (9)0.0385 (9)0.0022 (8)0.0129 (8)0.0026 (7)
C60.0462 (10)0.0479 (10)0.0366 (9)0.0083 (8)0.0032 (7)0.0050 (8)
C70.0619 (13)0.0773 (14)0.0495 (11)0.0218 (11)0.0001 (10)0.0104 (10)
C80.0638 (15)0.112 (2)0.0636 (13)0.0229 (14)0.0117 (11)0.0120 (13)
C90.0529 (13)0.0919 (17)0.0806 (15)0.0226 (12)0.0045 (12)0.0150 (14)
C100.0604 (14)0.0555 (13)0.0983 (17)0.0202 (11)0.0158 (12)0.0005 (12)
C110.0513 (11)0.0439 (10)0.0688 (12)0.0075 (9)0.0096 (9)0.0036 (9)
C120.0429 (10)0.0420 (9)0.0368 (8)0.0048 (7)0.0118 (7)0.0049 (7)
C130.0367 (9)0.0379 (9)0.0501 (10)0.0040 (7)0.0120 (7)0.0069 (8)
C140.0589 (12)0.0446 (11)0.0673 (12)0.0003 (9)0.0175 (10)0.0022 (9)
C150.0836 (17)0.0423 (12)0.117 (2)0.0061 (11)0.0391 (15)0.0081 (13)
C160.0692 (16)0.0487 (14)0.153 (3)0.0128 (12)0.0479 (17)0.0400 (17)
C170.0558 (14)0.0805 (17)0.1011 (18)0.0085 (12)0.0119 (12)0.0540 (15)
C180.0563 (12)0.0601 (12)0.0611 (12)0.0037 (10)0.0009 (10)0.0207 (10)
C190.0715 (15)0.0681 (14)0.0666 (13)0.0176 (11)0.0253 (11)0.0107 (11)
C200.0529 (11)0.0454 (10)0.0422 (9)0.0032 (8)0.0172 (8)0.0054 (8)
C210.0588 (13)0.0535 (12)0.0699 (12)0.0029 (10)0.0246 (10)0.0060 (10)
C220.0590 (15)0.0851 (18)0.111 (2)0.0151 (13)0.0339 (14)0.0259 (16)
C230.0548 (15)0.132 (3)0.0900 (18)0.0157 (17)0.0133 (14)0.0343 (18)
C240.0707 (17)0.120 (2)0.0700 (15)0.0420 (16)0.0173 (13)0.0067 (14)
N10.0580 (10)0.0447 (9)0.0541 (9)0.0191 (8)0.0274 (8)0.0148 (7)
N20.0495 (9)0.0351 (8)0.0415 (8)0.0091 (7)0.0166 (6)0.0092 (6)
N30.0564 (9)0.0365 (8)0.0389 (8)0.0015 (7)0.0056 (6)0.0019 (6)
N40.0663 (11)0.0598 (10)0.0321 (8)0.0081 (8)0.0121 (7)0.0015 (7)
O10.0683 (9)0.0564 (8)0.0566 (8)0.0213 (6)0.0352 (7)0.0193 (6)
O20.0704 (9)0.0578 (8)0.0431 (7)0.0036 (7)0.0007 (6)0.0156 (6)
O30.0936 (12)0.0656 (10)0.0516 (9)0.0181 (8)0.0030 (8)0.0027 (7)
Geometric parameters (Å, º) top
C1—N11.458 (2)C11—H230.9300
C1—C131.512 (2)C13—C141.377 (2)
C1—C41.540 (2)C13—C181.384 (2)
C1—H70.9800C14—C151.385 (3)
C2—N31.461 (2)C14—H90.9300
C2—N21.462 (2)C15—C161.370 (4)
C2—C121.536 (2)C15—H120.9300
C2—C41.541 (2)C16—C171.363 (4)
C3—O11.2460 (18)C16—H130.9300
C3—N11.339 (2)C17—C181.379 (3)
C3—N21.345 (2)C17—H110.9300
C4—C51.546 (2)C18—H100.9300
C4—H80.9800C19—C241.385 (3)
C5—N41.446 (2)C19—C201.389 (3)
C5—C201.523 (2)C19—H140.9300
C5—H60.9800C20—C211.379 (3)
C6—O21.2397 (19)C21—C221.387 (3)
C6—N31.350 (2)C21—H180.9300
C6—N41.351 (2)C22—C231.362 (4)
C7—C81.376 (3)C22—H170.9300
C7—C121.379 (2)C23—C241.370 (4)
C7—H190.9300C23—H160.9300
C8—C91.366 (3)C24—H150.9300
C8—H200.9300N1—H50.87 (2)
C9—C101.351 (3)N2—H240.862 (19)
C9—H210.9300N3—H40.93 (2)
C10—C111.384 (3)N4—H30.86 (2)
C10—H220.9300O3—H20.87 (3)
C11—C121.377 (2)O3—H10.94 (3)
N1—C1—C13109.63 (13)C14—C13—C1121.94 (16)
N1—C1—C4107.75 (12)C18—C13—C1119.93 (16)
C13—C1—C4114.79 (13)C13—C14—C15120.3 (2)
N1—C1—H7108.2C13—C14—H9119.9
C13—C1—H7108.2C15—C14—H9119.9
C4—C1—H7108.2C16—C15—C14120.8 (2)
N3—C2—N2108.53 (13)C16—C15—H12119.6
N3—C2—C12112.11 (12)C14—C15—H12119.6
N2—C2—C12106.73 (12)C17—C16—C15119.6 (2)
N3—C2—C4107.08 (12)C17—C16—H13120.2
N2—C2—C4109.39 (12)C15—C16—H13120.2
C12—C2—C4112.92 (13)C16—C17—C18119.9 (2)
O1—C3—N1121.35 (15)C16—C17—H11120.0
O1—C3—N2121.18 (15)C18—C17—H11120.0
N1—C3—N2117.47 (14)C17—C18—C13121.4 (2)
C1—C4—C2108.80 (13)C17—C18—H10119.3
C1—C4—C5112.20 (12)C13—C18—H10119.3
C2—C4—C5111.06 (12)C24—C19—C20121.4 (2)
C1—C4—H8108.2C24—C19—H14119.3
C2—C4—H8108.2C20—C19—H14119.3
C5—C4—H8108.2C21—C20—C19117.78 (19)
N4—C5—C20113.82 (14)C21—C20—C5123.35 (17)
N4—C5—C4109.13 (13)C19—C20—C5118.87 (17)
C20—C5—C4113.95 (13)C20—C21—C22120.4 (2)
N4—C5—H6106.5C20—C21—H18119.8
C20—C5—H6106.5C22—C21—H18119.8
C4—C5—H6106.5C23—C22—C21121.2 (2)
O2—C6—N3121.10 (17)C23—C22—H17119.4
O2—C6—N4121.38 (15)C21—C22—H17119.4
N3—C6—N4117.46 (15)C22—C23—C24119.5 (2)
C8—C7—C12121.00 (19)C22—C23—H16120.2
C8—C7—H19119.5C24—C23—H16120.2
C12—C7—H19119.5C23—C24—C19119.7 (2)
C9—C8—C7120.2 (2)C23—C24—H15120.2
C9—C8—H20119.9C19—C24—H15120.2
C7—C8—H20119.9C3—N1—C1123.42 (14)
C10—C9—C8119.4 (2)C3—N1—H5116.2 (13)
C10—C9—H21120.3C1—N1—H5120.4 (13)
C8—C9—H21120.3C3—N2—C2126.51 (14)
C9—C10—C11121.1 (2)C3—N2—H24116.3 (12)
C9—C10—H22119.5C2—N2—H24117.1 (12)
C11—C10—H22119.5C6—N3—C2124.60 (15)
C12—C11—C10120.20 (19)C6—N3—H4114.1 (12)
C12—C11—H23119.9C2—N3—H4117.4 (12)
C10—C11—H23119.9C6—N4—C5126.24 (14)
C11—C12—C7118.07 (17)C6—N4—H3113.2 (14)
C11—C12—C2122.34 (15)C5—N4—H3120.2 (14)
C7—C12—C2119.58 (15)H2—O3—H1109 (3)
C14—C13—C18118.12 (17)
N1—C1—C4—C257.64 (16)C14—C15—C16—C171.0 (3)
C13—C1—C4—C2179.93 (13)C15—C16—C17—C180.1 (3)
N1—C1—C4—C5179.05 (13)C16—C17—C18—C131.1 (3)
C13—C1—C4—C556.63 (18)C14—C13—C18—C171.3 (3)
N3—C2—C4—C170.43 (15)C1—C13—C18—C17177.18 (17)
N2—C2—C4—C147.01 (16)C24—C19—C20—C212.3 (3)
C12—C2—C4—C1165.70 (12)C24—C19—C20—C5178.68 (18)
N3—C2—C4—C553.55 (17)N4—C5—C20—C2112.8 (2)
N2—C2—C4—C5170.99 (13)C4—C5—C20—C21113.21 (18)
C12—C2—C4—C570.32 (16)N4—C5—C20—C19166.15 (15)
C1—C4—C5—N473.88 (17)C4—C5—C20—C1967.8 (2)
C2—C4—C5—N448.15 (18)C19—C20—C21—C222.4 (3)
C1—C4—C5—C20157.68 (14)C5—C20—C21—C22178.66 (17)
C2—C4—C5—C2080.30 (17)C20—C21—C22—C230.4 (3)
C12—C7—C8—C90.9 (4)C21—C22—C23—C241.6 (4)
C7—C8—C9—C100.4 (4)C22—C23—C24—C191.7 (4)
C8—C9—C10—C110.9 (4)C20—C19—C24—C230.3 (3)
C9—C10—C11—C120.1 (3)O1—C3—N1—C1173.66 (17)
C10—C11—C12—C71.2 (3)N2—C3—N1—C16.2 (3)
C10—C11—C12—C2179.89 (17)C13—C1—N1—C3164.44 (16)
C8—C7—C12—C111.7 (3)C4—C1—N1—C338.9 (2)
C8—C7—C12—C2179.58 (19)O1—C3—N2—C2173.39 (16)
N3—C2—C12—C114.8 (2)N1—C3—N2—C26.7 (3)
N2—C2—C12—C11113.91 (17)N3—C2—N2—C3100.86 (18)
C4—C2—C12—C11125.86 (16)C12—C2—N2—C3138.12 (16)
N3—C2—C12—C7176.50 (16)C4—C2—N2—C315.7 (2)
N2—C2—C12—C764.79 (19)O2—C6—N3—C2169.06 (15)
C4—C2—C12—C755.4 (2)N4—C6—N3—C213.7 (2)
N1—C1—C13—C1447.6 (2)N2—C2—N3—C6155.76 (15)
C4—C1—C13—C1473.77 (19)C12—C2—N3—C686.60 (19)
N1—C1—C13—C18130.74 (17)C4—C2—N3—C637.8 (2)
C4—C1—C13—C18107.85 (18)O2—C6—N4—C5176.39 (16)
C18—C13—C14—C150.3 (3)N3—C6—N4—C56.4 (3)
C1—C13—C14—C15178.08 (17)C20—C5—N4—C6103.71 (19)
C13—C14—C15—C160.8 (3)C4—C5—N4—C624.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H5···O1i0.87 (2)2.05 (2)2.9098 (19)169.5 (18)
N2—H24···O2ii0.862 (19)2.16 (2)2.9774 (19)157.9 (16)
N3—H4···O3ii0.93 (2)1.87 (2)2.787 (2)168.1 (18)
O3—H1···O1iii0.94 (3)1.88 (3)2.747 (2)152 (3)
O3—H2···O20.87 (3)1.99 (3)2.751 (2)146 (2)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z1/2; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC24H22N4O2·H2O
Mr416.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.3150 (2), 17.4935 (3), 10.5794 (2)
β (°) 94.731 (1)
V3)2086.94 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.15 × 0.15
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.977, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
18167, 3768, 2835
Rint0.035
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.110, 1.04
No. of reflections3768
No. of parameters305
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.20

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H5···O1i0.87 (2)2.05 (2)2.9098 (19)169.5 (18)
N2—H24···O2ii0.862 (19)2.16 (2)2.9774 (19)157.9 (16)
N3—H4···O3ii0.93 (2)1.87 (2)2.787 (2)168.1 (18)
O3—H1···O1iii0.94 (3)1.88 (3)2.747 (2)152 (3)
O3—H2···O20.87 (3)1.99 (3)2.751 (2)146 (2)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z1/2; (iii) x, y, z+1.
 

Acknowledgements

The authors thank South China Normal University for financial support (grants SCNU033038 and SCNU524002).

References

First citationAgarwal, A., Srivastava, K., Puri, S. K., Sinha, S. & Chauhan, P. M. S. (2005). Bioorg. Med. Chem. Lett. 15, 5218–5221.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGangjee, A., Zeng, Y., McGuire, J. J. & Kisliuk, R. L. (2005). J. Med. Chem. 48, 5329–5336.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, F., Jia, R., Zhang, X., Tu, S., Yan, S., Zhang, Y., Jiang, B., Zhang, J. & Yao, C. (2007). Synthesis, pp. 2782–2791.  Google Scholar
First citationZhu, Y., Huang, S. & Pan, Y. (2005). Eur. J. Org. Chem. pp. 2354–2367.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds