organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Ethyl-4-methyl-1H-pyrazol-3(2H)-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India
*Correspondence e-mail: hkfun@usm.my

(Received 5 May 2010; accepted 10 May 2010; online 15 May 2010)

In the title compound, C6H10N2O, the 2,3-dihydro-1H-pyrazole ring is approximately planar, with a maximum deviation of 0.013 (1) Å. Pairs of inter­molecular N—H⋯O hydrogen bonds link neighboring mol­ecules into dimers, generating R22(8) ring motifs. These dimers are further linked into two-dimensional arrays parallel to the bc plane by inter­molecular N—H⋯O hydrogen bonds. The crystal structure is further stabilized by C—H⋯π inter­actions.

Related literature

For the background to and the biological activity of 3-ethyl-4-methyl-1H-pyrazol-5-ol, see: Brogden (1986[Brogden, N. R. (1986). Drugs, 32, 60-70.]); Coersmeier et al. (1986); Gursoy et al. (2000[Gursoy, A., Demirayak, S., Capan, G., Erol, K. & Vural, K. (2000). Eur. J. Med. Chem. 35, 359-364.]); Ragavan et al. (2009[Ragavan, R. V., Vijayakumar, V. & Kumari, N. S. (2009). Eur. J. Med. Chem. 44, 3852-3857.], 2010[Ragavan, R. V., Vijayakumar, V. & Kumari, N. S. (2010). Eur. J. Med. Chem. 45, 1173-1180.]); Watanabe et al. (1984[Watanabe, T., Yuki, S., Egawa, M. & Nishi, H. (1984). J. Pharmacol. Exp. Ther. 268, 1597-1604.]); Kawai et al. (1997[Kawai, H., Nakai, H., Suga, M., Yuki, S., Watanabe, T. & Saito, K. I. (1997). J. Pharmacol. Exp. Ther. 281, 921-927.]); Wu et al. (2002[Wu, T. W., Zeng, L. H., Wu, J. & Fung, K. P. (2002). Life Sci. 71, 2249-2255.]). For related structures, see: Shahani et al. (2009[Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2009). Acta Cryst. E65, o3249-o3250.], 2010[Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2010). Acta Cryst. E66, o142-o143.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C6H10N2O

  • Mr = 126.16

  • Monoclinic, P 21 /c

  • a = 8.374 (2) Å

  • b = 7.2881 (16) Å

  • c = 11.300 (3) Å

  • β = 109.955 (5)°

  • V = 648.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.52 × 0.16 × 0.09 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.]) Tmin = 0.954, Tmax = 0.992

  • 10018 measured reflections

  • 2745 independent reflections

  • 2325 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.123

  • S = 1.14

  • 2745 reflections

  • 122 parameters

  • All H-atom parameters refined

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the 1H-pyrazole ring (C1–C3/N1/N2).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.902 (15) 1.829 (15) 2.7267 (11) 174.0 (16)
N2—H1N2⋯O1ii 0.972 (14) 1.715 (14) 2.6777 (10) 169.9 (13)
C5—H5ACg1iii 1.013 (13) 2.896 (15) 3.6749 (14) 134.2 (11)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrazolone derivatives have a broad spectrum of biological activities as analgesic, antipyretic and anti-inflammatory therapeutical drugs (Brogden, 1986; Gursoy et al., 2000). A class of new pyrazolone compounds have been synthesized and reported to exhibit antibacterial and antifungal activities (Ragavan et al., 2010; Ragavan et al., 2009). A new pyrazolone derivative, edaravone (5-ethyl-4-methyl-1H-pyrazol-3(2H)-one), is being used as a drug in clinical practice for brain ischemia (Watanabe et al., 1984; Kawai et al., 1997) and it has also been found to be effective against myocardial ischemia (Wu et al., 2002).

In the crystal structure (Fig. 1), the 2,3-dihydro-1H-pyrazole ring (C1–C3/N1/N2) is approximately planar with a maximum deviation of 0.013 (1) Å for atoms N1 and N2 (but they are on opposite sides of the plane). The bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable to those in closely related structures reported recently (Shahani et al., 2009; 2010).

In the crystal packing (Fig. 2), pairs of intermolecular N1—H1N1···O1 hydrogen bonds (Table 1) link neighboring molecules into dimers, generating R22(8) ring motifs (Bernstein et al., 1995). These dimers are further linked into 2D arrays parallel to the bc plane by intermolecular N2—H1N2···O1 hydrogen bonds (Table 1). The crystal structure is further stabilized by a C—H···π interaction (Table 1), involving the C1–C3/N1/N2 ring (centroid Cg1) .

Related literature top

For the background to and the biological activity of 3-ethyl-4-methyl-1H-pyrazol-5-ol, see: Brogden (1986); Coersmeier et al. (1986); Gursoy et al. (2000); Ragavan et al. (2009); Ragavan et al. (2010); Watanabe et al. (1984); Kawai et al. (1997); Wu et al. (2002). For related structures, see: Shahani et al. (2009, 2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For reference bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

The compound 5-ethyl-4-methyl-1H-pyrazol-3(2H)-one has been synthesized using the method reported in the literature (Ragavan et al., 2009, 2010) and purified by column chromatography (MeOH: EtOAc, 1:99). It was recrystallised as a colourless solid, using ethanol. Mp: 496.4–507.1 K; MS calculated for C6H10N2O: 126.15. Found: 128.0 (M+).

Refinement top

All hydrogen atoms were located in a difference map and were refined freely [N–H = 0.902 (14) – 0.972 (14) Å; C–H = 0.989 (13) – 1.015 (13) Å].

Structure description top

Pyrazolone derivatives have a broad spectrum of biological activities as analgesic, antipyretic and anti-inflammatory therapeutical drugs (Brogden, 1986; Gursoy et al., 2000). A class of new pyrazolone compounds have been synthesized and reported to exhibit antibacterial and antifungal activities (Ragavan et al., 2010; Ragavan et al., 2009). A new pyrazolone derivative, edaravone (5-ethyl-4-methyl-1H-pyrazol-3(2H)-one), is being used as a drug in clinical practice for brain ischemia (Watanabe et al., 1984; Kawai et al., 1997) and it has also been found to be effective against myocardial ischemia (Wu et al., 2002).

In the crystal structure (Fig. 1), the 2,3-dihydro-1H-pyrazole ring (C1–C3/N1/N2) is approximately planar with a maximum deviation of 0.013 (1) Å for atoms N1 and N2 (but they are on opposite sides of the plane). The bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable to those in closely related structures reported recently (Shahani et al., 2009; 2010).

In the crystal packing (Fig. 2), pairs of intermolecular N1—H1N1···O1 hydrogen bonds (Table 1) link neighboring molecules into dimers, generating R22(8) ring motifs (Bernstein et al., 1995). These dimers are further linked into 2D arrays parallel to the bc plane by intermolecular N2—H1N2···O1 hydrogen bonds (Table 1). The crystal structure is further stabilized by a C—H···π interaction (Table 1), involving the C1–C3/N1/N2 ring (centroid Cg1) .

For the background to and the biological activity of 3-ethyl-4-methyl-1H-pyrazol-5-ol, see: Brogden (1986); Coersmeier et al. (1986); Gursoy et al. (2000); Ragavan et al. (2009); Ragavan et al. (2010); Watanabe et al. (1984); Kawai et al. (1997); Wu et al. (2002). For related structures, see: Shahani et al. (2009, 2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For reference bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom numbering scheme. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing a 2D array parallel to the bc plane. Hydrogen bonds are denoted by dashed lines. H atoms not involved in the hydrogen bond interactions have been omitted for clarity.
5-Ethyl-4-methyl-1H-pyrazol-3(2H)-one top
Crystal data top
C6H10N2OF(000) = 272
Mr = 126.16Dx = 1.293 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3666 reflections
a = 8.374 (2) Åθ = 2.6–34.5°
b = 7.2881 (16) ŵ = 0.09 mm1
c = 11.300 (3) ÅT = 100 K
β = 109.955 (5)°Plate, colourless
V = 648.3 (3) Å30.52 × 0.16 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
2745 independent reflections
Radiation source: fine-focus sealed tube2325 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 34.6°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1313
Tmin = 0.954, Tmax = 0.992k = 1111
10018 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123All H-atom parameters refined
S = 1.14 w = 1/[σ2(Fo2) + (0.0715P)2 + 0.0472P]
where P = (Fo2 + 2Fc2)/3
2745 reflections(Δ/σ)max < 0.001
122 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C6H10N2OV = 648.3 (3) Å3
Mr = 126.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.374 (2) ŵ = 0.09 mm1
b = 7.2881 (16) ÅT = 100 K
c = 11.300 (3) Å0.52 × 0.16 × 0.09 mm
β = 109.955 (5)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
2745 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2325 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.992Rint = 0.029
10018 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.123All H-atom parameters refined
S = 1.14Δρmax = 0.52 e Å3
2745 reflectionsΔρmin = 0.35 e Å3
122 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.42822 (7)0.62337 (8)0.11992 (5)0.01463 (13)
N10.42529 (8)0.69441 (9)0.08076 (6)0.01353 (13)
N20.35794 (9)0.82809 (9)0.16813 (6)0.01431 (13)
C10.38533 (9)0.73007 (10)0.02374 (6)0.01110 (13)
C20.29351 (9)0.89787 (9)0.00188 (6)0.01142 (13)
C30.28136 (9)0.95309 (10)0.11791 (7)0.01249 (14)
C40.19811 (10)1.11714 (10)0.19250 (7)0.01638 (15)
C50.05452 (11)1.06785 (12)0.31308 (8)0.02089 (17)
C60.22769 (10)0.99011 (11)0.09370 (7)0.01700 (15)
H4A0.1538 (18)1.1950 (18)0.1386 (13)0.026 (3)*
H4B0.2822 (16)1.1904 (17)0.2159 (11)0.019 (3)*
H5A0.0064 (17)1.1779 (18)0.3632 (13)0.025 (3)*
H5B0.0336 (19)0.991 (2)0.2946 (14)0.038 (4)*
H5C0.0961 (19)0.994 (2)0.3704 (15)0.036 (4)*
H6A0.3195 (17)1.0187 (18)0.1773 (13)0.027 (3)*
H6B0.147 (2)0.9115 (19)0.1185 (14)0.033 (4)*
H6C0.163 (2)1.103 (2)0.0557 (16)0.044 (4)*
H1N10.4808 (19)0.5936 (19)0.0921 (14)0.028 (3)*
H1N20.3762 (17)0.8332 (19)0.2486 (13)0.028 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0221 (3)0.0147 (2)0.0089 (2)0.00498 (18)0.00754 (19)0.00296 (17)
N10.0211 (3)0.0125 (3)0.0092 (2)0.0048 (2)0.0080 (2)0.00233 (19)
N20.0221 (3)0.0130 (3)0.0098 (3)0.0033 (2)0.0080 (2)0.0027 (2)
C10.0144 (3)0.0120 (3)0.0078 (3)0.0006 (2)0.0050 (2)0.0002 (2)
C20.0142 (3)0.0109 (3)0.0096 (3)0.0009 (2)0.0047 (2)0.0003 (2)
C30.0159 (3)0.0106 (3)0.0110 (3)0.0000 (2)0.0047 (2)0.0000 (2)
C40.0213 (3)0.0118 (3)0.0143 (3)0.0012 (2)0.0039 (3)0.0027 (2)
C50.0212 (3)0.0193 (3)0.0178 (3)0.0024 (3)0.0010 (3)0.0032 (3)
C60.0208 (3)0.0187 (3)0.0132 (3)0.0048 (3)0.0079 (3)0.0015 (3)
Geometric parameters (Å, º) top
O1—C11.2839 (9)C4—C51.5209 (12)
N1—C11.3578 (9)C4—H4A0.993 (14)
N1—N21.3645 (9)C4—H4B0.989 (13)
N1—H1N10.902 (14)C5—H5A1.013 (13)
N2—C31.3459 (10)C5—H5B1.003 (15)
N2—H1N20.972 (14)C5—H5C0.992 (16)
C1—C21.4206 (10)C6—H6A1.015 (13)
C2—C31.3823 (10)C6—H6B0.994 (15)
C2—C61.4908 (10)C6—H6C1.000 (16)
C3—C41.4916 (11)
C1—N1—N2109.19 (6)C5—C4—H4A109.8 (8)
C1—N1—H1N1124.9 (9)C3—C4—H4B110.2 (7)
N2—N1—H1N1125.8 (9)C5—C4—H4B107.8 (7)
C3—N2—N1108.49 (6)H4A—C4—H4B107.7 (11)
C3—N2—H1N2128.1 (8)C4—C5—H5A114.0 (8)
N1—N2—H1N2123.1 (8)C4—C5—H5B111.0 (9)
O1—C1—N1122.64 (7)H5A—C5—H5B106.9 (12)
O1—C1—C2130.32 (6)C4—C5—H5C111.5 (9)
N1—C1—C2107.04 (6)H5A—C5—H5C106.6 (12)
C3—C2—C1105.99 (6)H5B—C5—H5C106.3 (12)
C3—C2—C6128.98 (7)C2—C6—H6A113.4 (8)
C1—C2—C6125.03 (6)C2—C6—H6B112.5 (9)
N2—C3—C2109.23 (6)H6A—C6—H6B103.1 (11)
N2—C3—C4120.16 (7)C2—C6—H6C110.4 (10)
C2—C3—C4130.59 (7)H6A—C6—H6C110.9 (12)
C3—C4—C5113.02 (7)H6B—C6—H6C106.1 (13)
C3—C4—H4A108.2 (8)
C1—N1—N2—C32.59 (8)N1—N2—C3—C4179.19 (6)
N2—N1—C1—O1177.88 (7)C1—C2—C3—N20.73 (8)
N2—N1—C1—C22.09 (8)C6—C2—C3—N2179.69 (7)
O1—C1—C2—C3179.13 (7)C1—C2—C3—C4179.34 (7)
N1—C1—C2—C30.84 (8)C6—C2—C3—C41.08 (13)
O1—C1—C2—C61.27 (12)N2—C3—C4—C560.72 (10)
N1—C1—C2—C6178.76 (7)C2—C3—C4—C5117.76 (9)
N1—N2—C3—C22.03 (8)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the 1H-pyrazole ring (C1–C3/N1/N2).
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.902 (15)1.829 (15)2.7267 (11)174.0 (16)
N2—H1N2···O1ii0.972 (14)1.715 (14)2.6777 (10)169.9 (13)
C5—H5A···Cg1iii1.013 (13)2.896 (15)3.6749 (14)134.2 (11)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+3/2, z1/2; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC6H10N2O
Mr126.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.374 (2), 7.2881 (16), 11.300 (3)
β (°) 109.955 (5)
V3)648.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.52 × 0.16 × 0.09
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.954, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
10018, 2745, 2325
Rint0.029
(sin θ/λ)max1)0.798
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.123, 1.14
No. of reflections2745
No. of parameters122
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.52, 0.35

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the 1H-pyrazole ring (C1–C3/N1/N2).
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.902 (15)1.829 (15)2.7267 (11)174.0 (16)
N2—H1N2···O1ii0.972 (14)1.715 (14)2.6777 (10)169.9 (13)
C5—H5A···Cg1iii1.013 (13)2.896 (15)3.6749 (14)134.2 (11)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+3/2, z1/2; (iii) x, y+1/2, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

TSH and HKF thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). VV is grateful to the DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrogden, N. R. (1986). Drugs, 32, 60–70.  CrossRef PubMed Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.  Google Scholar
First citationCoersmeier, C., Wittenberg, H. R., Aehringhaus, U., Dreyling, K. W., Peskar, B. M., Brune, K. & Pesker, B. A. (1986). Agents Actions Suppl. 19, 137–153.  CAS PubMed Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGursoy, A., Demirayak, S., Capan, G., Erol, K. & Vural, K. (2000). Eur. J. Med. Chem. 35, 359–364.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKawai, H., Nakai, H., Suga, M., Yuki, S., Watanabe, T. & Saito, K. I. (1997). J. Pharmacol. Exp. Ther. 281, 921–927.  CAS PubMed Web of Science Google Scholar
First citationRagavan, R. V., Vijayakumar, V. & Kumari, N. S. (2009). Eur. J. Med. Chem. 44, 3852–3857.  PubMed CAS Google Scholar
First citationRagavan, R. V., Vijayakumar, V. & Kumari, N. S. (2010). Eur. J. Med. Chem. 45, 1173–1180.  Web of Science CrossRef CAS PubMed Google Scholar
First citationShahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2009). Acta Cryst. E65, o3249–o3250.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2010). Acta Cryst. E66, o142–o143.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatanabe, T., Yuki, S., Egawa, M. & Nishi, H. (1984). J. Pharmacol. Exp. Ther. 268, 1597–1604.  Google Scholar
First citationWu, T. W., Zeng, L. H., Wu, J. & Fung, K. P. (2002). Life Sci. 71, 2249–2255.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds