organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(9-Anthrylmethyl­­idene­amino)-4-methyl­phenol

aDepartment of Chemistry, Whittier College, 13406 Philadelphia Street, Whittier, CA 90608, USA, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
*Correspondence e-mail: risovits@whittier.edu

(Received 4 May 2010; accepted 6 May 2010; online 15 May 2010)

The title compound, C22H17NO, is a novel Schiff base synthesized via a condensation reaction between 9-anthracenecarboxaldehyde and 2-amino-p-cresol. The asymmetric unit contains two independent mol­ecules that are joined by an O—H⋯OH hydrogen bond. An intra­molecular O—H⋯N hydrogen bond occurs in each mol­ecule. π-stacking about inversion centers was observed between adjacent phenol rings [centroid–centroid distance = 3.850 (2) Å] and adjacent anthracene rings [centroid–centroid distance = 3.834 (2) Å]. The C—N=C—C torsion angles between the phenol and anthracene rings are close to 180° with values of 174.06 (15) and 179.85 (14)°.

Related literature

For related structures, see: De et al. (2008[De, R. L., Mandal, M., Roy, L. & Mukherjee, J. (2008). Indian J. Chem. Sect. A, 47, 207-213.]); Ünver et al. (2009[Ünver, H., Yildiz, M., Kiraz, A. & Özgen, Ö. (2009). J. Chem. Crystallogr. 39, 17-23.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammmer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to the use of luminescent metal complexes formed by Schiff bases in light emitting diode construction and solar energy collection, see: Liao et al. (2009[Liao, S.-H., Shiu, J.-R., Liu, S.-W., Yeh, S.-J., Chen, Y.-H., Chen, C.-T., Chow, T. J. & Wu, C.-I. (2009). J. Am. Chem. Soc. 131, 763-777.]); Mak et al. (2009[Mak, C. S. K., Wong, H. L., Leung, Q. Y., Tam, W. Y., Chan, W. K. & Djurišić, A. B. (2009). J. Organomet. Chem. 694, 2770-2776.]).

[Scheme 1]

Experimental

Crystal data
  • C22H17NO

  • Mr = 311.37

  • Triclinic, [P \overline 1]

  • a = 8.6037 (15) Å

  • b = 12.839 (3) Å

  • c = 15.015 (3) Å

  • α = 94.508 (9)°

  • β = 97.164 (11)°

  • γ = 106.490 (11)°

  • V = 1566.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 90 K

  • 0.37 × 0.15 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer with Oxford Cryostream

  • 35942 measured reflections

  • 7462 independent reflections

  • 4454 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.127

  • S = 1.02

  • 7462 reflections

  • 442 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H10H⋯N1 0.82 (2) 2.27 (2) 2.754 (2) 118.0 (17)
O2—H20H⋯O1 0.86 (2) 2.11 (2) 2.8602 (18) 144.9 (18)
O2—H20H⋯N2 0.86 (2) 2.17 (2) 2.695 (2) 119.1 (17)

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff bases can form luminescent metal complexes that are used in research areas that range from light emitting diode construction to solar energy collection (Liao et al., 2009; Mak et al., 2009). Our research explores the synthesis and photophysics of novel anthracenyl Schiff bases and their metal complexes toward the goal of utilizing them in the preparation of light emitting diodes.

The structure of the title compound is shown in Figure 1. The asymmetric unit is comprised of two independent molecules of the title compound joined together by a hydrogen bond of length 2.8602 (18) Å, which is formed from the interaction of the OH groups on the phenol rings. π-stacking about inversion centers was observed between adjacent phenol rings with a centroid-centroid distance of 3.850 Å and between adjacent anthracene rings with a centroid-centroid distance of 3.834 Å.

There is slight variation in the bond lengths and angles of the two independent molecules. The central C—N double bond, C15—N1, has a bond length of 1.280 (2) Å. This bond length is close to the literature value of 1.279 Å for a C(sp2)N(sp2) bond (Allen et al., 1987). The C—C bond, C1—C15 and C23—C37, that connects the anthracene to the central C—N double bond has bond lengths of 1.477 (2) and 1.470 (2) Å, respectively. The C—N bond, N1—C16 and N2—C38, that connects the phenyl ring to the central C—N double bond has bond lengths of 1.419 (2) and 1.414 (2) Å, respectively. The phenol ring has a C—O bond, O1—C17 and O2—C39, with a bond length of 1.368 (2) and 1.371 (2) Å. The bond angles of the nitrogen and carbon atoms of the central C—N double bond were 118.53 (15); 119.84 (15)° and 123.23 (16); 123.46 (16)°, which indicate the sp2 hybridization of these atoms. The observed bond lengths and angles compare well with those found in similar compounds (Ünver et al., 2008; De et al., 2008). The angles between the planes of the anthracene and phenyl rings, C16—N1—C15—C1 and C38—N2—C37—C23, are 174.06 (15) and 179.85 (14)°, respectively.

Related literature top

For related structures, see: De et al. (2008); Ünver et al. (2009). For bond-length data, see: Allen et al. (1987). For background to the use of luminescent metal complexes formed by Schiff bases in light emitting diode construction and solar energy collection, see: Liao et al. (2009); Mak et al. (2009).

Experimental top

Synthetic procedures were carried out using standard techniques. Solvents and reagents were used as received. The melting point was determined in open capillaries and is uncorrected. 1H and 13C NMR spectra were recorded on a JEOL ECX 300 MHz spectrometer using TMS as the internal standard. The IR spectrum was recorded as a KBr disk on a JASCO 460 FTIR. Mass spectrometry was provided by the Washington University Mass Spectrometry Resource with support from the NIH National Center for Research Resources (Grant No. P41RR0954).

The title compound was synthesized using a modification of the method of De et al. (2008). 20 ml of methanol, 9-anthracenecarboxaldehyde (0.251 g, 1.22 mmol), and 2-amino-p-cresol (0.124 g, 1.01 mmol), and four drops of acetic acid were added to a 50 ml round bottom flask with a magnetic stir bar. The solution was refluxed for 1.5 hours until it was a bright orange color. The solution was then gravity filtered hot and allowed to slowly cool, yielding 0.185 g (59% yield) of bright orange-yellow needle-like crystals.

MP 170-174° C; IR (KBr disk) 3465, 3356, 3052, 3018, 2922, 2860, 1604, 1502 cm–1; 1H NMR (300 MHz, CDCl3) ppm 9.84 (s, 1H), 8.69 (d, 2H), 8.51 (s, 1H), 8.02 (d, 2H), 7.54 (m, 5H), 7.31 (s, 1H), 7.11 (m, 1H), 7.02 (d, 1H), 2.43 (s, 3H); 13C NMR (75 MHz, CDCl3) ppm 157.8, 150.0, 137.9, 131.5, 130.6, 130.5, 129.1, 129.0, 128.9, 128.1, 127.2, 125.6, 125.2, 118.3, 115.4, 21.1; EI—HR—MS: m/z for [M+H]+ = 312.1373, Calcd. m/z for [M+H]+ = 312.1388.

Refinement top

Hydrogen atoms on C were placed in idealized positions with C—H bond distances 0.95 - 0.98 Å and thereafter treated as riding. Displacement parameters for H were assigned as Uiso = 1.2Ueq of the attached atom (1.5 for methyl and OH). A torsional parameter was refined for each methyl group, and OH hydrogen positions were refined.

Structure description top

Schiff bases can form luminescent metal complexes that are used in research areas that range from light emitting diode construction to solar energy collection (Liao et al., 2009; Mak et al., 2009). Our research explores the synthesis and photophysics of novel anthracenyl Schiff bases and their metal complexes toward the goal of utilizing them in the preparation of light emitting diodes.

The structure of the title compound is shown in Figure 1. The asymmetric unit is comprised of two independent molecules of the title compound joined together by a hydrogen bond of length 2.8602 (18) Å, which is formed from the interaction of the OH groups on the phenol rings. π-stacking about inversion centers was observed between adjacent phenol rings with a centroid-centroid distance of 3.850 Å and between adjacent anthracene rings with a centroid-centroid distance of 3.834 Å.

There is slight variation in the bond lengths and angles of the two independent molecules. The central C—N double bond, C15—N1, has a bond length of 1.280 (2) Å. This bond length is close to the literature value of 1.279 Å for a C(sp2)N(sp2) bond (Allen et al., 1987). The C—C bond, C1—C15 and C23—C37, that connects the anthracene to the central C—N double bond has bond lengths of 1.477 (2) and 1.470 (2) Å, respectively. The C—N bond, N1—C16 and N2—C38, that connects the phenyl ring to the central C—N double bond has bond lengths of 1.419 (2) and 1.414 (2) Å, respectively. The phenol ring has a C—O bond, O1—C17 and O2—C39, with a bond length of 1.368 (2) and 1.371 (2) Å. The bond angles of the nitrogen and carbon atoms of the central C—N double bond were 118.53 (15); 119.84 (15)° and 123.23 (16); 123.46 (16)°, which indicate the sp2 hybridization of these atoms. The observed bond lengths and angles compare well with those found in similar compounds (Ünver et al., 2008; De et al., 2008). The angles between the planes of the anthracene and phenyl rings, C16—N1—C15—C1 and C38—N2—C37—C23, are 174.06 (15) and 179.85 (14)°, respectively.

For related structures, see: De et al. (2008); Ünver et al. (2009). For bond-length data, see: Allen et al. (1987). For background to the use of luminescent metal complexes formed by Schiff bases in light emitting diode construction and solar energy collection, see: Liao et al. (2009); Mak et al. (2009).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit with ellipsoids at the 50% probability level and H atoms having arbitrary radius.
2-(9-Anthrylmethylideneamino)-4-methylphenol top
Crystal data top
C22H17NOZ = 4
Mr = 311.37F(000) = 656
Triclinic, P1Dx = 1.320 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6037 (15) ÅCell parameters from 7377 reflections
b = 12.839 (3) Åθ = 2.5–27.8°
c = 15.015 (3) ŵ = 0.08 mm1
α = 94.508 (9)°T = 90 K
β = 97.164 (11)°Lath, yellow
γ = 106.490 (11)°0.37 × 0.15 × 0.05 mm
V = 1566.6 (6) Å3
Data collection top
Nonius KappaCCD
diffractometer with Oxford Cryostream
4454 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.057
Graphite monochromatorθmax = 27.9°, θmin = 2.5°
ω scans with κ offsetsh = 1111
35942 measured reflectionsk = 1616
7462 independent reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0571P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
7462 reflectionsΔρmax = 0.30 e Å3
442 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0034 (10)
Crystal data top
C22H17NOγ = 106.490 (11)°
Mr = 311.37V = 1566.6 (6) Å3
Triclinic, P1Z = 4
a = 8.6037 (15) ÅMo Kα radiation
b = 12.839 (3) ŵ = 0.08 mm1
c = 15.015 (3) ÅT = 90 K
α = 94.508 (9)°0.37 × 0.15 × 0.05 mm
β = 97.164 (11)°
Data collection top
Nonius KappaCCD
diffractometer with Oxford Cryostream
4454 reflections with I > 2σ(I)
35942 measured reflectionsRint = 0.057
7462 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.30 e Å3
7462 reflectionsΔρmin = 0.28 e Å3
442 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.30490 (15)0.14730 (11)0.20434 (9)0.0223 (3)
H10H0.261 (2)0.1946 (17)0.2172 (14)0.033*
N10.13998 (16)0.26290 (12)0.10202 (10)0.0177 (3)
C10.0939 (2)0.44058 (15)0.09855 (11)0.0164 (4)
C20.0671 (2)0.42007 (15)0.11964 (11)0.0167 (4)
C30.1820 (2)0.31351 (16)0.10892 (12)0.0215 (4)
H30.15160.25270.08510.026*
C40.3344 (2)0.29700 (16)0.13208 (13)0.0246 (5)
H40.40840.22510.12440.029*
C50.3837 (2)0.38605 (17)0.16758 (13)0.0249 (5)
H50.48940.37330.18500.030*
C60.2806 (2)0.48933 (16)0.17677 (12)0.0213 (4)
H60.31570.54860.19940.026*
C70.1195 (2)0.51040 (15)0.15290 (11)0.0170 (4)
C80.0120 (2)0.61631 (15)0.16377 (12)0.0196 (4)
H80.04730.67540.18670.023*
C90.1462 (2)0.63784 (15)0.14184 (12)0.0181 (4)
C100.2576 (2)0.74645 (16)0.15396 (13)0.0237 (4)
H100.22250.80590.17630.028*
C110.4120 (2)0.76605 (17)0.13417 (14)0.0289 (5)
H110.48410.83860.14250.035*
C120.4657 (2)0.67730 (16)0.10083 (13)0.0262 (5)
H120.57400.69110.08700.031*
C130.3642 (2)0.57331 (16)0.08864 (13)0.0222 (4)
H130.40310.51560.06650.027*
C140.2004 (2)0.54824 (15)0.10823 (12)0.0178 (4)
C150.1512 (2)0.34955 (15)0.06342 (12)0.0181 (4)
H150.19870.35560.00950.022*
C160.1843 (2)0.17612 (14)0.05799 (12)0.0165 (4)
C170.2645 (2)0.11812 (15)0.11268 (12)0.0170 (4)
C180.3106 (2)0.03190 (15)0.07482 (12)0.0191 (4)
H180.36820.00580.11200.023*
C190.2723 (2)0.00072 (15)0.01782 (13)0.0218 (4)
H190.30610.05770.04350.026*
C200.1853 (2)0.05329 (15)0.07398 (12)0.0202 (4)
C210.1432 (2)0.14129 (16)0.03464 (12)0.0198 (4)
H210.08500.17870.07180.024*
C220.1364 (2)0.01475 (18)0.17348 (13)0.0316 (5)
H22A0.02640.03800.18430.047*
H22B0.21490.02030.19430.047*
H22C0.13590.07740.20670.047*
O20.53743 (15)0.04269 (11)0.27603 (8)0.0207 (3)
H20H0.488 (2)0.0923 (17)0.2760 (13)0.031*
N20.52578 (16)0.20557 (12)0.39729 (10)0.0168 (3)
C230.48926 (19)0.38573 (14)0.40197 (11)0.0142 (4)
C240.3154 (2)0.35684 (14)0.38026 (11)0.0150 (4)
C250.2085 (2)0.25083 (15)0.38727 (11)0.0175 (4)
H250.25400.19490.40490.021*
C260.0420 (2)0.22873 (15)0.36905 (12)0.0197 (4)
H260.02630.15780.37460.024*
C270.0304 (2)0.30931 (16)0.34210 (12)0.0205 (4)
H270.14630.29220.32900.025*
C280.0661 (2)0.41141 (16)0.33494 (12)0.0195 (4)
H280.01670.46560.31750.023*
C290.2409 (2)0.43844 (15)0.35330 (11)0.0161 (4)
C300.3395 (2)0.54295 (15)0.34506 (11)0.0172 (4)
H300.28910.59560.32490.021*
C310.5098 (2)0.57245 (14)0.36561 (11)0.0167 (4)
C320.6089 (2)0.67977 (15)0.35648 (13)0.0229 (4)
H320.55790.73200.33590.027*
C330.7750 (2)0.70842 (15)0.37681 (13)0.0236 (4)
H330.83920.78040.37090.028*
C340.8524 (2)0.63117 (15)0.40679 (12)0.0211 (4)
H340.96860.65190.42100.025*
C350.7631 (2)0.52775 (15)0.41557 (12)0.0188 (4)
H350.81810.47710.43500.023*
C360.5874 (2)0.49345 (14)0.39604 (11)0.0152 (4)
C370.5733 (2)0.30621 (15)0.43076 (12)0.0157 (4)
H370.66710.33070.47630.019*
C380.61304 (19)0.13383 (14)0.42820 (12)0.0145 (4)
C390.61383 (19)0.05028 (15)0.36290 (12)0.0157 (4)
C400.69549 (19)0.02469 (14)0.38538 (12)0.0164 (4)
H400.69830.08070.34090.020*
C410.77342 (19)0.01782 (15)0.47339 (12)0.0172 (4)
H410.83070.06900.48810.021*
C420.76957 (19)0.06220 (15)0.54060 (12)0.0172 (4)
C430.68877 (19)0.13757 (14)0.51648 (12)0.0161 (4)
H430.68500.19300.56120.019*
C440.8441 (2)0.06293 (16)0.63718 (12)0.0219 (4)
H44A0.87930.13790.66780.033*
H44B0.93910.03500.63800.033*
H44C0.76240.01630.66850.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0282 (7)0.0235 (8)0.0179 (7)0.0142 (6)0.0002 (6)0.0010 (6)
N10.0183 (8)0.0189 (9)0.0177 (8)0.0092 (6)0.0015 (6)0.0003 (7)
C10.0197 (9)0.0186 (10)0.0134 (9)0.0097 (8)0.0013 (7)0.0030 (8)
C20.0191 (9)0.0201 (10)0.0128 (9)0.0099 (8)0.0006 (7)0.0029 (8)
C30.0212 (10)0.0212 (11)0.0224 (10)0.0094 (8)0.0001 (8)0.0016 (8)
C40.0196 (9)0.0238 (11)0.0290 (11)0.0055 (8)0.0021 (8)0.0014 (9)
C50.0202 (10)0.0313 (12)0.0253 (11)0.0110 (9)0.0043 (8)0.0018 (9)
C60.0217 (10)0.0283 (12)0.0184 (10)0.0151 (9)0.0032 (8)0.0009 (8)
C70.0195 (9)0.0232 (11)0.0116 (9)0.0121 (8)0.0008 (7)0.0036 (8)
C80.0262 (10)0.0200 (11)0.0173 (10)0.0150 (8)0.0018 (8)0.0028 (8)
C90.0221 (9)0.0204 (11)0.0139 (9)0.0098 (8)0.0010 (8)0.0042 (8)
C100.0311 (11)0.0165 (10)0.0264 (11)0.0118 (8)0.0034 (9)0.0034 (9)
C110.0289 (11)0.0217 (12)0.0369 (13)0.0070 (9)0.0053 (9)0.0087 (10)
C120.0225 (10)0.0264 (12)0.0333 (12)0.0099 (9)0.0077 (9)0.0095 (10)
C130.0240 (10)0.0228 (11)0.0248 (11)0.0136 (8)0.0051 (8)0.0062 (9)
C140.0217 (9)0.0201 (11)0.0138 (9)0.0103 (8)0.0006 (7)0.0038 (8)
C150.0162 (9)0.0228 (11)0.0162 (10)0.0077 (8)0.0013 (7)0.0021 (8)
C160.0151 (8)0.0163 (10)0.0194 (10)0.0056 (7)0.0054 (7)0.0016 (8)
C170.0163 (9)0.0159 (10)0.0176 (10)0.0033 (7)0.0029 (8)0.0000 (8)
C180.0176 (9)0.0169 (10)0.0232 (11)0.0067 (8)0.0002 (8)0.0030 (8)
C190.0168 (9)0.0189 (11)0.0287 (11)0.0045 (8)0.0057 (8)0.0043 (9)
C200.0148 (9)0.0242 (11)0.0191 (10)0.0030 (8)0.0034 (8)0.0034 (8)
C210.0166 (9)0.0244 (11)0.0188 (10)0.0060 (8)0.0027 (8)0.0052 (8)
C220.0275 (11)0.0411 (14)0.0234 (11)0.0081 (10)0.0041 (9)0.0059 (10)
O20.0236 (7)0.0198 (8)0.0208 (7)0.0118 (6)0.0003 (6)0.0000 (6)
N20.0180 (8)0.0160 (9)0.0193 (8)0.0086 (6)0.0051 (6)0.0032 (7)
C230.0185 (9)0.0141 (10)0.0117 (9)0.0076 (7)0.0028 (7)0.0001 (7)
C240.0202 (9)0.0162 (10)0.0101 (9)0.0083 (7)0.0025 (7)0.0003 (7)
C250.0201 (9)0.0177 (10)0.0179 (10)0.0092 (8)0.0052 (8)0.0036 (8)
C260.0195 (9)0.0170 (10)0.0214 (10)0.0032 (8)0.0048 (8)0.0000 (8)
C270.0148 (9)0.0281 (12)0.0193 (10)0.0085 (8)0.0007 (8)0.0017 (8)
C280.0213 (9)0.0255 (11)0.0157 (10)0.0142 (8)0.0006 (8)0.0021 (8)
C290.0210 (9)0.0204 (10)0.0095 (9)0.0107 (8)0.0021 (7)0.0003 (8)
C300.0250 (10)0.0163 (10)0.0150 (9)0.0127 (8)0.0043 (8)0.0036 (8)
C310.0243 (9)0.0143 (10)0.0139 (9)0.0079 (8)0.0060 (8)0.0017 (8)
C320.0314 (11)0.0156 (10)0.0249 (11)0.0096 (8)0.0087 (9)0.0049 (8)
C330.0300 (11)0.0115 (10)0.0286 (11)0.0031 (8)0.0100 (9)0.0006 (8)
C340.0199 (9)0.0191 (11)0.0218 (10)0.0027 (8)0.0053 (8)0.0039 (8)
C350.0209 (9)0.0195 (10)0.0176 (10)0.0084 (8)0.0048 (8)0.0005 (8)
C360.0208 (9)0.0131 (10)0.0120 (9)0.0056 (7)0.0042 (7)0.0006 (7)
C370.0154 (9)0.0185 (10)0.0145 (9)0.0067 (7)0.0028 (7)0.0021 (8)
C380.0128 (8)0.0126 (9)0.0201 (10)0.0048 (7)0.0060 (7)0.0049 (8)
C390.0124 (8)0.0190 (10)0.0149 (9)0.0028 (7)0.0023 (7)0.0036 (8)
C400.0161 (9)0.0135 (10)0.0216 (10)0.0058 (7)0.0071 (8)0.0023 (8)
C410.0136 (8)0.0162 (10)0.0254 (10)0.0064 (7)0.0071 (8)0.0089 (8)
C420.0127 (8)0.0193 (10)0.0209 (10)0.0039 (7)0.0059 (7)0.0076 (8)
C430.0157 (9)0.0134 (10)0.0190 (10)0.0037 (7)0.0043 (7)0.0007 (8)
C440.0210 (9)0.0244 (11)0.0224 (11)0.0087 (8)0.0040 (8)0.0069 (9)
Geometric parameters (Å, º) top
O1—C171.371 (2)O2—C391.368 (2)
O1—H10H0.82 (2)O2—H20H0.86 (2)
N1—C151.280 (2)N2—C371.279 (2)
N1—C161.419 (2)N2—C381.414 (2)
C1—C141.410 (2)C23—C361.417 (2)
C1—C21.416 (2)C23—C241.423 (2)
C1—C151.477 (2)C23—C371.470 (2)
C2—C31.426 (2)C24—C251.430 (2)
C2—C71.435 (2)C24—C291.434 (2)
C3—C41.361 (2)C25—C261.366 (2)
C3—H30.9500C25—H250.9500
C4—C51.417 (3)C26—C271.411 (3)
C4—H40.9500C26—H260.9500
C5—C61.356 (3)C27—C281.359 (3)
C5—H50.9500C27—H270.9500
C6—C71.431 (2)C28—C291.429 (2)
C6—H60.9500C28—H280.9500
C7—C81.395 (2)C29—C301.393 (2)
C8—C91.396 (2)C30—C311.393 (2)
C8—H80.9500C30—H300.9500
C9—C101.433 (3)C31—C321.427 (2)
C9—C141.438 (2)C31—C361.437 (2)
C10—C111.355 (3)C32—C331.359 (3)
C10—H100.9500C32—H320.9500
C11—C121.425 (3)C33—C341.414 (3)
C11—H110.9500C33—H330.9500
C12—C131.356 (3)C34—C351.358 (2)
C12—H120.9500C34—H340.9500
C13—C141.427 (2)C35—C361.434 (2)
C13—H130.9500C35—H350.9500
C15—H150.9500C37—H370.9500
C16—C211.396 (2)C38—C431.393 (2)
C16—C171.397 (2)C38—C391.397 (2)
C17—C181.383 (2)C39—C401.382 (2)
C18—C191.388 (3)C40—C411.389 (2)
C18—H180.9500C40—H400.9500
C19—C201.395 (3)C41—C421.393 (2)
C19—H190.9500C41—H410.9500
C20—C211.392 (2)C42—C431.388 (2)
C20—C221.504 (3)C42—C441.509 (2)
C21—H210.9500C43—H430.9500
C22—H22A0.9800C44—H44A0.9800
C22—H22B0.9800C44—H44B0.9800
C22—H22C0.9800C44—H44C0.9800
C17—O1—H10H106.8 (15)C39—O2—H20H105.9 (14)
C15—N1—C16118.53 (15)C37—N2—C38119.84 (15)
C14—C1—C2120.64 (16)C36—C23—C24120.39 (16)
C14—C1—C15118.97 (15)C36—C23—C37117.76 (15)
C2—C1—C15120.36 (16)C24—C23—C37121.85 (16)
C1—C2—C3123.32 (16)C23—C24—C25123.46 (16)
C1—C2—C7119.01 (16)C23—C24—C29119.12 (16)
C3—C2—C7117.67 (15)C25—C24—C29117.37 (15)
C4—C3—C2121.46 (18)C26—C25—C24121.06 (17)
C4—C3—H3119.3C26—C25—H25119.5
C2—C3—H3119.3C24—C25—H25119.5
C3—C4—C5120.64 (18)C25—C26—C27121.23 (17)
C3—C4—H4119.7C25—C26—H26119.4
C5—C4—H4119.7C27—C26—H26119.4
C6—C5—C4120.15 (17)C28—C27—C26119.87 (16)
C6—C5—H5119.9C28—C27—H27120.1
C4—C5—H5119.9C26—C27—H27120.1
C5—C6—C7121.02 (18)C27—C28—C29120.93 (17)
C5—C6—H6119.5C27—C28—H28119.5
C7—C6—H6119.5C29—C28—H28119.5
C8—C7—C6121.19 (17)C30—C29—C28120.78 (16)
C8—C7—C2119.78 (15)C30—C29—C24119.70 (15)
C6—C7—C2119.00 (16)C28—C29—C24119.53 (16)
C7—C8—C9121.78 (17)C31—C30—C29121.87 (16)
C7—C8—H8119.1C31—C30—H30119.1
C9—C8—H8119.1C29—C30—H30119.1
C8—C9—C10121.89 (17)C30—C31—C32121.12 (17)
C8—C9—C14119.11 (16)C30—C31—C36119.56 (16)
C10—C9—C14118.98 (16)C32—C31—C36119.32 (16)
C11—C10—C9121.35 (18)C33—C32—C31121.00 (18)
C11—C10—H10119.3C33—C32—H32119.5
C9—C10—H10119.3C31—C32—H32119.5
C10—C11—C12119.68 (18)C32—C33—C34120.05 (17)
C10—C11—H11120.2C32—C33—H33120.0
C12—C11—H11120.2C34—C33—H33120.0
C13—C12—C11120.79 (17)C35—C34—C33120.98 (17)
C13—C12—H12119.6C35—C34—H34119.5
C11—C12—H12119.6C33—C34—H34119.5
C12—C13—C14121.78 (18)C34—C35—C36121.33 (17)
C12—C13—H13119.1C34—C35—H35119.3
C14—C13—H13119.1C36—C35—H35119.3
C1—C14—C13122.90 (17)C23—C36—C35123.36 (16)
C1—C14—C9119.66 (15)C23—C36—C31119.28 (15)
C13—C14—C9117.42 (16)C35—C36—C31117.32 (16)
N1—C15—C1123.23 (16)N2—C37—C23122.99 (16)
N1—C15—H15118.4N2—C37—H37118.5
C1—C15—H15118.4C23—C37—H37118.5
C21—C16—C17118.71 (16)C43—C38—C39119.36 (16)
C21—C16—N1124.14 (16)C43—C38—N2125.80 (16)
C17—C16—N1117.01 (15)C39—C38—N2114.77 (16)
O1—C17—C18118.31 (16)O2—C39—C40119.20 (16)
O1—C17—C16121.24 (16)O2—C39—C38120.91 (16)
C18—C17—C16120.41 (16)C40—C39—C38119.88 (16)
C17—C18—C19119.72 (17)C39—C40—C41119.70 (17)
C17—C18—H18120.1C39—C40—H40120.2
C19—C18—H18120.1C41—C40—H40120.2
C18—C19—C20121.45 (17)C40—C41—C42121.63 (17)
C18—C19—H19119.3C40—C41—H41119.2
C20—C19—H19119.3C42—C41—H41119.2
C21—C20—C19117.80 (17)C43—C42—C41117.83 (17)
C21—C20—C22121.23 (18)C43—C42—C44121.43 (17)
C19—C20—C22120.97 (17)C41—C42—C44120.68 (16)
C20—C21—C16121.79 (17)C42—C43—C38121.54 (17)
C20—C21—H21119.1C42—C43—H43119.2
C16—C21—H21119.1C38—C43—H43119.2
C20—C22—H22A109.5C42—C44—H44A109.5
C20—C22—H22B109.5C42—C44—H44B109.5
H22A—C22—H22B109.5H44A—C44—H44B109.5
C20—C22—H22C109.5C42—C44—H44C109.5
H22A—C22—H22C109.5H44A—C44—H44C109.5
H22B—C22—H22C109.5H44B—C44—H44C109.5
C14—C1—C2—C3178.20 (16)C36—C23—C24—C25178.08 (15)
C15—C1—C2—C30.0 (3)C37—C23—C24—C252.1 (3)
C14—C1—C2—C71.3 (3)C36—C23—C24—C290.7 (2)
C15—C1—C2—C7179.45 (16)C37—C23—C24—C29179.52 (16)
C1—C2—C3—C4178.37 (17)C23—C24—C25—C26177.33 (16)
C7—C2—C3—C42.1 (3)C29—C24—C25—C260.1 (2)
C2—C3—C4—C50.2 (3)C24—C25—C26—C270.5 (3)
C3—C4—C5—C61.6 (3)C25—C26—C27—C280.8 (3)
C4—C5—C6—C71.4 (3)C26—C27—C28—C290.8 (3)
C5—C6—C7—C8178.84 (17)C27—C28—C29—C30179.40 (17)
C5—C6—C7—C20.6 (3)C27—C28—C29—C240.4 (2)
C1—C2—C7—C80.1 (2)C23—C24—C29—C302.7 (2)
C3—C2—C7—C8179.44 (16)C25—C24—C29—C30179.73 (16)
C1—C2—C7—C6178.15 (16)C23—C24—C29—C28177.46 (15)
C3—C2—C7—C62.3 (2)C25—C24—C29—C280.1 (2)
C6—C7—C8—C9179.17 (17)C28—C29—C30—C31177.71 (15)
C2—C7—C8—C91.0 (3)C24—C29—C30—C312.5 (3)
C7—C8—C9—C10179.25 (17)C29—C30—C31—C32179.78 (16)
C7—C8—C9—C140.8 (3)C29—C30—C31—C360.1 (3)
C8—C9—C10—C11178.62 (18)C30—C31—C32—C33179.82 (17)
C14—C9—C10—C110.2 (3)C36—C31—C32—C330.5 (3)
C9—C10—C11—C120.2 (3)C31—C32—C33—C340.5 (3)
C10—C11—C12—C130.0 (3)C32—C33—C34—C350.2 (3)
C11—C12—C13—C140.2 (3)C33—C34—C35—C360.9 (3)
C2—C1—C14—C13179.46 (16)C24—C23—C36—C35179.05 (15)
C15—C1—C14—C132.3 (3)C37—C23—C36—C350.8 (2)
C2—C1—C14—C91.5 (3)C24—C23—C36—C311.6 (2)
C15—C1—C14—C9179.64 (16)C37—C23—C36—C31178.21 (16)
C12—C13—C14—C1178.18 (17)C34—C35—C36—C23178.33 (16)
C12—C13—C14—C90.1 (3)C34—C35—C36—C310.8 (2)
C8—C9—C14—C10.4 (3)C30—C31—C36—C231.9 (2)
C10—C9—C14—C1178.07 (16)C32—C31—C36—C23177.74 (15)
C8—C9—C14—C13178.52 (17)C30—C31—C36—C35179.50 (15)
C10—C9—C14—C130.0 (2)C32—C31—C36—C350.1 (2)
C16—N1—C15—C1174.06 (15)C38—N2—C37—C23179.85 (14)
C14—C1—C15—N1130.13 (19)C36—C23—C37—N2142.22 (16)
C2—C1—C15—N151.7 (3)C24—C23—C37—N237.6 (2)
C15—N1—C16—C2141.7 (2)C37—N2—C38—C4335.3 (2)
C15—N1—C16—C17142.73 (16)C37—N2—C38—C39147.70 (15)
C21—C16—C17—O1178.70 (15)C43—C38—C39—O2178.51 (14)
N1—C16—C17—O12.9 (2)N2—C38—C39—O21.3 (2)
C21—C16—C17—C183.7 (2)C43—C38—C39—C402.8 (2)
N1—C16—C17—C18179.53 (15)N2—C38—C39—C40179.93 (14)
O1—C17—C18—C19179.66 (15)O2—C39—C40—C41179.96 (14)
C16—C17—C18—C192.0 (2)C38—C39—C40—C411.4 (2)
C17—C18—C19—C201.2 (3)C39—C40—C41—C421.0 (2)
C18—C19—C20—C212.4 (2)C40—C41—C42—C431.8 (2)
C18—C19—C20—C22176.54 (16)C40—C41—C42—C44175.37 (15)
C19—C20—C21—C160.6 (2)C41—C42—C43—C380.2 (2)
C22—C20—C21—C16178.34 (16)C44—C42—C43—C38176.88 (15)
C17—C16—C21—C202.4 (2)C39—C38—C43—C422.0 (2)
N1—C16—C21—C20177.88 (15)N2—C38—C43—C42178.95 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H10H···N10.82 (2)2.27 (2)2.754 (2)118.0 (17)
O2—H20H···O10.86 (2)2.11 (2)2.8602 (18)144.9 (18)
O2—H20H···N20.86 (2)2.17 (2)2.695 (2)119.1 (17)

Experimental details

Crystal data
Chemical formulaC22H17NO
Mr311.37
Crystal system, space groupTriclinic, P1
Temperature (K)90
a, b, c (Å)8.6037 (15), 12.839 (3), 15.015 (3)
α, β, γ (°)94.508 (9), 97.164 (11), 106.490 (11)
V3)1566.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.37 × 0.15 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer with Oxford Cryostream
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
35942, 7462, 4454
Rint0.057
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.127, 1.02
No. of reflections7462
No. of parameters442
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.28

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H10H···N10.82 (2)2.27 (2)2.754 (2)118.0 (17)
O2—H20H···O10.86 (2)2.11 (2)2.8602 (18)144.9 (18)
O2—H20H···N20.86 (2)2.17 (2)2.695 (2)119.1 (17)
 

Acknowledgements

Whittier College is acknowledged for the funds that supported this research. The Edison Inter­national Foundation is thanked for a summer research stipend for AV. The purchase of the diffractometer was made possible by grant No. LEQSF(1999-2000)-ENH-TR-13, administered by the Louisiana Board of Regents.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammmer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDe, R. L., Mandal, M., Roy, L. & Mukherjee, J. (2008). Indian J. Chem. Sect. A, 47, 207–213.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLiao, S.-H., Shiu, J.-R., Liu, S.-W., Yeh, S.-J., Chen, Y.-H., Chen, C.-T., Chow, T. J. & Wu, C.-I. (2009). J. Am. Chem. Soc. 131, 763–777.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMak, C. S. K., Wong, H. L., Leung, Q. Y., Tam, W. Y., Chan, W. K. & Djurišić, A. B. (2009). J. Organomet. Chem. 694, 2770–2776.  Web of Science CrossRef CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationÜnver, H., Yildiz, M., Kiraz, A. & Özgen, Ö. (2009). J. Chem. Crystallogr. 39, 17–23.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds