organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 1-methyl-1H-1,2,3-triazole-4-carboxyl­ate

aOrganic and Medicinal Chemistry Research Laboratory, Organic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and cDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 18 May 2010; accepted 21 May 2010; online 26 May 2010)

The title mol­ecule, C5H7N3O2, has an almost planar conformation, with a maximum deviation of 0.043 (3) Å, except for the methyl H atoms. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into layers parallel to the bc plane. Inter­molecular ππ stacking inter­actions [centroid–centroid distances = 3.685 (2) and 3.697 (2) Å] are observed between the parallel triazole rings.

Related literature

For related structures, see: Prabakaran et al. (2009a[Prabakaran, K., Hathwar, V. R., Maiyalagan, T., Kirthana, M. V. & Khan, F. N. (2009a). Acta Cryst. E65, o1752.],b[Prabakaran, K., Maiyalagan, T., Hathwar, V. R., Kazak, C. & Khan, F. N. (2009b). Acta Cryst. E65, o300.]); Beitelman et al. (2007[Beitelman, A. D., Sieracki, N. A., Zeller, M. & Ferrence, G. M. (2007). Acta Cryst. E63, o2739-o2741.]); Jabli et al. (2010[Jabli, H., Ouazzani Chahdi, F., Saffon, N., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o231.]). For the properties and applications of related compounds, see: Dehne (1994[Dehne, H. (1994). Editor. Methoden der Organischen Chemie, 8th ed., pp. 305-405. Stuttgart: Thieme.]); Fan & Katritzky (1996[Fan, W.-Q. & Katritzky, A. R. (1996). Comprehensive Heterocyclic Chemistry II, Vol. 4, edited by A. R. Katritzky, C. W. Rees & E. F. V Scriven, pp. 1-126. Oxford: Pergamon.]); Genin et al. (2000[Genin, M. J., Allwine, D. A., Anderson, D. J., Barbachyn, M. R., Emmert, D. E., Garmon, S. A., Graber, D. R., Grega, K. C., Hester, J. B., Hutchinson, D. K., Morris, J., Reischer, R. J., Ford, C. W., Zurenko, G. E., Hamel, J. C., Schaadt, R. D., Stapert, D. & Yagi, B. H. (2000). J. Med. Chem. 43, 953-970.]); Velazquez et al. (1998[Velazquez, S., Alvarez, R., Perez, C., Gago, F., De, C., Balzarini, J. & Camaraza, M. (1998). J. Antivir. Chem. Chemother. 9, 481-489.]).

[Scheme 1]

Experimental

Crystal data
  • C5H7N3O2

  • Mr = 141.14

  • Triclinic, [P \overline 1]

  • a = 5.697 (1) Å

  • b = 7.1314 (11) Å

  • c = 8.6825 (16) Å

  • α = 71.053 (16)°

  • β = 86.865 (15)°

  • γ = 76.528 (14)°

  • V = 324.37 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.15 × 0.10 × 0.05 mm

Data collection
  • Oxford Diffraction Xcalibur Eos (Nova) CCD detector diffractometer

  • 6915 measured reflections

  • 1108 independent reflections

  • 800 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.173

  • S = 1.13

  • 1108 reflections

  • 93 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O1i 0.96 2.59 3.509 (5) 160
C5—H5B⋯O1ii 0.96 2.39 3.277 (5) 153
Symmetry codes: (i) x, y, z+1; (ii) x-1, y, z.

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

1,2,3-Triazoles are useful synthetic targets in organic synthesis and are associated with biological properties such as antiviral, antibacterial, antiepileptic and antiallergic (Velazquez et al., 1998; Genin et al., 2000). They have also found applications as agrochemicals, dyes, hotographic materials, and in corrosion inhibition (Fan & Katritzky, 1996; Dehne, 1994). In continuous of our earlier reports (Prabakaran et al., 2009a,b), here the crystal structure of the title compound is presented.

As shown in Fig. 1, the conformation of the title molecule is almost planar, with a maximum deviation of -0.043 (3) Å for O1, except the H atoms of two methyl groups.

In the crystal structure, molecules connect to each other, via the intermolecular C—H···O hydrogen bonds (Table 1, Fig. 2), into two-dimensional layers parallel to the bc plane, and intermolecular ππ stacking interactions [Cg1···Cg1(1 - x, -y, 2 - z) = 3.685 (2) Å and Cg1···Cg1(1 - x, 1 - y, 2 - z) = 3.697 (2) Å, where Cg1 is a centroid of the triazole ring] between the parallel triazole rings contribute to the stabilization of the structure.

Related literature top

For related structures, see: Prabakaran et al. (2009a,b); Beitelman et al. (2007); Jabli et al. (2010). For the properties and applications of related compounds, see: Dehne (1994); Fan & Katritzky (1996); Genin et al. (2000); Velazquez et al. (1998).

Experimental top

To methyl 1H-1,2,3-triazole-4-carboxylate (2 g) in dry DMF (15 ml) maintained at 273 K in nitrogen atmosphere, was added K2CO3 (1.3 g), methyliodide (0.98 ml), the mixture was then stirred at 273 K for 1 h, allowed to warm to room temperature and stirred till completion of reaction, monitored by TLC. The reaction mixture on LCMS analysis showed three isomers well separated with their significant retention time and high purity. Three fractions were identified by mass spectroscopy. The solvent was evaporated under vacuo and the residue was isolated into individual isomers by column chromatography. The single crystals of the title compound for X-ray structure analysis were obtained from ether solution by slow evaporation.

Refinement top

H atoms were positioned geometrically with C—H = 0.93-0.96 Å, and were refined in riding mode with Uiso(H) = 1.2 or 1.5Ueq(C). In the final refinement cycles, the inconsistent 33 reflections were omitted.

Structure description top

1,2,3-Triazoles are useful synthetic targets in organic synthesis and are associated with biological properties such as antiviral, antibacterial, antiepileptic and antiallergic (Velazquez et al., 1998; Genin et al., 2000). They have also found applications as agrochemicals, dyes, hotographic materials, and in corrosion inhibition (Fan & Katritzky, 1996; Dehne, 1994). In continuous of our earlier reports (Prabakaran et al., 2009a,b), here the crystal structure of the title compound is presented.

As shown in Fig. 1, the conformation of the title molecule is almost planar, with a maximum deviation of -0.043 (3) Å for O1, except the H atoms of two methyl groups.

In the crystal structure, molecules connect to each other, via the intermolecular C—H···O hydrogen bonds (Table 1, Fig. 2), into two-dimensional layers parallel to the bc plane, and intermolecular ππ stacking interactions [Cg1···Cg1(1 - x, -y, 2 - z) = 3.685 (2) Å and Cg1···Cg1(1 - x, 1 - y, 2 - z) = 3.697 (2) Å, where Cg1 is a centroid of the triazole ring] between the parallel triazole rings contribute to the stabilization of the structure.

For related structures, see: Prabakaran et al. (2009a,b); Beitelman et al. (2007); Jabli et al. (2010). For the properties and applications of related compounds, see: Dehne (1994); Fan & Katritzky (1996); Genin et al. (2000); Velazquez et al. (1998).

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2009); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The title molecule showing the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the crystal packing of (I), viewed down the a axis. The H atoms not involved in the hydrogen bonding pattern have been omitted for clarity.
Methyl 1-methyl-1H-1,2,3-triazole-4-carboxylate top
Crystal data top
C5H7N3O2Z = 2
Mr = 141.14F(000) = 148
Triclinic, P1Dx = 1.445 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.697 (1) ÅCell parameters from 1326 reflections
b = 7.1314 (11) Åθ = 2.0–20.7°
c = 8.6825 (16) ŵ = 0.11 mm1
α = 71.053 (16)°T = 293 K
β = 86.865 (15)°Block, colourless
γ = 76.528 (14)°0.15 × 0.10 × 0.05 mm
V = 324.37 (10) Å3
Data collection top
Oxford Xcalibur Eos (Nova) CCD detector
diffractometer
800 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.049
Graphite monochromatorθmax = 25.0°, θmin = 3.1°
ω scansh = 66
6915 measured reflectionsk = 88
1108 independent reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0741P)2 + 0.2349P]
where P = (Fo2 + 2Fc2)/3
1108 reflections(Δ/σ)max < 0.001
93 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C5H7N3O2γ = 76.528 (14)°
Mr = 141.14V = 324.37 (10) Å3
Triclinic, P1Z = 2
a = 5.697 (1) ÅMo Kα radiation
b = 7.1314 (11) ŵ = 0.11 mm1
c = 8.6825 (16) ÅT = 293 K
α = 71.053 (16)°0.15 × 0.10 × 0.05 mm
β = 86.865 (15)°
Data collection top
Oxford Xcalibur Eos (Nova) CCD detector
diffractometer
800 reflections with I > 2σ(I)
6915 measured reflectionsRint = 0.049
1108 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.13Δρmax = 0.26 e Å3
1108 reflectionsΔρmin = 0.23 e Å3
93 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6694 (5)0.2352 (5)0.5832 (3)0.0591 (13)
O20.2797 (4)0.2639 (4)0.6475 (3)0.0440 (9)
N10.7108 (5)0.2390 (4)1.0644 (3)0.0361 (10)
N20.4740 (5)0.2478 (5)1.0897 (4)0.0430 (11)
N30.3757 (5)0.2534 (5)0.9553 (4)0.0417 (10)
C10.8687 (7)0.2325 (6)1.1941 (5)0.0471 (14)
C20.7651 (6)0.2415 (5)0.9131 (4)0.0369 (11)
C30.5521 (6)0.2492 (5)0.8434 (4)0.0342 (11)
C40.5106 (6)0.2486 (5)0.6793 (4)0.0373 (12)
C50.2257 (7)0.2676 (7)0.4852 (5)0.0532 (14)
H1A0.774600.242301.287500.0700*
H1B0.946800.344401.156700.0700*
H1C0.988500.106601.223400.0700*
H20.915200.238600.865000.0440*
H5A0.267500.384100.406200.0790*
H5B0.056500.275400.474900.0790*
H5C0.317300.145800.466900.0790*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0354 (15)0.103 (3)0.0513 (18)0.0203 (15)0.0119 (13)0.0399 (17)
O20.0336 (14)0.0667 (18)0.0370 (15)0.0139 (12)0.0013 (11)0.0216 (13)
N10.0315 (16)0.0468 (19)0.0314 (17)0.0104 (13)0.0007 (13)0.0133 (13)
N20.0346 (17)0.057 (2)0.0386 (18)0.0098 (14)0.0038 (14)0.0178 (15)
N30.0348 (16)0.055 (2)0.0354 (18)0.0108 (14)0.0002 (14)0.0140 (14)
C10.045 (2)0.062 (3)0.036 (2)0.0133 (19)0.0046 (17)0.0165 (19)
C20.0306 (18)0.047 (2)0.036 (2)0.0126 (16)0.0054 (15)0.0155 (17)
C30.0286 (18)0.038 (2)0.039 (2)0.0116 (15)0.0068 (15)0.0144 (16)
C40.038 (2)0.039 (2)0.038 (2)0.0120 (16)0.0022 (18)0.0137 (17)
C50.046 (2)0.082 (3)0.040 (2)0.025 (2)0.0030 (18)0.023 (2)
Geometric parameters (Å, º) top
O1—C41.205 (4)C3—C41.459 (5)
O2—C41.331 (4)C1—H1A0.9600
O2—C51.449 (5)C1—H1B0.9600
N1—N21.345 (4)C1—H1C0.9600
N1—C11.462 (5)C2—H20.9300
N1—C21.328 (4)C5—H5A0.9600
N2—N31.307 (5)C5—H5B0.9600
N3—C31.361 (5)C5—H5C0.9600
C2—C31.367 (5)
O1···C5i3.277 (5)C4···N2vii3.439 (5)
O2···N32.731 (4)C5···C1x3.435 (6)
O1···H1Aii2.5900C5···O1vi3.277 (5)
O1···H5A2.6300C1···H5Bix2.8500
O1···H5Bi2.3900C4···H5Aiv3.0300
O1···H5C2.5900H1A···O1xi2.5900
O1···H1Ciii2.8400H1A···H5Bix2.4500
O1···H5Aiv2.8500H1B···N3viii2.9100
O1···H5Cv2.8700H1C···O1iii2.8400
O1···H22.8900H2···O12.8900
O2···H2vi2.7300H2···O2i2.7300
N2···C3vii3.438 (5)H2···N3i2.8100
N2···C4vii3.439 (5)H5A···O12.6300
N3···O22.731 (4)H5A···O1iv2.8500
N3···C1viii3.434 (6)H5A···C4iv3.0300
N3···C3vii3.376 (5)H5B···O1vi2.3900
N3···H2vi2.8100H5B···C1x2.8500
N3···H1Bviii2.9100H5B···H1Ax2.4500
C1···C5ix3.435 (6)H5C···O12.5900
C1···N3viii3.434 (6)H5C···O1v2.8700
C3···N3vii3.376 (5)H5C···H5Cv2.5200
C3···N2vii3.438 (5)
C4—O2—C5115.6 (3)N1—C1—H1B109.00
N2—N1—C1120.4 (3)N1—C1—H1C110.00
N2—N1—C2110.7 (3)H1A—C1—H1B109.00
C1—N1—C2129.0 (3)H1A—C1—H1C109.00
N1—N2—N3107.9 (3)H1B—C1—H1C109.00
N2—N3—C3107.9 (3)N1—C2—H2128.00
N1—C2—C3105.0 (3)C3—C2—H2127.00
N3—C3—C2108.6 (3)O2—C5—H5A109.00
N3—C3—C4123.5 (3)O2—C5—H5B109.00
C2—C3—C4127.9 (3)O2—C5—H5C110.00
O1—C4—O2123.8 (3)H5A—C5—H5B109.00
O1—C4—C3123.3 (3)H5A—C5—H5C109.00
O2—C4—C3112.9 (3)H5B—C5—H5C109.00
N1—C1—H1A109.00
C5—O2—C4—O11.1 (6)N2—N3—C3—C4178.5 (3)
C5—O2—C4—C3179.0 (3)N1—C2—C3—N30.7 (4)
C1—N1—N2—N3179.6 (3)N1—C2—C3—C4178.0 (3)
C2—N1—N2—N30.8 (4)N3—C3—C4—O1176.4 (4)
N2—N1—C2—C30.9 (4)N3—C3—C4—O23.5 (5)
C1—N1—C2—C3179.6 (4)C2—C3—C4—O12.1 (6)
N1—N2—N3—C30.3 (4)C2—C3—C4—O2178.0 (4)
N2—N3—C3—C20.2 (4)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z1; (iii) x+2, y, z+2; (iv) x+1, y+1, z+1; (v) x+1, y, z+1; (vi) x1, y, z; (vii) x+1, y, z+2; (viii) x+1, y+1, z+2; (ix) x+1, y, z+1; (x) x1, y, z1; (xi) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1xi0.962.593.509 (5)160
C5—H5B···O1vi0.962.393.277 (5)153
Symmetry codes: (vi) x1, y, z; (xi) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC5H7N3O2
Mr141.14
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.697 (1), 7.1314 (11), 8.6825 (16)
α, β, γ (°)71.053 (16), 86.865 (15), 76.528 (14)
V3)324.37 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.15 × 0.10 × 0.05
Data collection
DiffractometerOxford Xcalibur Eos (Nova) CCD detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6915, 1108, 800
Rint0.049
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.173, 1.13
No. of reflections1108
No. of parameters93
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.23

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2009), CrysAlis PRO RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.962.593.509 (5)160
C5—H5B···O1ii0.962.393.277 (5)153
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z.
 

Acknowledgements

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the IRHPA–DST program at IISc. We thank Professor T. N. Guru Row, IISc, Bangalore, for the data collection. F·NK thanks the DST for Fast Track Proposal funding.

References

First citationBeitelman, A. D., Sieracki, N. A., Zeller, M. & Ferrence, G. M. (2007). Acta Cryst. E63, o2739–o2741.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDehne, H. (1994). Editor. Methoden der Organischen Chemie, 8th ed., pp. 305–405. Stuttgart: Thieme.  Google Scholar
First citationFan, W.-Q. & Katritzky, A. R. (1996). Comprehensive Heterocyclic Chemistry II, Vol. 4, edited by A. R. Katritzky, C. W. Rees & E. F. V Scriven, pp. 1–126. Oxford: Pergamon.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGenin, M. J., Allwine, D. A., Anderson, D. J., Barbachyn, M. R., Emmert, D. E., Garmon, S. A., Graber, D. R., Grega, K. C., Hester, J. B., Hutchinson, D. K., Morris, J., Reischer, R. J., Ford, C. W., Zurenko, G. E., Hamel, J. C., Schaadt, R. D., Stapert, D. & Yagi, B. H. (2000). J. Med. Chem. 43, 953–970.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJabli, H., Ouazzani Chahdi, F., Saffon, N., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o231.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPrabakaran, K., Hathwar, V. R., Maiyalagan, T., Kirthana, M. V. & Khan, F. N. (2009a). Acta Cryst. E65, o1752.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPrabakaran, K., Maiyalagan, T., Hathwar, V. R., Kazak, C. & Khan, F. N. (2009b). Acta Cryst. E65, o300.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVelazquez, S., Alvarez, R., Perez, C., Gago, F., De, C., Balzarini, J. & Camaraza, M. (1998). J. Antivir. Chem. Chemother. 9, 481–489.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds