organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Eth­oxy­anilinium hexa­fluoro­phosphate monohydrate

aOrdered Matter Science Research Center, Southeast UniVersity, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fuxuequn222@163.com

(Received 12 May 2010; accepted 18 May 2010; online 26 May 2010)

In the crystal of the title compound, C8H12NO+·PF6·H2O, inter­molecular N—H⋯F, N—H⋯O and O—H⋯F hydrogen bonds link the mol­ecules into chains along the c axis and C—H⋯π contacts further stabilize the structure. The F atoms of one of the hexa­fluoro­phosphate anions are disordered over two sets of sites with site-occupancy factors of 0.27 (3) and 0.73 (3).

Related literature

For related structures, see: Fu (2009a[Fu, X. (2009a). Acta Cryst. E65, o2345.],b[Fu, X. (2009b). Acta Cryst. E65, o2520.]). The title compound was studied as part of our search for ferroelectric compounds, which usually have a phase transition.For background to phase transition materials, see: Li et al. (2008[Li, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem, 11, 1959-1962.]); Zhang et al. (2009[Zhang, W., Chen, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 12544-12545.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12NO+·PF6·H2O

  • Mr = 301.17

  • Monoclinic, P 21 /c

  • a = 17.498 (4) Å

  • b = 5.1236 (10) Å

  • c = 14.793 (3) Å

  • β = 111.68 (3)°

  • V = 1232.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 298 K

  • 0.4 × 0.3 × 0.2 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.900, Tmax = 0.943

  • 12124 measured reflections

  • 2820 independent reflections

  • 1890 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.164

  • S = 1.05

  • 2820 reflections

  • 226 parameters

  • 235 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯F2′ 0.89 2.16 3.03 (2) 167
N1—H1A⋯F2 0.89 2.17 3.049 (10) 169
N1—H1B⋯F1i 0.89 2.22 3.066 (8) 158
N1—H1B⋯F1′i 0.89 2.28 3.09 (3) 152
N1—H1C⋯O1Wii 0.89 2.22 2.883 (3) 131
N1—H1C⋯F3ii 0.89 2.46 3.137 (12) 133
N1—H1C⋯F3′ii 0.89 2.40 3.01 (3) 126
N1—H1C⋯F6′ii 0.89 2.51 2.96 (2) 112
O1W—H1WB⋯F3′iii 0.82 (1) 2.20 (3) 2.97 (3) 156 (4)
O1W—H1WB⋯F3iii 0.82 (1) 2.28 (3) 3.030 (12) 152 (4)
O1W—H1WA⋯F4i 0.82 (3) 2.24 (2) 3.040 (12) 164 (4)
O1W—H1WA⋯F4′i 0.82 (3) 2.11 (3) 2.88 (2) 155 (4)
O1W—H1WA⋯F5i 0.82 (3) 2.48 (4) 2.951 (16) 117 (3)
C8—H8CCg1iv 0.96 3.16 4.023 (5) 150
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

As a continuation of our study of dielectric-ferroelectric materials, including organic ligands (Li et al., 2008), metal-organic coordination compounds (Zhang et al., 2009), and organic-inorganic hybrids, we studied the dielectric properties of the title compound. Unfortunately, there was no distinct anomaly observed from 93 to 350 K. In this article, the crystal structure of this compound is presented. The crystal structures of 4-ethoxyanilinium together with other anions are known (Fu, 2009a,b).

The asymmetric unit of the crystal structure consists of one almost coplanar protonated 4-ethoxyanilinium cation with the C2—C1—O1—C7 and C1—O1—C7—C8 torsion angles of 172.9 (3) and 177.4 (3)°, respectively, one hexafluorophosphate anion for which the F atoms are disordered over two sets of positions with site-occupancy factors of 0.27 (3) and 0.73 (3), and one water molecule (Fig.1). In the crystal structure, several intermolecular N—H···F and O—H···F hydrogen bonds link all species to chains along the c axis (Fig.2). In addition, C—H···π interactions further stabilize the crystal structure.

Related literature top

For related structures, see: Fu (2009a,b). For background to phase transition materials, see: Li et al. (2008); Zhang et al. (2009).

Experimental top

1.37 g (10 mmol) of 4-Ethoxybenzenamine was firstly dissolved in 50 ml ethanol, to which hexafluorophosphoric acid (70%, w/w) was then added until the solution becomes acidic under stirring. Single crystals of the title compond were prepared by slow evaporation at room temperature of the acidic solution after 3 days.

Refinement top

The water H atoms were found in Fourier difference maps and were refined freely. Positional parameters of all other H atoms were calculated geometrically and allowed to ride on the C and N atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C,N). The F atoms of the hexafluorophosphate anion are disordered in two orientations with site-occupancy factors of 0.73 (3) and 0.27 (3).

Structure description top

As a continuation of our study of dielectric-ferroelectric materials, including organic ligands (Li et al., 2008), metal-organic coordination compounds (Zhang et al., 2009), and organic-inorganic hybrids, we studied the dielectric properties of the title compound. Unfortunately, there was no distinct anomaly observed from 93 to 350 K. In this article, the crystal structure of this compound is presented. The crystal structures of 4-ethoxyanilinium together with other anions are known (Fu, 2009a,b).

The asymmetric unit of the crystal structure consists of one almost coplanar protonated 4-ethoxyanilinium cation with the C2—C1—O1—C7 and C1—O1—C7—C8 torsion angles of 172.9 (3) and 177.4 (3)°, respectively, one hexafluorophosphate anion for which the F atoms are disordered over two sets of positions with site-occupancy factors of 0.27 (3) and 0.73 (3), and one water molecule (Fig.1). In the crystal structure, several intermolecular N—H···F and O—H···F hydrogen bonds link all species to chains along the c axis (Fig.2). In addition, C—H···π interactions further stabilize the crystal structure.

For related structures, see: Fu (2009a,b). For background to phase transition materials, see: Li et al. (2008); Zhang et al. (2009).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level, and all H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of the packing of the title compound, stacking along the c axis. Dashed lines indicate hydrogen bonds.
4-Ethoxyanilinium hexafluorophosphate monohydrate top
Crystal data top
C8H12NO+·PF6·H2OF(000) = 616
Mr = 301.17Dx = 1.623 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4774 reflections
a = 17.498 (4) Åθ = 3.1–27.7°
b = 5.1236 (10) ŵ = 0.29 mm1
c = 14.793 (3) ÅT = 298 K
β = 111.68 (3)°Prism, colourless
V = 1232.4 (4) Å30.4 × 0.3 × 0.2 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
2820 independent reflections
Radiation source: fine-focus sealed tube1890 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 2222
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 66
Tmin = 0.900, Tmax = 0.943l = 1919
12124 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0764P)2 + 0.6523P]
where P = (Fo2 + 2Fc2)/3
2820 reflections(Δ/σ)max = 0.003
226 parametersΔρmax = 0.45 e Å3
235 restraintsΔρmin = 0.48 e Å3
Crystal data top
C8H12NO+·PF6·H2OV = 1232.4 (4) Å3
Mr = 301.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.498 (4) ŵ = 0.29 mm1
b = 5.1236 (10) ÅT = 298 K
c = 14.793 (3) Å0.4 × 0.3 × 0.2 mm
β = 111.68 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2820 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1890 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 0.943Rint = 0.054
12124 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.059235 restraints
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.45 e Å3
2820 reflectionsΔρmin = 0.48 e Å3
226 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.15275 (14)0.3564 (5)0.42609 (17)0.0414 (6)
H1A0.14270.48600.38320.050*
H1B0.13040.39360.46970.050*
H1C0.13110.20920.39530.050*
O10.49349 (12)0.2376 (5)0.60339 (18)0.0624 (7)
C10.40946 (18)0.2556 (6)0.5644 (2)0.0458 (7)
C40.24232 (16)0.3242 (5)0.47587 (19)0.0366 (6)
C30.29478 (19)0.4801 (6)0.4497 (2)0.0515 (8)
H3A0.27390.60740.40210.062*
C50.27196 (18)0.1368 (7)0.5450 (2)0.0497 (8)
H5A0.23600.03330.56250.060*
C60.35635 (19)0.1007 (7)0.5895 (2)0.0558 (9)
H6A0.37690.02860.63640.067*
C20.37808 (19)0.4465 (7)0.4943 (3)0.0561 (9)
H2A0.41370.55270.47730.067*
C80.6217 (2)0.0478 (10)0.6954 (3)0.0783 (12)
H8A0.64830.09350.73800.117*
H8B0.64050.21080.72790.117*
H8C0.63470.03960.63780.117*
C70.5304 (2)0.0266 (8)0.6678 (3)0.0632 (10)
H7A0.51070.13900.63590.076*
H7B0.51640.03720.72540.076*
O1W0.08195 (12)0.8613 (5)0.44539 (16)0.0473 (5)
H1WB0.0467 (16)0.843 (9)0.3908 (11)0.086 (15)*
H1WA0.071 (2)0.856 (9)0.4948 (14)0.086 (15)*
P10.11668 (4)0.96937 (15)0.18642 (5)0.0396 (3)
F30.0519 (7)1.103 (3)0.2240 (8)0.064 (2)0.73 (3)
F50.1765 (9)0.833 (3)0.1430 (10)0.065 (2)0.73 (3)
F40.0451 (7)0.782 (2)0.1246 (9)0.072 (2)0.73 (3)
F10.0911 (6)1.1714 (17)0.0948 (6)0.0618 (15)0.73 (3)
F20.1410 (8)0.783 (2)0.2777 (7)0.086 (2)0.73 (3)
F60.1869 (6)1.169 (2)0.2477 (7)0.0704 (18)0.73 (3)
F6'0.1908 (13)1.081 (6)0.2715 (16)0.066 (4)0.27 (3)
F4'0.0396 (15)0.830 (6)0.1040 (17)0.053 (4)0.27 (3)
F2'0.1153 (17)0.730 (5)0.256 (2)0.070 (4)0.27 (3)
F3'0.0594 (18)1.160 (7)0.2229 (19)0.056 (4)0.27 (3)
F5'0.184 (3)0.796 (8)0.164 (3)0.062 (4)0.27 (3)
F1'0.1166 (18)1.168 (5)0.1154 (19)0.075 (4)0.27 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0383 (13)0.0429 (13)0.0428 (13)0.0011 (11)0.0147 (11)0.0042 (11)
O10.0333 (11)0.0710 (15)0.0758 (16)0.0024 (11)0.0119 (11)0.0209 (13)
C10.0335 (14)0.0500 (17)0.0516 (17)0.0022 (13)0.0128 (13)0.0029 (14)
C40.0337 (14)0.0378 (15)0.0383 (14)0.0002 (12)0.0132 (12)0.0041 (12)
C30.0425 (16)0.0509 (18)0.0603 (19)0.0031 (14)0.0181 (15)0.0191 (16)
C50.0406 (17)0.0564 (19)0.0508 (17)0.0050 (15)0.0153 (14)0.0124 (15)
C60.0443 (18)0.060 (2)0.0577 (19)0.0035 (16)0.0128 (15)0.0216 (17)
C20.0425 (17)0.0553 (19)0.073 (2)0.0024 (15)0.0237 (16)0.0172 (17)
C80.045 (2)0.108 (3)0.071 (3)0.018 (2)0.0099 (19)0.020 (2)
C70.0450 (18)0.073 (2)0.064 (2)0.0094 (18)0.0113 (16)0.0147 (19)
O1W0.0395 (12)0.0532 (13)0.0448 (13)0.0011 (10)0.0105 (11)0.0014 (11)
P10.0366 (4)0.0479 (5)0.0323 (4)0.0065 (3)0.0103 (3)0.0011 (3)
F30.055 (3)0.082 (6)0.065 (3)0.018 (3)0.034 (2)0.005 (3)
F50.055 (3)0.086 (4)0.054 (5)0.022 (2)0.019 (4)0.012 (3)
F40.068 (3)0.074 (4)0.071 (5)0.032 (3)0.022 (3)0.011 (3)
F10.054 (4)0.073 (2)0.054 (3)0.014 (3)0.014 (2)0.026 (2)
F20.092 (6)0.101 (5)0.054 (3)0.027 (4)0.015 (3)0.036 (3)
F60.057 (2)0.078 (4)0.066 (4)0.013 (3)0.011 (2)0.025 (3)
F6'0.042 (4)0.089 (9)0.054 (7)0.011 (6)0.004 (5)0.032 (6)
F4'0.044 (5)0.075 (8)0.040 (6)0.004 (5)0.015 (4)0.013 (6)
F2'0.074 (10)0.075 (7)0.060 (8)0.017 (6)0.025 (6)0.029 (6)
F3'0.048 (6)0.066 (9)0.042 (6)0.022 (6)0.003 (5)0.007 (5)
F5'0.050 (6)0.087 (10)0.049 (10)0.018 (6)0.018 (7)0.017 (7)
F1'0.065 (10)0.081 (6)0.066 (7)0.007 (7)0.010 (6)0.035 (6)
Geometric parameters (Å, º) top
N1—C41.474 (4)C8—H8B0.9600
N1—H1A0.8900C8—H8C0.9600
N1—H1B0.8900C7—H7A0.9700
N1—H1C0.8900C7—H7B0.9700
O1—C11.370 (4)O1W—H1WB0.821 (10)
O1—C71.428 (4)O1W—H1WA0.82 (3)
C1—C61.373 (4)P1—F1'1.46 (2)
C1—C21.384 (4)P1—F6'1.546 (18)
C4—C51.358 (4)P1—F41.575 (10)
C4—C31.376 (4)P1—F51.578 (13)
C3—C21.371 (4)P1—F21.580 (8)
C3—H3A0.9300P1—F31.590 (11)
C5—C61.389 (4)P1—F61.598 (7)
C5—H5A0.9300P1—F5'1.60 (4)
C6—H6A0.9300P1—F2'1.61 (2)
C2—H2A0.9300P1—F4'1.61 (3)
C8—C71.500 (5)P1—F3'1.63 (3)
C8—H8A0.9600P1—F11.632 (7)
C4—N1—H1A109.5F6'—P1—F392.8 (9)
C4—N1—H1B109.4F4—P1—F387.1 (6)
H1A—N1—H1B109.5F5—P1—F3176.5 (7)
C4—N1—H1C109.5F2—P1—F387.9 (6)
H1A—N1—H1C109.5F1'—P1—F676.1 (9)
H1B—N1—H1C109.5F4—P1—F6177.8 (5)
C1—O1—C7118.8 (3)F5—P1—F691.6 (8)
O1—C1—C6125.2 (3)F2—P1—F689.7 (3)
O1—C1—C2115.5 (3)F3—P1—F691.4 (6)
C6—C1—C2119.4 (3)F1'—P1—F5'92.5 (15)
C5—C4—C3120.9 (3)F6'—P1—F5'85.2 (18)
C5—C4—N1119.7 (3)F4—P1—F5'91.5 (18)
C3—C4—N1119.4 (3)F2—P1—F5'81.6 (13)
C2—C3—C4119.5 (3)F3—P1—F5'169.4 (13)
C2—C3—H3A120.2F6—P1—F5'90.3 (18)
C4—C3—H3A120.2F1'—P1—F2'174.5 (15)
C4—C5—C6119.6 (3)F6'—P1—F2'88.1 (9)
C4—C5—H5A120.2F4—P1—F2'73.3 (9)
C6—C5—H5A120.2F5—P1—F2'95.5 (12)
C1—C6—C5120.1 (3)F3—P1—F2'85.4 (12)
C1—C6—H6A119.9F6—P1—F2'108.2 (8)
C5—C6—H6A119.9F5'—P1—F2'84.1 (17)
C3—C2—C1120.4 (3)F1'—P1—F4'89.3 (11)
C3—C2—H2A119.8F6'—P1—F4'174.7 (12)
C1—C2—H2A119.8F5—P1—F4'89.5 (10)
C7—C8—H8A109.5F2—P1—F4'105.3 (9)
C7—C8—H8B109.5F3—P1—F4'87.1 (10)
H8A—C8—H8B109.5F6—P1—F4'164.9 (9)
C7—C8—H8C109.5F5'—P1—F4'94.0 (19)
H8A—C8—H8C109.5F2'—P1—F4'86.7 (10)
H8B—C8—H8C109.5F1'—P1—F3'89.0 (15)
O1—C7—C8107.4 (3)F6'—P1—F3'86.7 (13)
O1—C7—H7A110.2F4—P1—F3'96.0 (12)
C8—C7—H7A110.2F5—P1—F3'169.1 (14)
O1—C7—H7B110.2F2—P1—F3'94.9 (12)
C8—C7—H7B110.2F6—P1—F3'82.3 (12)
H7A—C7—H7B108.5F5'—P1—F3'171.8 (19)
H1WB—O1W—H1WA122 (2)F2'—P1—F3'94.9 (17)
F1'—P1—F6'96.0 (11)F4'—P1—F3'94.1 (14)
F1'—P1—F4102.6 (9)F6'—P1—F1109.3 (11)
F6'—P1—F4161.3 (10)F4—P1—F189.4 (4)
F1'—P1—F580.8 (12)F5—P1—F187.8 (5)
F6'—P1—F590.7 (10)F2—P1—F1177.8 (5)
F4—P1—F589.9 (8)F3—P1—F190.3 (5)
F1'—P1—F2164.6 (8)F6—P1—F189.0 (3)
F6'—P1—F269.4 (10)F5'—P1—F1100.2 (13)
F4—P1—F291.9 (4)F2'—P1—F1162.3 (8)
F5—P1—F294.0 (6)F4'—P1—F175.9 (10)
F1'—P1—F398.1 (12)F3'—P1—F183.1 (11)
C7—O1—C1—C66.9 (5)C2—C1—C6—C50.3 (5)
C7—O1—C1—C2172.9 (3)C4—C5—C6—C10.7 (5)
C5—C4—C3—C20.2 (5)C4—C3—C2—C10.7 (5)
N1—C4—C3—C2178.5 (3)O1—C1—C2—C3179.3 (3)
C3—C4—C5—C60.5 (5)C6—C1—C2—C30.4 (5)
N1—C4—C5—C6177.8 (3)C1—O1—C7—C8177.4 (3)
O1—C1—C6—C5180.0 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···F20.892.163.03 (2)167
N1—H1A···F20.892.173.049 (10)169
N1—H1B···F1i0.892.223.066 (8)158
N1—H1B···F1i0.892.283.09 (3)152
N1—H1C···O1Wii0.892.222.883 (3)131
N1—H1C···F3ii0.892.463.137 (12)133
N1—H1C···F3ii0.892.403.01 (3)126
N1—H1C···F6ii0.892.512.96 (2)112
O1W—H1WB···F3iii0.82 (1)2.20 (3)2.97 (3)156 (4)
O1W—H1WB···F3iii0.82 (1)2.28 (3)3.030 (12)152 (4)
O1W—H1WA···F4i0.82 (3)2.24 (2)3.040 (12)164 (4)
O1W—H1WA···F4i0.82 (3)2.11 (3)2.88 (2)155 (4)
O1W—H1WA···F5i0.82 (3)2.48 (4)2.951 (16)117 (3)
C8—H8C···Cg1iv0.963.164.023 (5)150
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y1, z; (iii) x, y1/2, z+1/2; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC8H12NO+·PF6·H2O
Mr301.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)17.498 (4), 5.1236 (10), 14.793 (3)
β (°) 111.68 (3)
V3)1232.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.4 × 0.3 × 0.2
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.900, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
12124, 2820, 1890
Rint0.054
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.164, 1.05
No. of reflections2820
No. of parameters226
No. of restraints235
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.48

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···F2'0.892.163.03 (2)167.2
N1—H1A···F20.892.173.049 (10)169.0
N1—H1B···F1i0.892.223.066 (8)157.6
N1—H1B···F1'i0.892.283.09 (3)152.3
N1—H1C···O1Wii0.892.222.883 (3)130.8
N1—H1C···F3ii0.892.463.137 (12)133.3
N1—H1C···F3'ii0.892.403.01 (3)126.0
N1—H1C···F6'ii0.892.512.96 (2)112.4
O1W—H1WB···F3'iii0.821 (10)2.20 (3)2.97 (3)156 (4)
O1W—H1WB···F3iii0.821 (10)2.28 (3)3.030 (12)152 (4)
O1W—H1WA···F4i0.82 (3)2.241 (19)3.040 (12)164 (4)
O1W—H1WA···F4'i0.82 (3)2.11 (3)2.88 (2)155 (4)
O1W—H1WA···F5i0.82 (3)2.48 (4)2.951 (16)117 (3)
C8—H8C···Cg1iv0.963.164.023 (5)150.06
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y1, z; (iii) x, y1/2, z+1/2; (iv) x+1, y, z+1.
 

Acknowledgements

The author is grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

References

First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationFu, X. (2009a). Acta Cryst. E65, o2345.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFu, X. (2009b). Acta Cryst. E65, o2520.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem, 11, 1959–1962.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W., Chen, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 12544–12545.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds