organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[2-(Methyl­amino)­benzo­yl]-2,3,4,9-tetra­hydro-1H-pyrido[3,4-b]indol-1-one

aDepartment of Chemistry, Biology and Agriculture, Anshun University, Anshun 561000, People's Republic of China
*Correspondence e-mail: lilin912@126.com

(Received 3 May 2010; accepted 24 May 2010; online 29 May 2010)

The title compound, C19H17N3O2, was obtained from fruits of Evodia Rutaecarpa. In the solid state, the dihedral angle between the 2,3,4,9-tetra­hydro-1H-pyrido[3,4-b]indol-1-one (tetra­hydro-β-carbolinone) unit and the benzoyl ring is 61.46 (3)°. In the crystal, dimers are formed through inter­molecular N—H⋯O hydrogen-bonding inter­actions. In addition, intra­molecular N—H⋯O hydrogen bonds are also observed. C—H⋯π contacts connect the dimers, leading to the formation of a three-dimensional supra­molecular network.

Related literature

For general background to tetra­hydro-β-carbolinone derivatives, see: Jokela & Lounasmaa (1987[Jokela, R. & Lounasmaa, M. (1987). Tetrahedron, 43, 6001-6006.]); Vicente et al. (2008[Vicente, J., Saura-Llamas, I. & Garcia-Lopez, J. A. (2008). Organometallics, 28, 448-464.]); Yamada et al. (1986[Yamada, F., Saida, Y. & Somei, M. (1986). Heterocycles, 24, 2619-2627.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a related structure, see: Wakchaure et al. (2009[Wakchaure, P. B., Puranik, V. G. & Argade, N. P. (2009). Tetrahedron Asymmetry, 20, 220-224.]). For graph-set notation for hydrogen bonds, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C19H17N3O2

  • Mr = 319.36

  • Triclinic, [P \overline 1]

  • a = 6.9255 (14) Å

  • b = 8.8596 (18) Å

  • c = 14.158 (3) Å

  • α = 105.86 (3)°

  • β = 99.19 (3)°

  • γ = 96.78 (3)°

  • V = 812.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.28 × 0.24 × 0.19 mm

Data collection
  • Rigaku/MSC Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.985, Tmax = 0.996

  • 6534 measured reflections

  • 2927 independent reflections

  • 1612 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.190

  • S = 0.94

  • 2927 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C13–C18 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.02 2.812 (3) 153
N3—H3A⋯O2 0.86 2.15 2.771 (3) 129
C10A—H10ACg2ii 0.97 2.86 3.692 (3) 144
C19B—H19BCg1iii 0.96 2.88 3.586 (5) 132
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x, -y+2, -z+2; (iii) -x, -y+1, -z+2.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, C19H17N3O2, is a tetrahydro-beta-carbolinone derivative isolated from the fruits of Evodia rutaecarpa. The tetrahydro-beta-carbolinone ring is a structural unit found in natural products. It possesses significant biological activities and plays an important role as an intermediate for the synthesis of more complex alkaloids and further functionalized polycyclic systems of biological interest (Yamada et al., 1986; Jokela et al., 1987; Vicente et al., 2008). Herein, the conformation of the title compound has been determined by single-crystal analysis and further confirmed by mp, IR, and NMR.

As depicted in Fig. 1, the structure of the title compound, is made up of a 2-(methylamino)benzoyl ring and a tetrahydro-beta-carbolinone ring. Bond distances (Allen et al., 1987) and angles are as expected and agree with the corresponding bond distances and angles reported in a related compound (Wakchaure et al., 2009). The tetrahydro-beta-carbolinone ring adopts a twist conformation with atom C10 displaced by 0.547 (2) Å from the plane defined by the atoms C1-C9/C11/N1/N2. The dihedral angle between the benzoyl (C12-C18) and the tetrahydro-beta-carbolinone ring (C1-C9/C11/N1/N2) is 61.46 (3)°. An intramolecular N—H···O hydrogen bonding interactions is observed in the title compound. Two pairs of intermolecular N—H···O hydrogen bonding interactions [graph set motif is R22(10)] lead to the formation of a dimer (Bernstein et al., 1995) (Table 1). Finally, the dimers are linked into a three-dimensional supramolecular network through C—H···π stacking interactions (Fig. 2). The H-to-centroid distances of H11A···Cg1i = 3.668 (2), H10A···Cg2ii = 2.865 (3), H5···Cg2iii = 3.082 (4) and H19B···Cg1iv = 2.876 (2) Å [Cg1 and Cg2 are the centroids of the C1, C2, C3, C4, C5, C6 ring, and C13, C14, C15, C16, C17, C18 ring, respectively. Symmetry codes: (i)-1+x, y, z; (ii)-x, 2-y, 2-z; (iii)1-x, 1-y, 2-z; (iv)-x, 1-y, 2-y].

Related literature top

For general background to tetrahydro-β-carbolinone derivatives, see: Jokela et al. (1987); Vicente et al. (2008); Yamada et al. (1986). For bond-length data, see: Allen et al. (1987). For a related structure, see: Wakchaure et al. (2009). For graph-set notation for hydrogen bonds, see: Bernstein et al. (1995).

Experimental top

Dried and powdered fruits (10 kg) of Evodia rutaecarpa (juss.) were extracted with 80% EtOH (10000 mL) under reflux with a soxhlet extractor. After removing the solvent, the extract (2136 g) was suspended with water and partitioned with petroleum ether (333K-363K boiling range), CHCl3, EtOAc and n-BuOH, successively. The CHCl3 extract was evaporated to give 158 g of residues, which were separated on a silica gel (200-300 mesh) column by elution with CHCl3-MeOH (20:1 to 2:1) increasing polarity to give 30 fractions (2000 mL per fraction). The title compound (500 mg) was isolated from the fractions 20-22 (yield 0.32%). Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in CHCl3 at room temperature. [m.p. 476-478 K; IR(KBr, cm-1): 3692(s), 3219(s), 3074(s), 2943(m), 1788(s), 1629(vs), 1510(m); 1H NMR (CDCl3) δ 10.00 (s, 1H), 7.62 (d, J = 8.0, 2H), 7.36-7.49 (m, 2H), 7.15-7.29 (m, 3H), 7.00 (d, J = 8.4, 1H), 6.80 (d, J = 8.4, 1H), 6.53 (t, J = 7.2, 1H), 4.20 (t, J = 6.4, 2H), 3.21 (t, J = 6.4, 2H), 2.98 (d, J = 4.2, 3H); 13C NMR (CDCl3) δ 175.8, 162.1, 151.1, 138.6, 134.5, 132.4, 126.2, 126.1, 124.9, 122.8, 120.7, 120.6, 116.1, 114.7, 113.1, 111.1, 47.5, 29.8, 21.2].

Refinement top

All H atoms were located on the difference maps, and were treated as riding atoms with C/N—H distances of 0.93, 0.96, 0.97 and 0.86 Å, for aryl, methyl, methine and amino groups, respectively, with Uiso(H) = 1.5Ueq (methyl C-atoms) and 1.2Ueq (non-methyl C-atoms). The hightest peak is located 0.62 Å from C1 and the deepest hole is located 0.96 Å from H11B.

Structure description top

The title compound, C19H17N3O2, is a tetrahydro-beta-carbolinone derivative isolated from the fruits of Evodia rutaecarpa. The tetrahydro-beta-carbolinone ring is a structural unit found in natural products. It possesses significant biological activities and plays an important role as an intermediate for the synthesis of more complex alkaloids and further functionalized polycyclic systems of biological interest (Yamada et al., 1986; Jokela et al., 1987; Vicente et al., 2008). Herein, the conformation of the title compound has been determined by single-crystal analysis and further confirmed by mp, IR, and NMR.

As depicted in Fig. 1, the structure of the title compound, is made up of a 2-(methylamino)benzoyl ring and a tetrahydro-beta-carbolinone ring. Bond distances (Allen et al., 1987) and angles are as expected and agree with the corresponding bond distances and angles reported in a related compound (Wakchaure et al., 2009). The tetrahydro-beta-carbolinone ring adopts a twist conformation with atom C10 displaced by 0.547 (2) Å from the plane defined by the atoms C1-C9/C11/N1/N2. The dihedral angle between the benzoyl (C12-C18) and the tetrahydro-beta-carbolinone ring (C1-C9/C11/N1/N2) is 61.46 (3)°. An intramolecular N—H···O hydrogen bonding interactions is observed in the title compound. Two pairs of intermolecular N—H···O hydrogen bonding interactions [graph set motif is R22(10)] lead to the formation of a dimer (Bernstein et al., 1995) (Table 1). Finally, the dimers are linked into a three-dimensional supramolecular network through C—H···π stacking interactions (Fig. 2). The H-to-centroid distances of H11A···Cg1i = 3.668 (2), H10A···Cg2ii = 2.865 (3), H5···Cg2iii = 3.082 (4) and H19B···Cg1iv = 2.876 (2) Å [Cg1 and Cg2 are the centroids of the C1, C2, C3, C4, C5, C6 ring, and C13, C14, C15, C16, C17, C18 ring, respectively. Symmetry codes: (i)-1+x, y, z; (ii)-x, 2-y, 2-z; (iii)1-x, 1-y, 2-z; (iv)-x, 1-y, 2-y].

For general background to tetrahydro-β-carbolinone derivatives, see: Jokela et al. (1987); Vicente et al. (2008); Yamada et al. (1986). For bond-length data, see: Allen et al. (1987). For a related structure, see: Wakchaure et al. (2009). For graph-set notation for hydrogen bonds, see: Bernstein et al. (1995).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the tile compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Packing diagram of the title compound; N—H···O and C—H···π interactions are shown as dashed lines. The H-atoms not involved in H-bonds have been excluded for clarity.
2-[2-(Methylamino)benzoyl]-2,3,4,9-tetrahydro-1H- pyrido[3,4-b]indol-1-one top
Crystal data top
C19H17N3O2Z = 2
Mr = 319.36F(000) = 336
Triclinic, P1Dx = 1.305 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9255 (14) ÅCell parameters from 2895 reflections
b = 8.8596 (18) Åθ = 2.4–27.9°
c = 14.158 (3) ŵ = 0.09 mm1
α = 105.86 (3)°T = 293 K
β = 99.19 (3)°Block, colorless
γ = 96.78 (3)°0.28 × 0.24 × 0.19 mm
V = 812.9 (3) Å3
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
2927 independent reflections
Radiation source: fine-focus sealed tube1612 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω scansθmax = 25.2°, θmin = 3.0°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 88
Tmin = 0.985, Tmax = 0.996k = 1010
6534 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.190H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.1107P)2]
where P = (Fo2 + 2Fc2)/3
2927 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C19H17N3O2γ = 96.78 (3)°
Mr = 319.36V = 812.9 (3) Å3
Triclinic, P1Z = 2
a = 6.9255 (14) ÅMo Kα radiation
b = 8.8596 (18) ŵ = 0.09 mm1
c = 14.158 (3) ÅT = 293 K
α = 105.86 (3)°0.28 × 0.24 × 0.19 mm
β = 99.19 (3)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
2927 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
1612 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.996Rint = 0.051
6534 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.190H-atom parameters constrained
S = 0.94Δρmax = 0.27 e Å3
2927 reflectionsΔρmin = 0.21 e Å3
218 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2343 (4)0.4889 (3)0.70272 (18)0.0617 (7)
C20.2159 (5)0.4684 (4)0.5997 (2)0.0770 (9)
H20.12000.51140.56660.092*
C30.3387 (6)0.3854 (4)0.5487 (2)0.0887 (10)
H30.32640.37210.48040.106*
C40.4830 (5)0.3197 (4)0.5969 (2)0.0866 (10)
H40.56490.26350.55980.104*
C50.5079 (5)0.3355 (4)0.6977 (2)0.0735 (8)
H50.60450.29120.72940.088*
C60.3818 (4)0.4208 (3)0.74992 (18)0.0594 (7)
C70.2266 (4)0.5475 (3)0.86524 (17)0.0548 (6)
C80.1368 (4)0.5674 (3)0.77794 (17)0.0577 (7)
C90.1926 (4)0.6229 (3)0.96382 (18)0.0548 (6)
C100.1135 (4)0.6735 (3)0.86977 (18)0.0663 (8)
H10A0.20080.75210.87660.080*
H10B0.19240.57100.86150.080*
C110.0254 (4)0.6657 (3)0.77798 (19)0.0653 (7)
H11A0.12740.61830.71800.078*
H11B0.02790.77220.77850.078*
C120.0042 (4)0.8140 (3)1.05117 (19)0.0619 (7)
C130.1735 (4)0.9081 (3)1.13003 (18)0.0574 (7)
C140.3506 (4)0.9590 (3)1.1046 (2)0.0702 (8)
H140.36180.92711.03770.084*
C150.5093 (5)1.0544 (4)1.1747 (3)0.0836 (9)
H150.62561.08781.15560.100*
C160.4929 (5)1.0999 (4)1.2738 (3)0.0851 (10)
H160.59951.16441.32210.102*
C170.3211 (5)1.0511 (3)1.3023 (2)0.0747 (8)
H170.31451.08121.36990.090*
C180.1559 (4)0.9570 (3)1.2313 (2)0.0632 (7)
N30.0158 (4)0.9133 (3)1.26093 (17)0.0823 (8)
H3A0.11700.85991.21550.099*
C190.0355 (6)0.9518 (5)1.3638 (2)0.1037 (12)
H19A0.05670.90421.39970.156*
H19B0.16830.91181.36730.156*
H19C0.00811.06531.39320.156*
N10.3747 (3)0.4570 (2)0.84953 (14)0.0602 (6)
H10.44870.42860.89420.072*
N20.0427 (3)0.7161 (2)0.96226 (14)0.0580 (6)
O10.2882 (3)0.6119 (2)1.04134 (12)0.0657 (6)
O20.1687 (3)0.8243 (3)1.05672 (15)0.0893 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0664 (17)0.0531 (15)0.0562 (14)0.0014 (13)0.0004 (13)0.0120 (12)
C20.091 (2)0.073 (2)0.0555 (15)0.0042 (17)0.0020 (15)0.0132 (14)
C30.111 (3)0.087 (2)0.0566 (16)0.006 (2)0.0125 (17)0.0095 (16)
C40.093 (2)0.079 (2)0.0716 (18)0.0041 (19)0.0208 (17)0.0021 (16)
C50.075 (2)0.0658 (18)0.0662 (17)0.0124 (16)0.0087 (14)0.0012 (14)
C60.0629 (17)0.0474 (14)0.0570 (14)0.0029 (13)0.0020 (12)0.0063 (11)
C70.0600 (16)0.0443 (13)0.0543 (13)0.0100 (12)0.0028 (11)0.0097 (11)
C80.0591 (16)0.0496 (14)0.0581 (14)0.0044 (12)0.0005 (12)0.0147 (11)
C90.0592 (16)0.0419 (13)0.0584 (14)0.0057 (12)0.0027 (12)0.0135 (11)
C100.0605 (17)0.0638 (17)0.0670 (15)0.0118 (14)0.0026 (13)0.0152 (13)
C110.0675 (18)0.0577 (16)0.0645 (15)0.0097 (13)0.0050 (13)0.0187 (13)
C120.0575 (17)0.0591 (16)0.0663 (16)0.0117 (14)0.0125 (13)0.0136 (13)
C130.0552 (16)0.0473 (14)0.0645 (15)0.0109 (12)0.0073 (12)0.0103 (12)
C140.0646 (18)0.0565 (17)0.0818 (18)0.0031 (14)0.0148 (14)0.0110 (14)
C150.065 (2)0.067 (2)0.103 (2)0.0049 (16)0.0143 (17)0.0084 (17)
C160.067 (2)0.067 (2)0.096 (2)0.0014 (16)0.0019 (17)0.0001 (17)
C170.076 (2)0.0574 (18)0.0745 (17)0.0078 (16)0.0021 (15)0.0017 (14)
C180.0668 (18)0.0473 (15)0.0693 (16)0.0097 (13)0.0095 (14)0.0098 (12)
N30.0802 (18)0.0838 (19)0.0691 (15)0.0047 (14)0.0190 (13)0.0058 (13)
C190.115 (3)0.108 (3)0.075 (2)0.003 (2)0.032 (2)0.0076 (19)
N10.0659 (14)0.0553 (13)0.0525 (12)0.0156 (11)0.0008 (10)0.0090 (10)
N20.0559 (13)0.0546 (13)0.0583 (12)0.0138 (10)0.0014 (9)0.0122 (10)
O10.0756 (13)0.0635 (12)0.0550 (10)0.0205 (10)0.0005 (9)0.0170 (9)
O20.0582 (13)0.1167 (19)0.0800 (13)0.0174 (12)0.0118 (10)0.0079 (12)
Geometric parameters (Å, º) top
C1—C21.402 (4)C11—H11A0.9700
C1—C61.416 (3)C11—H11B0.9700
C1—C81.417 (4)C12—O21.225 (3)
C2—C31.357 (5)C12—N21.405 (3)
C2—H20.9300C12—C131.470 (4)
C3—C41.393 (5)C13—C141.391 (4)
C3—H30.9300C13—C181.410 (3)
C4—C51.375 (4)C14—C151.371 (4)
C4—H40.9300C14—H140.9300
C5—C61.392 (4)C15—C161.378 (4)
C5—H50.9300C15—H150.9300
C6—N11.369 (3)C16—C171.376 (5)
C7—C81.358 (3)C16—H160.9300
C7—N11.383 (3)C17—C181.402 (4)
C7—C91.443 (3)C17—H170.9300
C8—C111.500 (3)C18—N31.371 (4)
C9—O11.222 (3)N3—C191.435 (3)
C9—N21.402 (3)N3—H3A0.8600
C10—N21.486 (3)C19—H19A0.9600
C10—C111.510 (4)C19—H19B0.9600
C10—H10A0.9700C19—H19C0.9600
C10—H10B0.9700N1—H10.8600
C2—C1—C6118.2 (3)H11A—C11—H11B108.3
C2—C1—C8134.9 (2)O2—C12—N2118.4 (2)
C6—C1—C8106.9 (2)O2—C12—C13123.1 (2)
C3—C2—C1119.7 (3)N2—C12—C13118.4 (2)
C3—C2—H2120.2C14—C13—C18118.9 (3)
C1—C2—H2120.2C14—C13—C12120.0 (2)
C2—C3—C4121.0 (3)C18—C13—C12120.9 (3)
C2—C3—H3119.5C15—C14—C13122.4 (3)
C4—C3—H3119.5C15—C14—H14118.8
C5—C4—C3122.0 (3)C13—C14—H14118.8
C5—C4—H4119.0C14—C15—C16118.6 (3)
C3—C4—H4119.0C14—C15—H15120.7
C4—C5—C6116.9 (3)C16—C15—H15120.7
C4—C5—H5121.6C17—C16—C15120.9 (3)
C6—C5—H5121.6C17—C16—H16119.5
N1—C6—C5129.6 (2)C15—C16—H16119.5
N1—C6—C1108.2 (2)C16—C17—C18121.1 (3)
C5—C6—C1122.2 (2)C16—C17—H17119.4
C8—C7—N1110.7 (2)C18—C17—H17119.4
C8—C7—C9126.2 (2)N3—C18—C17120.3 (3)
N1—C7—C9122.8 (2)N3—C18—C13121.7 (3)
C7—C8—C1106.7 (2)C17—C18—C13118.0 (3)
C7—C8—C11119.7 (2)C18—N3—C19123.4 (3)
C1—C8—C11133.5 (2)C18—N3—H3A118.3
O1—C9—N2123.0 (2)C19—N3—H3A118.3
O1—C9—C7124.0 (2)N3—C19—H19A109.5
N2—C9—C7113.0 (2)N3—C19—H19B109.5
N2—C10—C11111.7 (2)H19A—C19—H19B109.5
N2—C10—H10A109.3N3—C19—H19C109.5
C11—C10—H10A109.3H19A—C19—H19C109.5
N2—C10—H10B109.3H19B—C19—H19C109.5
C11—C10—H10B109.3C6—N1—C7107.50 (19)
H10A—C10—H10B107.9C6—N1—H1126.3
C8—C11—C10109.1 (2)C7—N1—H1126.3
C8—C11—H11A109.9C9—N2—C12121.4 (2)
C10—C11—H11A109.9C9—N2—C10117.8 (2)
C8—C11—H11B109.9C12—N2—C10118.2 (2)
C10—C11—H11B109.9
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C13–C18 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.022.812 (3)153
N3—H3A···O20.862.152.771 (3)129
C10A—H10A···Cg2ii0.972.863.692 (3)144
C19B—H19B···Cg1iii0.962.883.586 (5)132
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+2, z+2; (iii) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC19H17N3O2
Mr319.36
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.9255 (14), 8.8596 (18), 14.158 (3)
α, β, γ (°)105.86 (3), 99.19 (3), 96.78 (3)
V3)812.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.28 × 0.24 × 0.19
Data collection
DiffractometerRigaku/MSC Mercury CCD
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.985, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
6534, 2927, 1612
Rint0.051
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.190, 0.94
No. of reflections2927
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.21

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C13–C18 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.022.812 (3)152.6
N3—H3A···O20.862.152.771 (3)129.2
C10A—H10A···Cg2ii0.972.863.692 (3)144
C19B—H19B···Cg1iii0.962.883.586 (5)132
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+2, z+2; (iii) x, y+1, z+2.
 

Acknowledgements

The authors acknowledge Anshun University for supporting this work.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationJokela, R. & Lounasmaa, M. (1987). Tetrahedron, 43, 6001–6006.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVicente, J., Saura-Llamas, I. & Garcia-Lopez, J. A. (2008). Organometallics, 28, 448–464.  Web of Science CSD CrossRef Google Scholar
First citationWakchaure, P. B., Puranik, V. G. & Argade, N. P. (2009). Tetrahedron Asymmetry, 20, 220–224.  Web of Science CSD CrossRef CAS Google Scholar
First citationYamada, F., Saida, Y. & Somei, M. (1986). Heterocycles, 24, 2619–2627.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds