metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[1-(2-Oxido­benzyl­­idene)-4-phenyl­thio­semicarbazidato-κ3O,N1,S](pyridine-κN)copper(II)

aInstitute of General and Inorganic Chemistry, NAS Ukraine, Kyiv, prosp. Palladina 32/34, 03680 Ukraine
*Correspondence e-mail: orysyk@ionc.kiev.ua

(Received 29 April 2010; accepted 11 May 2010; online 19 May 2010)

In the structure of the title compound, [Cu(C14H11N3OS)(C5H5N)], the CuII atom exhibits a slightly distorted square-planar CuN2OS coordination polyhedron consisting of a phenyl O, an azomethine N and a thio­amide S atom from the tridentate thio­semicarbazonate dianion, and the N atom of a pyridine mol­ecule. The thio­semicarbazonate ligand exists in the thiol tautomeric form as an E isomer. Rotational disorder of the pyridine and phenyl rings in a 1:1 ratio of the respective components is observed. An extensive network of weak N—H⋯S, C—H⋯O, C—H⋯N and C—H⋯S hydrogen-bonding inter­actions consolidates the structure.

Related literature

For general background to thio­semicarbazonates, see: Garoufilis et al. (2009[Garoufilis, A., Hadjikakou, S. K. & Hadjiliadis, N. (2009). Coord. Chem. Rev. 253, 1384-1397.]); Stanojkovic et al. (2010[Stanojkovic, T. P., Kovala-Demertzi, D., Primikyri, A., Garcia-Santo, I., Castineiras, A., Juranic, Z. & Demertzis, M. (2010). J. Inorg. Biochem. 104, 467-476.]); Kaur et al. (2007[Kaur, V., Aulakh, J. S. & Malik, A. K. (2007). Anal. Chim. Acta, 603, 44-50.]). For related structures, see: John et al. (2002[John, R. P., Sreekanth, A., Kurup, M. R. P. & Mobin, S. M. (2002). Polyhedron, 21, 2515-2521.]); Naik et al. (2003[Naik, A. D., Reddy, P. A. N., Nethaji, M. & Chakravarty, A. R. (2003). Inorg. Chim. Acta, 349, 149-158.]); Cao et al. (2007[Cao, Z.-Y., Deng, Z.-P. & Gao, S. (2007). Acta Cryst. E63, m1961-m1962.]); Seena & Kurup (2008[Seena, E. B. & Kurup, M. R. P. (2008). Spectrochim. Acta Part A, 69, 726-732.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C14H11N3OS)(C5H5N)]

  • Mr = 411.96

  • Monoclinic, P 21 /n

  • a = 18.2958 (17) Å

  • b = 4.5610 (5) Å

  • c = 20.473 (2) Å

  • β = 93.602 (7)°

  • V = 1705.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.42 mm−1

  • T = 173 K

  • 0.50 × 0.06 × 0.05 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.540, Tmax = 0.938

  • 19901 measured reflections

  • 3493 independent reflections

  • 2522 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.080

  • S = 1.02

  • 3493 reflections

  • 311 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.9126 (19)
Cu1—N1 1.926 (2)
Cu1—N4 2.010 (2)
Cu1—S1 2.2626 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯S1i 0.74 (3) 2.90 (3) 3.593 (3) 157 (3)
C10A—H10A⋯N2 0.95 2.28 2.852 (7) 118
C10B—H10B⋯N2 0.95 2.43 2.936 (7) 113
C14B—H14B⋯S1i 0.95 2.81 3.679 (6) 152
C15B—H15B⋯O1ii 0.95 2.40 3.339 (7) 169
C16A—H16A⋯O1iii 0.95 2.53 3.371 (7) 148
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y+1, z; (iii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

Thiosemicarbazones and their metal complexes attract constant scientific interest due to their antimicrobial, antifungal and antitumoral activities (Garoufilis et al., 2009; Stanojkovic et al., 2010). Moreover, some thiosemicarbazones are used as reagents for determination of Co(II), Ni(II), Cu(II) and Pd(II) by solid phase microextraction in HPLC (Kaur et al., 2007). Several crystal structures of salicylaldehyde (4)-phenylthiosemicarbazone metal complexes with Ni(II), Cu(II), Co(II) and Zn(II) have been reported previously (John et al., 2002; Naik et al., 2003; Cao et al., 2007; Seena & Kurup, 2008).

The title compound crystallizes with one molecule in the asymmetric unit (Fig. 1), which differs from the previously reported Ni compound (Cao et al., 2007) that crystallizes with two different molecules. The copper atom in the title structure exhibits a slightly distorted square-planar coordination with a mean deviation from the Cu1/O1/N1/S1/N4 plane of 0.0485 Å. The doubly deprotonated ligand molecule coordinates to the copper(II) atom in a tridentate manner via a phenyl oxygen, an azomethine nitrogen and a thioamide sulfur atom, creating five- and six-membered chelate metalla rings. The pyridine molecule completes the square-planar coordination environment of the Cu(II) atom. Values of Cu—O, Cu—N and Cu—S bond lengths are in a good agreement with related structures (Naik et al., 2003). The C8—S1 (1.749 (3) Å) and C8—N2 (1.299 (3) Å) bond lengths indicate the presence of the thiol tautomeric form of the thiosemicarbazone in the structure. The value of the torsion angle N1—N2—C8—N3 = -179.9 (2)° confirms the presence of the E-isomer for the coordinating ligand molecule.

The title structure contains several planar fragments. The major part Cu1/O1/N1/N2/S1/C1—C9 (denoted as plane A) has a mean deviation from the least squares plane of 0.023 Å. The disordered phenyl ring contains two planar fragments C9/C10A/C11A/C12/C13A/C14A (plane B) and C9/C10B/C11B/C12/C13B/C14B (plane C) with a mean deviation from the corresponding least squares planes of 0.026 and 0.020 Å, respectively. The dihedral angles between planes A/B, A/C and B/C are 17.00 (19)°, 26.3 (2)° and 43.1 (3)°. The mean deviations from the least squares planes for the disordered pyridine ring N4/C15A/C16A/C17/C18A/C19A (plane D) and N4/C15B/C16B/C17/C18B/C19B (plane E) amount to 0.0054 and 0.0329 Å, respectively, with a dihedral angle between planes D and E of 51.2 (3)°.

The crystal packing of the title compound (Fig. 2) is characterised by an alternating arrangement of disordered phenyl and pyridine rings in neighboring molecules (configuration A and B). An extensive network of weak N—H···S, C—H···O, C—H···N and C—H···S hydrogen bonding interactions additionally stabilizes the crystal structure (Table 2).

Related literature top

For general background to thiosemicarbazonates, see: Garoufilis et al. (2009); Stanojkovic et al. (2010); Kaur et al. (2007). For related structures, see: John et al. (2002); Naik et al. (2003); Cao et al. (2007); Seena & Kurup (2008).

Experimental top

20 ml (5x10-3 M) of an aqueous solution of copper acetate was stirred in a cone flask for 2 hours with a mixture that contained 10 ml (10-2 M) of an ethanolic solution of salicylaldehyde (4)-phenylthiosemicarbazone and 2 ml of pyridine. The resulting solution was left for 3 days in a dark place. As a result, brown needle-like crystals of title compound were isolated from the solution.

Refinement top

The structure refinement indicates rotational disorder of phenyl (C(9)—C(14)) and pyridine (C(15)—C19)N(4)) rings. For this reason, both positions for the atoms C(10), C(11), C(12), C(13), C(15), C(16), C(18) and C(19) were refined with occupancies of 0.5. All disordered ring atoms were refined anisotropically. The hydrogen atom bonded to N(3) was found from a difference Fourier map and was refined freely. All other hydrogen atoms were constrained geometrically and refined using a "riding model" on the parent atom with d(C—H) = 0.95 Å and Uiso(H) = 1.5Ueq(C).

Structure description top

Thiosemicarbazones and their metal complexes attract constant scientific interest due to their antimicrobial, antifungal and antitumoral activities (Garoufilis et al., 2009; Stanojkovic et al., 2010). Moreover, some thiosemicarbazones are used as reagents for determination of Co(II), Ni(II), Cu(II) and Pd(II) by solid phase microextraction in HPLC (Kaur et al., 2007). Several crystal structures of salicylaldehyde (4)-phenylthiosemicarbazone metal complexes with Ni(II), Cu(II), Co(II) and Zn(II) have been reported previously (John et al., 2002; Naik et al., 2003; Cao et al., 2007; Seena & Kurup, 2008).

The title compound crystallizes with one molecule in the asymmetric unit (Fig. 1), which differs from the previously reported Ni compound (Cao et al., 2007) that crystallizes with two different molecules. The copper atom in the title structure exhibits a slightly distorted square-planar coordination with a mean deviation from the Cu1/O1/N1/S1/N4 plane of 0.0485 Å. The doubly deprotonated ligand molecule coordinates to the copper(II) atom in a tridentate manner via a phenyl oxygen, an azomethine nitrogen and a thioamide sulfur atom, creating five- and six-membered chelate metalla rings. The pyridine molecule completes the square-planar coordination environment of the Cu(II) atom. Values of Cu—O, Cu—N and Cu—S bond lengths are in a good agreement with related structures (Naik et al., 2003). The C8—S1 (1.749 (3) Å) and C8—N2 (1.299 (3) Å) bond lengths indicate the presence of the thiol tautomeric form of the thiosemicarbazone in the structure. The value of the torsion angle N1—N2—C8—N3 = -179.9 (2)° confirms the presence of the E-isomer for the coordinating ligand molecule.

The title structure contains several planar fragments. The major part Cu1/O1/N1/N2/S1/C1—C9 (denoted as plane A) has a mean deviation from the least squares plane of 0.023 Å. The disordered phenyl ring contains two planar fragments C9/C10A/C11A/C12/C13A/C14A (plane B) and C9/C10B/C11B/C12/C13B/C14B (plane C) with a mean deviation from the corresponding least squares planes of 0.026 and 0.020 Å, respectively. The dihedral angles between planes A/B, A/C and B/C are 17.00 (19)°, 26.3 (2)° and 43.1 (3)°. The mean deviations from the least squares planes for the disordered pyridine ring N4/C15A/C16A/C17/C18A/C19A (plane D) and N4/C15B/C16B/C17/C18B/C19B (plane E) amount to 0.0054 and 0.0329 Å, respectively, with a dihedral angle between planes D and E of 51.2 (3)°.

The crystal packing of the title compound (Fig. 2) is characterised by an alternating arrangement of disordered phenyl and pyridine rings in neighboring molecules (configuration A and B). An extensive network of weak N—H···S, C—H···O, C—H···N and C—H···S hydrogen bonding interactions additionally stabilizes the crystal structure (Table 2).

For general background to thiosemicarbazonates, see: Garoufilis et al. (2009); Stanojkovic et al. (2010); Kaur et al. (2007). For related structures, see: John et al. (2002); Naik et al. (2003); Cao et al. (2007); Seena & Kurup (2008).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Both positions of the disordered phenyl and pyridine rings are shown.
[Figure 2] Fig. 2. Crystal packing of title compound showing only the A position for the disordered phenyl and pyridine rings in a projection along the b axis. Dashed lines indicate hydrogen bonds.
[1-(2-Oxidobenzylidene)-4-phenylthiosemicarbazidato- κ3O,N1,S](pyridine-κN)copper(II) top
Crystal data top
[Cu(C14H11N3OS)(C5H5N)]F(000) = 844
Mr = 411.96Dx = 1.605 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2588 reflections
a = 18.2958 (17) Åθ = 2.2–23.9°
b = 4.5610 (5) ŵ = 1.42 mm1
c = 20.473 (2) ÅT = 173 K
β = 93.602 (7)°Needle, brown
V = 1705.1 (3) Å30.50 × 0.06 × 0.05 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3493 independent reflections
Radiation source: fine-focus sealed tube2522 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
Detector resolution: 8.33 pixels mm-1θmax = 26.4°, θmin = 1.5°
φ and ω scansh = 2222
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 55
Tmin = 0.540, Tmax = 0.938l = 2525
19901 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0237P)2 + 1.1058P]
where P = (Fo2 + 2Fc2)/3
3493 reflections(Δ/σ)max = 0.001
311 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Cu(C14H11N3OS)(C5H5N)]V = 1705.1 (3) Å3
Mr = 411.96Z = 4
Monoclinic, P21/nMo Kα radiation
a = 18.2958 (17) ŵ = 1.42 mm1
b = 4.5610 (5) ÅT = 173 K
c = 20.473 (2) Å0.50 × 0.06 × 0.05 mm
β = 93.602 (7)°
Data collection top
Bruker APEXII CCD
diffractometer
3493 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2522 reflections with I > 2σ(I)
Tmin = 0.540, Tmax = 0.938Rint = 0.078
19901 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.33 e Å3
3493 reflectionsΔρmin = 0.45 e Å3
311 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.428933 (18)0.04089 (8)0.687460 (17)0.02260 (12)
S10.34247 (4)0.37030 (18)0.71230 (4)0.0274 (2)
N10.46424 (12)0.0759 (5)0.77777 (11)0.0194 (5)
N20.43213 (12)0.2699 (5)0.82056 (11)0.0207 (6)
N30.33957 (14)0.6080 (6)0.82989 (13)0.0224 (6)
H3N0.3077 (15)0.674 (6)0.8115 (14)0.017 (9)*
N40.39751 (13)0.0530 (5)0.59166 (11)0.0223 (6)
O10.50312 (10)0.2308 (4)0.66541 (9)0.0253 (5)
C10.55353 (15)0.3487 (6)0.70570 (15)0.0217 (7)
C20.56305 (14)0.2790 (6)0.77319 (14)0.0200 (7)
C30.61943 (15)0.4170 (6)0.81158 (15)0.0251 (7)
H3A0.62570.36960.85680.030*
C40.66565 (16)0.6175 (7)0.78620 (16)0.0288 (8)
H4A0.70350.70720.81310.035*
C50.65588 (16)0.6865 (7)0.72001 (16)0.0306 (8)
H5A0.68740.82510.70160.037*
C60.60151 (16)0.5578 (7)0.68106 (15)0.0270 (7)
H6A0.59590.61060.63610.032*
C70.51859 (15)0.0705 (6)0.80498 (14)0.0214 (7)
H7A0.53010.03680.85030.026*
C80.37630 (15)0.4103 (6)0.79364 (14)0.0203 (7)
C90.35281 (15)0.6925 (6)0.89537 (13)0.0187 (6)
C120.37031 (17)0.8705 (7)1.02567 (15)0.0313 (8)
H12A0.37130.91941.07080.038*
C170.3627 (2)0.0996 (7)0.45900 (16)0.0404 (9)
H17A0.35150.11470.41320.048*
C10A0.3965 (3)0.5278 (16)0.9414 (3)0.0229 (15)0.50
H10A0.41900.35010.92920.027*0.50
C11A0.4055 (4)0.633 (2)1.0048 (4)0.029 (2)0.50
H11A0.43800.53201.03500.035*0.50
C13A0.3313 (3)1.0474 (15)0.9773 (3)0.0267 (14)0.50
H13A0.31201.23190.98920.032*0.50
C14A0.3216 (3)0.9506 (15)0.9135 (3)0.0238 (14)0.50
H14A0.29331.06300.88210.029*0.50
C15A0.4434 (3)0.1199 (15)0.5460 (3)0.0262 (15)0.50
H15A0.49320.15360.55980.031*0.50
C16A0.4238 (4)0.1436 (16)0.4804 (3)0.0291 (16)0.50
H16A0.45990.19670.45130.035*0.50
C18A0.3023 (3)0.0198 (13)0.5036 (3)0.0263 (14)0.50
H18A0.25300.01210.48790.032*0.50
C19A0.3251 (3)0.0019 (13)0.5681 (3)0.0226 (14)0.50
H19A0.29040.05680.59850.027*0.50
C10B0.4197 (4)0.6784 (15)0.9301 (3)0.0228 (15)0.50
H10B0.46150.61270.90900.027*0.50
C11B0.4269 (5)0.7590 (17)0.9955 (4)0.0270 (19)0.50
H11B0.47270.73471.01940.032*0.50
C13B0.2999 (3)0.8776 (14)0.9931 (3)0.0250 (14)0.50
H13B0.25830.93151.01600.030*0.50
C14B0.2924 (3)0.8055 (14)0.9280 (3)0.0226 (14)0.50
H14B0.24640.83130.90450.027*0.50
C15B0.4194 (3)0.2973 (15)0.5609 (3)0.0230 (14)0.50
H15B0.44360.44880.58570.028*0.50
C16B0.4073 (3)0.3304 (16)0.4944 (3)0.0259 (15)0.50
H16B0.42650.49280.47200.031*0.50
C18B0.3501 (3)0.1385 (13)0.4924 (3)0.0241 (14)0.50
H18B0.32950.30440.47010.029*0.50
C19B0.3662 (3)0.1547 (14)0.5595 (3)0.0258 (15)0.50
H19B0.35330.32720.58210.031*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02066 (19)0.0297 (2)0.0176 (2)0.00297 (17)0.00239 (14)0.00190 (17)
S10.0248 (4)0.0390 (5)0.0181 (4)0.0082 (4)0.0003 (3)0.0037 (4)
N10.0165 (12)0.0212 (13)0.0207 (14)0.0006 (11)0.0025 (10)0.0039 (11)
N20.0205 (13)0.0245 (14)0.0173 (14)0.0026 (11)0.0024 (11)0.0042 (11)
N30.0187 (14)0.0313 (16)0.0166 (14)0.0067 (12)0.0022 (12)0.0006 (12)
N40.0238 (13)0.0227 (14)0.0208 (14)0.0049 (12)0.0055 (11)0.0011 (12)
O10.0236 (11)0.0313 (12)0.0208 (11)0.0048 (10)0.0005 (9)0.0031 (10)
C10.0172 (15)0.0207 (16)0.0276 (18)0.0021 (13)0.0043 (13)0.0027 (14)
C20.0184 (15)0.0165 (15)0.0252 (17)0.0038 (12)0.0017 (13)0.0027 (13)
C30.0254 (16)0.0245 (17)0.0251 (17)0.0002 (14)0.0015 (13)0.0031 (14)
C40.0231 (16)0.0250 (18)0.038 (2)0.0038 (14)0.0031 (15)0.0021 (15)
C50.0280 (17)0.0256 (18)0.039 (2)0.0064 (15)0.0084 (16)0.0021 (16)
C60.0297 (17)0.0267 (17)0.0255 (17)0.0006 (14)0.0081 (14)0.0019 (14)
C70.0213 (15)0.0228 (16)0.0198 (16)0.0038 (13)0.0010 (13)0.0040 (13)
C80.0177 (15)0.0228 (17)0.0208 (16)0.0019 (13)0.0049 (12)0.0010 (13)
C90.0204 (15)0.0203 (16)0.0154 (16)0.0019 (13)0.0017 (12)0.0016 (13)
C120.0372 (19)0.036 (2)0.0198 (17)0.0057 (16)0.0021 (15)0.0090 (15)
C170.078 (3)0.028 (2)0.0147 (18)0.014 (2)0.0007 (19)0.0043 (15)
C10A0.026 (4)0.025 (4)0.017 (4)0.007 (3)0.001 (3)0.001 (3)
C11A0.020 (4)0.047 (6)0.019 (4)0.005 (4)0.003 (3)0.000 (4)
C13A0.028 (3)0.021 (3)0.032 (4)0.000 (3)0.007 (3)0.008 (3)
C14A0.025 (3)0.025 (4)0.022 (4)0.001 (3)0.002 (3)0.003 (3)
C15A0.020 (3)0.036 (4)0.023 (4)0.007 (3)0.006 (3)0.006 (3)
C16A0.036 (4)0.028 (4)0.024 (4)0.007 (3)0.007 (3)0.006 (3)
C18A0.025 (3)0.023 (4)0.029 (4)0.004 (3)0.009 (3)0.006 (3)
C19A0.019 (3)0.021 (4)0.028 (4)0.000 (3)0.007 (3)0.001 (3)
C10B0.023 (4)0.022 (4)0.025 (4)0.004 (3)0.009 (3)0.002 (3)
C11B0.024 (5)0.029 (5)0.028 (5)0.002 (3)0.009 (4)0.000 (4)
C13B0.024 (3)0.025 (4)0.026 (4)0.002 (3)0.006 (3)0.002 (3)
C14B0.020 (3)0.026 (4)0.022 (4)0.006 (3)0.002 (3)0.002 (3)
C15B0.020 (3)0.026 (4)0.023 (4)0.002 (3)0.001 (3)0.007 (3)
C16B0.026 (4)0.024 (4)0.028 (4)0.002 (3)0.002 (3)0.006 (3)
C18B0.027 (3)0.020 (3)0.025 (4)0.003 (3)0.002 (3)0.009 (3)
C19B0.030 (4)0.024 (4)0.024 (4)0.004 (3)0.011 (3)0.002 (3)
Geometric parameters (Å, º) top
Cu1—O11.9126 (19)C12—C11A1.344 (10)
Cu1—N11.926 (2)C12—C13B1.414 (7)
Cu1—N42.010 (2)C12—C13A1.433 (7)
Cu1—S12.2626 (8)C12—H12A0.9500
S1—C81.749 (3)C17—C16A1.191 (7)
N1—C71.294 (3)C17—C18B1.311 (7)
N1—N21.400 (3)C17—C16B1.491 (8)
N2—C81.299 (3)C17—C18A1.522 (7)
N3—C81.370 (4)C17—H17A0.9500
N3—C91.401 (4)C10A—C11A1.383 (10)
N3—H3N0.74 (3)C10A—H10A0.9500
N4—C19B1.270 (6)C11A—H11A0.9500
N4—C15A1.330 (6)C13A—C14A1.380 (8)
N4—C15B1.353 (7)C13A—H13A0.9500
N4—C19A1.403 (6)C14A—H14A0.9500
O1—C11.313 (3)C15A—C16A1.373 (9)
C1—C61.411 (4)C15A—H15A0.9500
C1—C21.418 (4)C16A—H16A0.9500
C2—C31.406 (4)C18A—C19A1.363 (8)
C2—C71.434 (4)C18A—H18A0.9500
C3—C41.370 (4)C19A—H19A0.9500
C3—H3A0.9500C10B—C11B1.387 (11)
C4—C51.392 (4)C10B—H10B0.9500
C4—H4A0.9500C11B—H11B0.9500
C5—C61.368 (4)C13B—C14B1.371 (8)
C5—H5A0.9500C13B—H13B0.9500
C6—H6A0.9500C14B—H14B0.9500
C7—H7A0.9500C15B—C16B1.374 (8)
C9—C14A1.369 (7)C15B—H15B0.9500
C9—C10B1.379 (7)C16B—H16B0.9500
C9—C10A1.413 (7)C18B—C19B1.388 (8)
C9—C14B1.424 (6)C18B—H18B0.9500
C12—C11B1.338 (9)C19B—H19B0.9500
O1—Cu1—N194.59 (9)C18B—C17—C16B116.1 (4)
O1—Cu1—N487.20 (9)C16A—C17—C18A121.2 (5)
N1—Cu1—N4172.99 (10)C16A—C17—H17A119.4
O1—Cu1—S1178.70 (7)C18B—C17—H17A122.7
N1—Cu1—S185.77 (7)C16B—C17—H17A120.4
N4—Cu1—S192.29 (7)C18A—C17—H17A119.4
C8—S1—Cu194.17 (10)C11A—C10A—C9118.1 (6)
C7—N1—N2113.4 (2)C11A—C10A—H10A121.0
C7—N1—Cu1124.9 (2)C9—C10A—H10A121.0
N2—N1—Cu1121.63 (17)C12—C11A—C10A123.1 (7)
C8—N2—N1113.3 (2)C12—C11A—H11A118.4
C8—N3—C9129.6 (3)C10A—C11A—H11A118.4
C8—N3—H3N113 (2)C14A—C13A—C12120.2 (5)
C9—N3—H3N117 (2)C14A—C13A—H13A119.9
C19B—N4—C15B120.6 (4)C12—C13A—H13A119.9
C15A—N4—C19A115.0 (4)C9—C14A—C13A120.1 (6)
C19B—N4—Cu1125.3 (3)C9—C14A—H14A120.0
C15A—N4—Cu1122.5 (3)C13A—C14A—H14A120.0
C15B—N4—Cu1113.7 (3)N4—C15A—C16A124.6 (6)
C19A—N4—Cu1122.4 (3)N4—C15A—H15A117.7
C1—O1—Cu1126.73 (18)C16A—C15A—H15A117.7
O1—C1—C6118.7 (3)C17—C16A—C15A121.9 (6)
O1—C1—C2124.0 (3)C17—C16A—H16A119.1
C6—C1—C2117.3 (3)C15A—C16A—H16A119.1
C3—C2—C1119.0 (3)C19A—C18A—C17114.2 (5)
C3—C2—C7117.4 (3)C19A—C18A—H18A122.9
C1—C2—C7123.5 (3)C17—C18A—H18A122.9
C4—C3—C2122.4 (3)C18A—C19A—N4123.0 (5)
C4—C3—H3A118.8C18A—C19A—H19A118.5
C2—C3—H3A118.8N4—C19A—H19A118.5
C3—C4—C5118.4 (3)C9—C10B—C11B120.8 (6)
C3—C4—H4A120.8C9—C10B—H10B119.6
C5—C4—H4A120.8C11B—C10B—H10B119.6
C6—C5—C4121.0 (3)C12—C11B—C10B121.2 (7)
C6—C5—H5A119.5C12—C11B—H11B119.4
C4—C5—H5A119.5C10B—C11B—H11B119.4
C5—C6—C1121.9 (3)C14B—C13B—C12119.0 (5)
C5—C6—H6A119.1C14B—C13B—H13B120.5
C1—C6—H6A119.1C12—C13B—H13B120.5
N1—C7—C2126.1 (3)C13B—C14B—C9120.7 (5)
N1—C7—H7A117.0C13B—C14B—H14B119.7
C2—C7—H7A117.0C9—C14B—H14B119.7
N2—C8—N3119.6 (3)N4—C15B—C16B121.2 (6)
N2—C8—S1125.1 (2)N4—C15B—H15B119.4
N3—C8—S1115.3 (2)C16B—C15B—H15B119.4
C14A—C9—N3116.5 (4)C15B—C16B—C17116.9 (5)
C10B—C9—N3125.1 (4)C15B—C16B—H16B121.5
C14A—C9—C10A120.2 (4)C17—C16B—H16B121.5
N3—C9—C10A123.3 (4)C17—C18B—C19B121.8 (5)
C10B—C9—C14B117.7 (4)C17—C18B—H18B119.1
N3—C9—C14B117.1 (3)C19B—C18B—H18B119.1
C11B—C12—C13B120.0 (5)N4—C19B—C18B122.3 (6)
C11A—C12—C13A117.5 (5)N4—C19B—H19B118.8
C11A—C12—H12A121.2C18B—C19B—H19B118.8
C13A—C12—H12A121.2
N1—Cu1—S1—C81.70 (11)C13B—C12—C13A—C14A77.5 (7)
N4—Cu1—S1—C8171.55 (12)C10B—C9—C14A—C13A36.8 (7)
O1—Cu1—N1—C73.4 (2)N3—C9—C14A—C13A179.2 (5)
S1—Cu1—N1—C7177.9 (2)C10A—C9—C14A—C13A1.6 (8)
O1—Cu1—N1—N2176.30 (19)C14B—C9—C14A—C13A78.3 (8)
S1—Cu1—N1—N22.45 (18)C12—C13A—C14A—C93.7 (9)
C7—N1—N2—C8178.1 (2)C19B—N4—C15A—C16A44.8 (8)
Cu1—N1—N2—C82.2 (3)C15B—N4—C15A—C16A86.2 (8)
O1—Cu1—N4—C19B70.3 (4)C19A—N4—C15A—C16A1.6 (9)
S1—Cu1—N4—C19B110.8 (4)Cu1—N4—C15A—C16A177.0 (5)
O1—Cu1—N4—C15A55.3 (4)C18B—C17—C16A—C15A44.0 (8)
S1—Cu1—N4—C15A123.5 (4)C16B—C17—C16A—C15A77.8 (8)
O1—Cu1—N4—C15B103.2 (3)C18A—C17—C16A—C15A1.2 (10)
S1—Cu1—N4—C15B75.7 (3)N4—C15A—C16A—C171.4 (12)
O1—Cu1—N4—C19A126.2 (3)C16A—C17—C18A—C19A1.4 (8)
S1—Cu1—N4—C19A55.0 (3)C18B—C17—C18A—C19A69.4 (6)
N1—Cu1—O1—C14.4 (2)C16B—C17—C18A—C19A41.7 (6)
N4—Cu1—O1—C1177.6 (2)C17—C18A—C19A—N41.8 (8)
Cu1—O1—C1—C6176.65 (19)C19B—N4—C19A—C18A73.6 (7)
Cu1—O1—C1—C23.4 (4)C15A—N4—C19A—C18A2.0 (8)
O1—C1—C2—C3179.4 (3)C15B—N4—C19A—C18A43.1 (7)
C6—C1—C2—C30.6 (4)Cu1—N4—C19A—C18A176.6 (4)
O1—C1—C2—C70.2 (4)C14A—C9—C10B—C11B42.1 (8)
C6—C1—C2—C7179.8 (3)N3—C9—C10B—C11B178.0 (5)
C1—C2—C3—C40.1 (4)C10A—C9—C10B—C11B78.4 (9)
C7—C2—C3—C4179.3 (3)C14B—C9—C10B—C11B2.9 (9)
C2—C3—C4—C50.3 (4)C11A—C12—C11B—C10B82.0 (13)
C3—C4—C5—C60.0 (5)C13B—C12—C11B—C10B7.1 (10)
C4—C5—C6—C10.6 (5)C13A—C12—C11B—C10B36.3 (8)
O1—C1—C6—C5179.1 (3)C9—C10B—C11B—C124.4 (11)
C2—C1—C6—C50.9 (4)C11B—C12—C13B—C14B8.5 (9)
N2—N1—C7—C2178.4 (2)C11A—C12—C13B—C14B40.6 (8)
Cu1—N1—C7—C21.3 (4)C13A—C12—C13B—C14B70.9 (7)
C3—C2—C7—N1179.6 (3)C12—C13B—C14B—C97.3 (9)
C1—C2—C7—N11.2 (4)C14A—C9—C14B—C13B84.6 (8)
N1—N2—C8—N3179.9 (2)C10B—C9—C14B—C13B4.6 (8)
N1—N2—C8—S10.2 (3)N3—C9—C14B—C13B176.3 (5)
C9—N3—C8—N20.5 (5)C10A—C9—C14B—C13B32.3 (8)
C9—N3—C8—S1179.3 (2)C19B—N4—C15B—C16B1.2 (8)
Cu1—S1—C8—N21.4 (3)C15A—N4—C15B—C16B62.1 (7)
Cu1—S1—C8—N3178.4 (2)C19A—N4—C15B—C16B46.9 (7)
C8—N3—C9—C14A161.8 (4)Cu1—N4—C15B—C16B175.0 (5)
C8—N3—C9—C10B25.5 (6)N4—C15B—C16B—C175.9 (9)
C8—N3—C9—C10A17.5 (6)C16A—C17—C16B—C15B81.2 (8)
C8—N3—C9—C14B155.4 (4)C18B—C17—C16B—C15B11.6 (8)
C14A—C9—C10A—C11A1.0 (9)C18A—C17—C16B—C15B38.9 (7)
C10B—C9—C10A—C11A74.9 (9)C16A—C17—C18B—C19B48.0 (7)
N3—C9—C10A—C11A179.8 (5)C16B—C17—C18B—C19B10.8 (8)
C14B—C9—C10A—C11A38.5 (8)C18A—C17—C18B—C19B77.4 (6)
C11B—C12—C11A—C10A83.6 (13)C15A—N4—C19B—C18B39.3 (7)
C13B—C12—C11A—C10A34.8 (9)C15B—N4—C19B—C18B2.7 (8)
C13A—C12—C11A—C10A10.2 (10)C19A—N4—C19B—C18B81.0 (7)
C9—C10A—C11A—C125.2 (11)Cu1—N4—C19B—C18B175.8 (4)
C11B—C12—C13A—C14A40.7 (8)C17—C18B—C19B—N43.9 (9)
C11A—C12—C13A—C14A9.4 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···S1i0.74 (3)2.90 (3)3.593 (3)157 (3)
C10A—H10A···N20.952.282.852 (7)118
C10B—H10B···N20.952.432.936 (7)113
C14B—H14B···S1i0.952.813.679 (6)152
C15B—H15B···O1ii0.952.403.339 (7)169
C16A—H16A···O1iii0.952.533.371 (7)148
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x, y+1, z; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C14H11N3OS)(C5H5N)]
Mr411.96
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)18.2958 (17), 4.5610 (5), 20.473 (2)
β (°) 93.602 (7)
V3)1705.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.42
Crystal size (mm)0.50 × 0.06 × 0.05
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.540, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
19901, 3493, 2522
Rint0.078
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.080, 1.02
No. of reflections3493
No. of parameters311
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.45

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cu1—O11.9126 (19)Cu1—N42.010 (2)
Cu1—N11.926 (2)Cu1—S12.2626 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···S1i0.74 (3)2.90 (3)3.593 (3)157 (3)
C10A—H10A···N20.952.282.852 (7)117.9
C10B—H10B···N20.952.432.936 (7)113.3
C14B—H14B···S1i0.952.813.679 (6)152.4
C15B—H15B···O1ii0.952.403.339 (7)169.2
C16A—H16A···O1iii0.952.533.371 (7)148.0
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x, y+1, z; (iii) x+1, y, z+1.
 

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, Z.-Y., Deng, Z.-P. & Gao, S. (2007). Acta Cryst. E63, m1961–m1962.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGaroufilis, A., Hadjikakou, S. K. & Hadjiliadis, N. (2009). Coord. Chem. Rev. 253, 1384–1397.  Google Scholar
First citationJohn, R. P., Sreekanth, A., Kurup, M. R. P. & Mobin, S. M. (2002). Polyhedron, 21, 2515–2521.  Web of Science CSD CrossRef CAS Google Scholar
First citationKaur, V., Aulakh, J. S. & Malik, A. K. (2007). Anal. Chim. Acta, 603, 44–50.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNaik, A. D., Reddy, P. A. N., Nethaji, M. & Chakravarty, A. R. (2003). Inorg. Chim. Acta, 349, 149–158.  Web of Science CSD CrossRef CAS Google Scholar
First citationSeena, E. B. & Kurup, M. R. P. (2008). Spectrochim. Acta Part A, 69, 726–732.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStanojkovic, T. P., Kovala-Demertzi, D., Primikyri, A., Garcia-Santo, I., Castineiras, A., Juranic, Z. & Demertzis, M. (2010). J. Inorg. Biochem. 104, 467–476.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds