organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 4-(3,4-di­meth­oxy­phen­yl)-2,6-di­methyl-1,4-di­hydro­pyridine-3,5-di­carboxyl­ate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India
*Correspondence e-mail: hkfun@usm.my

(Received 28 April 2010; accepted 7 May 2010; online 15 May 2010)

In the title compound, C19H23NO6, the 1,4-dihydro­pyridine ring is twisted slightly from planarity, with a maximum deviation of 0.101 (1) Å, and adopts a very flattened boat conformation. The dihedral angle formed between the plane through the four C atoms of the 1,4-dihydro­pyridine ring and the benzene ring is 84.67 (7)°. In the crystal structure, inter­molecular N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For background to the biological activity of 1,4-dihydro­pyridines, see: Gaudio et al. (1994[Gaudio, A. C., Korolkovas, A. & Takahata, Y. (1994). J. Pharm. Sci. 83, 1110-1115.]); Bocker & Guengerich (1986[Bocker, R. H. & Guengerich, F. P. (1986). J. Med. Chem. 28, 1596-1603.]); Gordeev et al. (1996[Gordeev, M. F., Patel, D. V. & Gordon, E. M. (1996). J. Org. Chem. 61, 924-928.]); Sunkel et al. (1992[Sunkel, C. E., de Casa-Juana, M. F., Santos, L., Garcia, A. G., Artalejo, C. R., Villarroya, M., Gonzalez-Morales, M. A., Lopez, M. G. & Cillero, J. (1992). J. Med. Chem. 35, 2407-2412.]); Vo et al. (1995[Vo, D., Matowe, W. C., Ramesh, M., Iqbal, N., Wolowyk, M. W., Howlett, S. E. & Knaus, E. E. (1995). J. Med. Chem. 38, 2851-2859.]); Cooper et al. (1992[Cooper, K., Fray, M. J., Parry, M. J., Richardson, K. & Steele, J. (1992). J. Med. Chem. 35, 3115-3129.]). For the synthesis of Hantzsch pyridines, see: Rathore et al. (2009[Rathore, R. S., Reddy, B. P., Vijayakumar, V., Ragavan, R. V. & Narasimhamurthy, T. (2009). Acta Cryst. B65, 375-381.]). For a related structure, see: Shahani et al. (2009[Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2009). Acta Cryst. E65, o3249-o3250.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C19H23NO6

  • Mr = 361.38

  • Triclinic, [P \overline 1]

  • a = 7.3883 (6) Å

  • b = 10.0775 (8) Å

  • c = 12.3833 (10) Å

  • α = 105.372 (2)°

  • β = 90.255 (2)°

  • γ = 91.611 (2)°

  • V = 888.60 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.51 × 0.41 × 0.18 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.]) Tmin = 0.950, Tmax = 0.982

  • 15520 measured reflections

  • 4693 independent reflections

  • 3996 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.117

  • S = 1.05

  • 4693 reflections

  • 327 parameters

  • All H-atom parameters refined

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O5i 0.88 (2) 2.21 (2) 3.0750 (13) 166.7 (16)
C12—H12C⋯O4ii 0.926 (16) 2.550 (17) 3.4120 (17) 155.0 (13)
C15—H15C⋯O2iii 0.968 (19) 2.501 (19) 3.4136 (17) 157.0 (17)
C17—H17C⋯O5i 0.98 (2) 2.52 (2) 3.4318 (14) 154.9 (15)
C19—H19A⋯O5iv 0.954 (17) 2.562 (18) 3.5023 (15) 168.7 (13)
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y, -z+1; (iii) -x, -y, -z+1; (iv) -x, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hantzsch 1,4-dihydropyridines (1,4-DHPs) are biologically active compounds which include various vasodilator, antihypertensive, bronchodilator, heptaprotective, antitumor, antimutagenic, geroprotective and antidiabetic agents (Gaudio et al., 1994) Nifedipine, nitrendipine, nimodipine etc. have found commercial utility as calcium channel blockers (Bocker & Guengerich, 1986; Gordeev et al., 1996). For the treatment of congestive heart failure, a number of DHP calcium antagonists have been introduced (Sunkel et al., 1992; Vo et al., 1995). Some DHPs have been introduced as neuroprotectant and cognition enhancers. In addition, a number of DHPs with platelet antiaggregatory activity have also been discovered (Cooper et al., 1992).

In the title compound (Fig. 1), the 1,4-dihydropyridine (C7–C9/N1/C10/C11) ring is slightly twisted from planarity, with a maximum deviation of 0.101 (1) Å at atom C11, and adopts a very flattened boat conformation (Cremer & Pople, 1975), with puckering parameters Q = 0.2412 (12) Å, Θ = 75.8 (3)° & φ = 183.4 (3)°. The dihedral angle formed between the plane through the four atoms C8-C11 of the 1,4-dihydropyridine and benzene (C1–C6) ring is 84.67 (7)°. The bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable to those in a closely related crystal structure (Shahani et al., 2009).

In the crystal packing (Fig. 2), intermolecular N1—H1N1···O5, C12—H12C···O4, C15—H15C···O2, C17—H17C···O5 and C19—H19A···O5 hydrogen bonds (Table 1) link the molecules into a three-dimensional network.

Related literature top

For background to the biological activity of 1,4-dihydropyridines, see: Gaudio et al. (1994); Bocker & Guengerich (1986); Gordeev et al. (1996); Sunkel et al. (1992); Vo et al. (1995); Cooper et al. (1992). For the synthesis of Hantzsch pyridines, see: Rathore et al. (2009). For a related structure, see: Shahani et al. (2009). For reference bond-length data, see: Allen et al. (1987). For puckering parameters, see: Cremer & Pople (1975). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

Dimethyl-1,4-dihydro-2,6-dimethyl-4-(3,4-dimethoxyphenyl)-3,5-pyridine dicarboxylate was prepared according to the Hantzsch pyridine synthesis (Rathore et al., 2009). A mixture of 3,4-dimethoxybenzaldehyde (10 mmol), methyl acetoacetate (20 mmol) and ammonium acetate (10 mmol) was heated at 80 °C for 2 hours (monitored by TLC). After completion of the reaction, the mixture was cooled to room temperature and allowed to stand for 1 day to obtain a solid product. This solid was washed with diethyl ether and the title compound obtained from the washings by evaporation. The purity of the crude product was checked by TLC and recrystallized using acetone and diethyl ether. Mp: 156-158 °C, IR (KBr):ν (cm-1), 3361, 2994, 1701, 1654, 1217.

Refinement top

All H atoms were located in a difference map and were refined freely. [N–H = 0.879 (19) Å, C–H = 0.93 (2)–0.986 (16) Å].

Structure description top

Hantzsch 1,4-dihydropyridines (1,4-DHPs) are biologically active compounds which include various vasodilator, antihypertensive, bronchodilator, heptaprotective, antitumor, antimutagenic, geroprotective and antidiabetic agents (Gaudio et al., 1994) Nifedipine, nitrendipine, nimodipine etc. have found commercial utility as calcium channel blockers (Bocker & Guengerich, 1986; Gordeev et al., 1996). For the treatment of congestive heart failure, a number of DHP calcium antagonists have been introduced (Sunkel et al., 1992; Vo et al., 1995). Some DHPs have been introduced as neuroprotectant and cognition enhancers. In addition, a number of DHPs with platelet antiaggregatory activity have also been discovered (Cooper et al., 1992).

In the title compound (Fig. 1), the 1,4-dihydropyridine (C7–C9/N1/C10/C11) ring is slightly twisted from planarity, with a maximum deviation of 0.101 (1) Å at atom C11, and adopts a very flattened boat conformation (Cremer & Pople, 1975), with puckering parameters Q = 0.2412 (12) Å, Θ = 75.8 (3)° & φ = 183.4 (3)°. The dihedral angle formed between the plane through the four atoms C8-C11 of the 1,4-dihydropyridine and benzene (C1–C6) ring is 84.67 (7)°. The bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable to those in a closely related crystal structure (Shahani et al., 2009).

In the crystal packing (Fig. 2), intermolecular N1—H1N1···O5, C12—H12C···O4, C15—H15C···O2, C17—H17C···O5 and C19—H19A···O5 hydrogen bonds (Table 1) link the molecules into a three-dimensional network.

For background to the biological activity of 1,4-dihydropyridines, see: Gaudio et al. (1994); Bocker & Guengerich (1986); Gordeev et al. (1996); Sunkel et al. (1992); Vo et al. (1995); Cooper et al. (1992). For the synthesis of Hantzsch pyridines, see: Rathore et al. (2009). For a related structure, see: Shahani et al. (2009). For reference bond-length data, see: Allen et al. (1987). For puckering parameters, see: Cremer & Pople (1975). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. Intermolecular hydrogen bonds are shown as dashed lines.
Dimethyl 4-(3,4-dimethoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate top
Crystal data top
C19H23NO6Z = 2
Mr = 361.38F(000) = 384
Triclinic, P1Dx = 1.351 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3883 (6) ÅCell parameters from 8704 reflections
b = 10.0775 (8) Åθ = 2.3–30.1°
c = 12.3833 (10) ŵ = 0.10 mm1
α = 105.372 (2)°T = 100 K
β = 90.255 (2)°Block, colourless
γ = 91.611 (2)°0.51 × 0.41 × 0.18 mm
V = 888.60 (12) Å3
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4693 independent reflections
Radiation source: fine-focus sealed tube3996 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 29.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 109
Tmin = 0.950, Tmax = 0.982k = 1313
15520 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0633P)2 + 0.3175P]
where P = (Fo2 + 2Fc2)/3
4693 reflections(Δ/σ)max < 0.001
327 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C19H23NO6γ = 91.611 (2)°
Mr = 361.38V = 888.60 (12) Å3
Triclinic, P1Z = 2
a = 7.3883 (6) ÅMo Kα radiation
b = 10.0775 (8) ŵ = 0.10 mm1
c = 12.3833 (10) ÅT = 100 K
α = 105.372 (2)°0.51 × 0.41 × 0.18 mm
β = 90.255 (2)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4693 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3996 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.982Rint = 0.023
15520 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.117All H-atom parameters refined
S = 1.05Δρmax = 0.39 e Å3
4693 reflectionsΔρmin = 0.21 e Å3
327 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.13177 (12)0.35766 (10)0.50655 (8)0.0253 (2)
O20.09815 (12)0.19240 (10)0.56457 (8)0.0271 (2)
O30.21291 (12)0.12807 (9)0.77077 (7)0.02175 (19)
O40.49285 (13)0.19568 (10)0.71696 (9)0.0311 (2)
O50.05882 (11)0.30006 (9)1.00996 (7)0.01900 (18)
O60.26916 (11)0.44327 (8)1.11470 (7)0.01862 (18)
N10.67178 (13)0.18380 (10)0.94785 (8)0.0175 (2)
C10.39341 (15)0.27760 (12)0.73593 (10)0.0175 (2)
C20.35435 (16)0.33318 (12)0.64648 (10)0.0189 (2)
C30.18797 (16)0.30518 (12)0.59181 (9)0.0178 (2)
C40.06117 (15)0.21698 (12)0.62489 (10)0.0179 (2)
C50.10199 (15)0.16280 (11)0.71366 (9)0.0166 (2)
C60.26780 (14)0.19386 (11)0.77130 (9)0.0147 (2)
C70.30862 (14)0.13710 (11)0.87152 (9)0.0141 (2)
C80.45041 (15)0.02726 (11)0.84314 (9)0.0161 (2)
C90.62445 (15)0.05553 (12)0.87803 (10)0.0172 (2)
C100.54594 (15)0.27558 (11)1.00303 (9)0.0156 (2)
C110.36775 (14)0.25185 (11)0.97297 (9)0.0146 (2)
C120.26124 (19)0.43765 (14)0.46362 (11)0.0240 (3)
C130.21854 (18)0.08780 (16)0.58366 (12)0.0281 (3)
C140.39486 (16)0.10892 (12)0.77100 (10)0.0188 (2)
C150.14106 (19)0.25176 (13)0.69309 (11)0.0254 (3)
C160.77848 (16)0.04195 (13)0.85144 (11)0.0223 (2)
C170.62731 (15)0.39180 (13)1.09351 (10)0.0195 (2)
C180.21850 (15)0.33172 (11)1.03232 (9)0.0147 (2)
C190.12427 (16)0.52520 (12)1.17271 (10)0.0201 (2)
H1A0.509 (2)0.3021 (17)0.7758 (14)0.027 (4)*
H2A0.446 (2)0.3860 (16)0.6208 (14)0.025 (4)*
H5A0.015 (2)0.1061 (15)0.7381 (13)0.019 (4)*
H7A0.195 (2)0.0945 (15)0.8880 (13)0.019 (4)*
H12A0.193 (3)0.4694 (18)0.4082 (16)0.036 (5)*
H12B0.306 (2)0.5163 (17)0.5209 (14)0.027 (4)*
H12C0.357 (2)0.3847 (17)0.4310 (14)0.026 (4)*
H13A0.160 (2)0.0001 (18)0.5738 (14)0.027 (4)*
H13B0.272 (2)0.1130 (16)0.6595 (14)0.023 (4)*
H13C0.316 (3)0.0809 (19)0.5306 (16)0.040 (5)*
H15A0.196 (2)0.3330 (18)0.7040 (15)0.030 (4)*
H15B0.009 (3)0.2556 (18)0.7063 (15)0.038 (5)*
H15C0.163 (3)0.2468 (18)0.6172 (16)0.034 (4)*
H16A0.887 (3)0.001 (2)0.8987 (17)0.044 (5)*
H16B0.812 (3)0.0635 (19)0.7690 (16)0.038 (5)*
H16C0.746 (3)0.128 (2)0.8611 (17)0.044 (5)*
H17A0.594 (2)0.4817 (16)1.0829 (13)0.025 (4)*
H17B0.576 (2)0.3880 (17)1.1657 (15)0.032 (4)*
H17C0.760 (3)0.3858 (18)1.0926 (15)0.034 (4)*
H19A0.058 (2)0.5670 (17)1.1248 (15)0.031 (4)*
H19B0.046 (3)0.4709 (18)1.2075 (15)0.034 (4)*
H19C0.187 (2)0.5943 (18)1.2325 (15)0.032 (4)*
H1N10.786 (3)0.2040 (17)0.9681 (15)0.031 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0210 (4)0.0347 (5)0.0258 (4)0.0061 (4)0.0070 (3)0.0186 (4)
O20.0165 (4)0.0412 (5)0.0284 (5)0.0104 (4)0.0108 (3)0.0188 (4)
O30.0172 (4)0.0185 (4)0.0264 (4)0.0006 (3)0.0042 (3)0.0006 (3)
O40.0259 (5)0.0216 (4)0.0420 (6)0.0043 (4)0.0084 (4)0.0011 (4)
O50.0101 (4)0.0214 (4)0.0246 (4)0.0004 (3)0.0016 (3)0.0046 (3)
O60.0120 (4)0.0197 (4)0.0216 (4)0.0002 (3)0.0008 (3)0.0012 (3)
N10.0081 (4)0.0219 (5)0.0234 (5)0.0006 (3)0.0009 (3)0.0078 (4)
C10.0122 (5)0.0209 (5)0.0197 (5)0.0025 (4)0.0032 (4)0.0064 (4)
C20.0162 (5)0.0207 (5)0.0208 (5)0.0040 (4)0.0011 (4)0.0077 (4)
C30.0173 (5)0.0199 (5)0.0167 (5)0.0002 (4)0.0020 (4)0.0063 (4)
C40.0123 (5)0.0223 (5)0.0190 (5)0.0021 (4)0.0038 (4)0.0058 (4)
C50.0123 (5)0.0191 (5)0.0189 (5)0.0023 (4)0.0011 (4)0.0059 (4)
C60.0121 (5)0.0155 (5)0.0162 (5)0.0010 (4)0.0010 (4)0.0037 (4)
C70.0094 (5)0.0159 (5)0.0177 (5)0.0008 (4)0.0012 (4)0.0056 (4)
C80.0131 (5)0.0166 (5)0.0199 (5)0.0010 (4)0.0014 (4)0.0070 (4)
C90.0136 (5)0.0197 (5)0.0210 (5)0.0019 (4)0.0028 (4)0.0099 (4)
C100.0118 (5)0.0192 (5)0.0178 (5)0.0008 (4)0.0001 (4)0.0084 (4)
C110.0114 (5)0.0170 (5)0.0164 (5)0.0007 (4)0.0010 (4)0.0064 (4)
C120.0246 (6)0.0260 (6)0.0240 (6)0.0037 (5)0.0018 (5)0.0119 (5)
C130.0171 (6)0.0402 (8)0.0290 (7)0.0107 (5)0.0077 (5)0.0141 (6)
C140.0189 (5)0.0177 (5)0.0216 (5)0.0018 (4)0.0008 (4)0.0083 (4)
C150.0271 (7)0.0188 (6)0.0275 (6)0.0011 (5)0.0094 (5)0.0017 (5)
C160.0141 (5)0.0243 (6)0.0320 (6)0.0050 (4)0.0037 (4)0.0132 (5)
C170.0106 (5)0.0248 (6)0.0229 (5)0.0032 (4)0.0039 (4)0.0064 (4)
C180.0126 (5)0.0163 (5)0.0165 (5)0.0008 (4)0.0010 (4)0.0070 (4)
C190.0152 (5)0.0214 (5)0.0218 (5)0.0019 (4)0.0011 (4)0.0021 (4)
Geometric parameters (Å, º) top
O1—C31.3679 (14)C7—H7A0.980 (16)
O1—C121.4268 (15)C8—C91.3530 (16)
O2—C41.3721 (13)C8—C141.4713 (16)
O2—C131.4282 (15)C9—C161.5044 (16)
O3—C141.3526 (15)C10—C111.3637 (15)
O3—C151.4434 (14)C10—C171.4991 (16)
O4—C141.2108 (15)C11—C181.4654 (15)
O5—C181.2245 (14)C12—H12A0.974 (19)
O6—C181.3452 (13)C12—H12B0.962 (17)
O6—C191.4442 (14)C12—H12C0.927 (18)
N1—C101.3805 (14)C13—H13A0.972 (17)
N1—C91.3856 (15)C13—H13B0.992 (16)
N1—H1N10.879 (19)C13—H13C0.96 (2)
C1—C61.3860 (15)C15—H15A0.963 (18)
C1—C21.3997 (16)C15—H15B0.99 (2)
C1—H1A0.977 (18)C15—H15C0.968 (19)
C2—C31.3860 (16)C16—H16A1.01 (2)
C2—H2A0.956 (17)C16—H16B1.018 (19)
C3—C41.4090 (16)C16—H16C0.93 (2)
C4—C51.3862 (15)C17—H17A0.986 (16)
C5—C61.4002 (15)C17—H17B0.983 (18)
C5—H5A0.952 (16)C17—H17C0.983 (19)
C6—C71.5300 (15)C19—H19A0.955 (18)
C7—C111.5176 (15)C19—H19B0.964 (19)
C7—C81.5194 (15)C19—H19C0.977 (19)
C3—O1—C12117.10 (10)O1—C12—H12A104.1 (11)
C4—O2—C13117.19 (9)O1—C12—H12B111.7 (10)
C14—O3—C15115.84 (10)H12A—C12—H12B109.0 (14)
C18—O6—C19116.00 (9)O1—C12—H12C111.0 (10)
C10—N1—C9123.01 (10)H12A—C12—H12C111.1 (15)
C10—N1—H1N1116.4 (12)H12B—C12—H12C109.8 (15)
C9—N1—H1N1119.8 (11)O2—C13—H13A112.5 (10)
C6—C1—C2121.00 (10)O2—C13—H13B112.9 (9)
C6—C1—H1A120.0 (10)H13A—C13—H13B107.8 (13)
C2—C1—H1A118.9 (10)O2—C13—H13C105.0 (11)
C3—C2—C1120.15 (10)H13A—C13—H13C111.4 (15)
C3—C2—H2A120.4 (10)H13B—C13—H13C107.3 (15)
C1—C2—H2A119.3 (10)O4—C14—O3122.11 (11)
O1—C3—C2125.46 (10)O4—C14—C8126.90 (11)
O1—C3—C4115.17 (10)O3—C14—C8110.99 (10)
C2—C3—C4119.36 (10)O3—C15—H15A111.8 (11)
O2—C4—C5124.82 (10)O3—C15—H15B106.8 (11)
O2—C4—C3115.45 (10)H15A—C15—H15B109.8 (15)
C5—C4—C3119.73 (10)O3—C15—H15C109.4 (11)
C4—C5—C6121.17 (10)H15A—C15—H15C109.0 (15)
C4—C5—H5A119.9 (9)H15B—C15—H15C109.9 (16)
C6—C5—H5A118.9 (9)C9—C16—H16A109.7 (11)
C1—C6—C5118.54 (10)C9—C16—H16B111.5 (11)
C1—C6—C7120.84 (9)H16A—C16—H16B109.3 (16)
C5—C6—C7120.61 (9)C9—C16—H16C111.6 (12)
C11—C7—C8110.65 (9)H16A—C16—H16C111.3 (16)
C11—C7—C6111.02 (8)H16B—C16—H16C103.2 (16)
C8—C7—C6111.31 (9)C10—C17—H17A111.1 (10)
C11—C7—H7A109.2 (9)C10—C17—H17B108.8 (10)
C8—C7—H7A108.6 (9)H17A—C17—H17B105.9 (14)
C6—C7—H7A105.9 (9)C10—C17—H17C109.5 (10)
C9—C8—C14120.87 (10)H17A—C17—H17C109.0 (14)
C9—C8—C7121.20 (10)H17B—C17—H17C112.5 (15)
C14—C8—C7117.85 (9)O5—C18—O6121.78 (10)
C8—C9—N1119.50 (10)O5—C18—C11123.15 (10)
C8—C9—C16126.29 (11)O6—C18—C11115.07 (9)
N1—C9—C16114.19 (10)O6—C19—H19A112.1 (11)
C11—C10—N1119.03 (10)O6—C19—H19B110.5 (11)
C11—C10—C17127.59 (10)H19A—C19—H19B111.5 (16)
N1—C10—C17113.37 (9)O6—C19—H19C103.4 (11)
C10—C11—C18124.66 (10)H19A—C19—H19C111.4 (15)
C10—C11—C7121.19 (10)H19B—C19—H19C107.6 (15)
C18—C11—C7114.15 (9)
C6—C1—C2—C30.14 (18)C14—C8—C9—C160.70 (18)
C12—O1—C3—C26.09 (18)C7—C8—C9—C16177.18 (10)
C12—O1—C3—C4174.62 (11)C10—N1—C9—C813.87 (16)
C1—C2—C3—O1177.31 (11)C10—N1—C9—C16164.32 (10)
C1—C2—C3—C41.96 (18)C9—N1—C10—C1112.47 (16)
C13—O2—C4—C59.85 (18)C9—N1—C10—C17166.41 (10)
C13—O2—C4—C3170.68 (11)N1—C10—C11—C18172.89 (10)
O1—C3—C4—O22.12 (16)C17—C10—C11—C185.82 (18)
C2—C3—C4—O2178.53 (11)N1—C10—C11—C77.50 (16)
O1—C3—C4—C5177.37 (10)C17—C10—C11—C7173.78 (10)
C2—C3—C4—C51.97 (17)C8—C7—C11—C1022.90 (14)
O2—C4—C5—C6179.60 (11)C6—C7—C11—C10101.21 (12)
C3—C4—C5—C60.16 (18)C8—C7—C11—C18157.45 (9)
C2—C1—C6—C51.66 (17)C6—C7—C11—C1878.44 (11)
C2—C1—C6—C7178.00 (10)C15—O3—C14—O46.40 (17)
C4—C5—C6—C11.65 (17)C15—O3—C14—C8173.30 (10)
C4—C5—C6—C7178.01 (10)C9—C8—C14—O416.87 (19)
C1—C6—C7—C1152.50 (13)C7—C8—C14—O4159.72 (12)
C5—C6—C7—C11127.15 (11)C9—C8—C14—O3163.45 (10)
C1—C6—C7—C871.23 (13)C7—C8—C14—O319.96 (14)
C5—C6—C7—C8109.12 (11)C19—O6—C18—O51.71 (15)
C11—C7—C8—C921.56 (14)C19—O6—C18—C11178.71 (9)
C6—C7—C8—C9102.39 (12)C10—C11—C18—O5172.80 (11)
C11—C7—C8—C14161.86 (9)C7—C11—C18—O57.57 (15)
C6—C7—C8—C1474.20 (12)C10—C11—C18—O66.78 (16)
C14—C8—C9—N1178.65 (10)C7—C11—C18—O6172.85 (9)
C7—C8—C9—N14.87 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O5i0.88 (2)2.21 (2)3.0750 (13)166.7 (16)
C12—H12C···O4ii0.926 (16)2.550 (17)3.4120 (17)155.0 (13)
C15—H15C···O2iii0.968 (19)2.501 (19)3.4136 (17)157.0 (17)
C17—H17C···O5i0.98 (2)2.52 (2)3.4318 (14)154.9 (15)
C19—H19A···O5iv0.954 (17)2.562 (18)3.5023 (15)168.7 (13)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x, y, z+1; (iv) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC19H23NO6
Mr361.38
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.3883 (6), 10.0775 (8), 12.3833 (10)
α, β, γ (°)105.372 (2), 90.255 (2), 91.611 (2)
V3)888.60 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.51 × 0.41 × 0.18
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.950, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
15520, 4693, 3996
Rint0.023
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.117, 1.05
No. of reflections4693
No. of parameters327
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.39, 0.21

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O5i0.88 (2)2.21 (2)3.0750 (13)166.7 (16)
C12—H12C···O4ii0.926 (16)2.550 (17)3.4120 (17)155.0 (13)
C15—H15C···O2iii0.968 (19)2.501 (19)3.4136 (17)157.0 (17)
C17—H17C···O5i0.98 (2)2.52 (2)3.4318 (14)154.9 (15)
C19—H19A···O5iv0.954 (17)2.562 (18)3.5023 (15)168.7 (13)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x, y, z+1; (iv) x, y+1, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

TSH and HKF thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). VV is grateful to the DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBocker, R. H. & Guengerich, F. P. (1986). J. Med. Chem. 28, 1596–1603.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.  Google Scholar
First citationCooper, K., Fray, M. J., Parry, M. J., Richardson, K. & Steele, J. (1992). J. Med. Chem. 35, 3115–3129.  CrossRef PubMed CAS Web of Science Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGaudio, A. C., Korolkovas, A. & Takahata, Y. (1994). J. Pharm. Sci. 83, 1110–1115.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGordeev, M. F., Patel, D. V. & Gordon, E. M. (1996). J. Org. Chem. 61, 924–928.  CrossRef CAS Web of Science Google Scholar
First citationRathore, R. S., Reddy, B. P., Vijayakumar, V., Ragavan, R. V. & Narasimhamurthy, T. (2009). Acta Cryst. B65, 375–381.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationShahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2009). Acta Cryst. E65, o3249–o3250.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSunkel, C. E., de Casa-Juana, M. F., Santos, L., Garcia, A. G., Artalejo, C. R., Villarroya, M., Gonzalez-Morales, M. A., Lopez, M. G. & Cillero, J. (1992). J. Med. Chem. 35, 2407–2412.  CrossRef PubMed CAS Web of Science Google Scholar
First citationVo, D., Matowe, W. C., Ramesh, M., Iqbal, N., Wolowyk, M. W., Howlett, S. E. & Knaus, E. E. (1995). J. Med. Chem. 38, 2851–2859.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds