organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1593-o1594

4-(2-Methyl­anilino)pent-3-en-2-one

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: truidie@hotmail.com

(Received 3 May 2010; accepted 2 June 2010; online 5 June 2010)

The title enamino ketone, C12H15NO, a derivative of 4-(phenyl­amino)­pent-3-en-2-one, presents a roughly planar [greatest displacement of an atom from the pentenone plane is 0.033 (2) Å] pentenone backbone, enhanced by an intra­molecular N—H⋯O hydrogen bond; the asymmetry in C—C distances in the group suggests the presence of unsaturated bonds. The overall geometry in the free ligand differs significantly from that in other reported compounds, in which it is coordinated to rhodium; this is reflected in the bond distances [the N⋯O distance is significantly increased (0.2 Å) upon coordination to the metal] and the dihedral angle between the benzene ring and the pentenone backbone [49.53 (5)°]. All of the methyl goups are rotationally disordered over two orientations of equal occupancy.

Related literature

For synthetic background, see: Shaheen et al. (2006[Shaheen, F., Marchio, L., Badshah, A. & Khosa, M. K. (2006). Acta Cryst. E62, o873-o874.]). For applications of enamino­ketones in liquid crystals, see: Pyżuk et al. (1993[Pyżuk, W., Krówczynsk, A. & Górecka, E. (1993). Mol. Cryst. Liq. Cryst. 237, 75-84.]), in fluorescence, see: Xia et al. (2008[Xia, M., Wu, B. & Xiang, G. (2008). J. Fluorine Chem. 129, 402-408.]), in complexes of medical inter­est, see: Tan et al. (2008[Tan, H. Y., Loke, W. K., Tan, Y. T. & Nguyen, N.-T. (2008). Lab. Chip, 8, 885-891.]); Chen & Rhodes (1996[Chen, H. & Rhodes, J. (1996). J. Mol. Med. 74, 497-504.]), in catalysis, see: Nair et al. (2002[Nair, V. A., Suni, M. M. & Sreekumar, K. (2002). Proc. Indian Acad. Sci. (Chem. Sci.), 114, 481-486.]); Van Aswegen et al. (1991[Van Aswegen, K. G., Leipoldt, J. G., Potgieter, I. M., Roodt, A. & Van Zyl, G. J. (1991). Transition Met. Chem. 16, 369-371.]); Steyn et al. (1992[Steyn, G. J. J., Roodt, A. & Leipoldt, J. G. (1992). Inorg. Chem. 31, 3477-3481.], 1997[Steyn, G. J. J., Roodt, A., Poletaeva, I. A. & Varshavsky, Y. S. (1997). J. Organomet. Chem. 536/7, 197-205.]); Otto et al. (1998[Otto, S., Roodt, A., Swarts, J. C. & Erasmus, J. C. (1998). Polyhedron, 17, 2447-2453.]); Roodt & Steyn (2000[Roodt, A. & Steyn, G. J. J. (2000). Recent Research Developments in Inorganic Chemistry, Vol. 2, pp. 1-23. Trivandrum: Transworld Research Network.]); Brink et al. (2010[Brink, A., Visser, H. G., Steyl, G. & Roodt, A. (2010). Dalton Trans. 39, 5572-5578.]). For the structures of related ligand systems, see: Damoense et al. (1994[Damoense, L. J., Purcell, W., Roodt, A. & Leipoldt, J. G. (1994). Rhodium Express, 5, 10-13.]); Venter et al. (2009a[Venter, G. J. S., Steyl, G. & Roodt, A. (2009a). Acta Cryst. E65, m1321-m1322.],b[Venter, G. J. S., Steyl, G. & Roodt, A. (2009b). Acta Cryst. E65, m1606-m1607.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15NO

  • Mr = 189.25

  • Monoclinic, P 21 /c

  • a = 7.5674 (7) Å

  • b = 11.5075 (9) Å

  • c = 12.0996 (11) Å

  • β = 92.154 (5)°

  • V = 1052.91 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.55 × 0.23 × 0.12 mm

Data collection
  • Bruker X8 APEXII 4K Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.960, Tmax = 0.991

  • 10022 measured reflections

  • 2308 independent reflections

  • 1854 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.150

  • S = 1.07

  • 2308 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯O12 0.91 1.90 2.6345 (19) 136

Table 2
Comparative geometrical parameters (Å, °) for free and coordinated N,O-bidendate (N,O-bid) compounds

Parameters (I) (II) (III) (IV)
C111—N11 1.422 (2) 1.521 (4)/1.463 (3) 1.440 (4) -
C2—N11 1.345 (2) 1.320 (4) 1.319 (4) 1.303 (6)
C4—O12 1.257 (2) 1.290 (3) 1.291 (4) 1.281 (6)
C2—C3 1.383 (3) 1.410 (4) 1.423 (4) 1.396 (7)
C3—C4 1.420 (2) 1.365 (3) 1.382 (3) 1.388 (9)
O12⋯N11 2.635 (2) 2.885 (3) 2.886 (3) 2.826 (6)
N11—C2—C4—O12 −0.5 (1) 4.1 (2) −2.6 (2) 1.2 (4)
Dihedral angle 49.53 (5) 87.47 (4)/89.36 (8) 85.58 (8) -
Notes: (I)[link] This work; (II) N,O-bid = 4-(2,3-dimethyl phenyl­amino)­pent-3-en-2-onato (Venter et al., 2009a[Venter, G. J. S., Steyl, G. & Roodt, A. (2009a). Acta Cryst. E65, m1321-m1322.]); (III) N,O-bid = 4-(2,6-dimethyl phenyl­amino)­pent-3-en-2-onato (Venter et al., 2009b[Venter, G. J. S., Steyl, G. & Roodt, A. (2009b). Acta Cryst. E65, m1606-m1607.]). (IV) N,O-bid = 4-amino-pent-3-en-2-onato (Damoense et al., 1994[Damoense, L. J., Purcell, W., Roodt, A. & Leipoldt, J. G. (1994). Rhodium Express, 5, 10-13.]). The dihedral angle is defined as the torsion angle between the N–C–C–C–O plane and the benzene ring. A positive angle denotes a clockwise rotation.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

A well-known system in organometallic chemistry is the β-diketone compound AcacH (acetylacetone; or when coordinated acetylacetonato, acac-). A multitude of derivatives have been synthesized to date, with enaminoketones being one type. Since enaminoketones contain nitrogen and oxygen atoms as well as an unsaturated C—C bond, these electron-rich compounds are of interest in various fields including liquid crystals [Pyżuk et al. (1993)], fluorescence studies [Xia et al. (2008)] as well as formation of complexes of medical interest [Tan et al. (2008); Chen & Rhodes (1996)]. It also has significant application possibilities in catalysis [Nair et al. (2002); Van Aswegen et al. (1991); Steyn et al. (1992; 1997); Otto et al. (1998); Roodt & Steyn (2000); Brink et al. (2010)].

The title enaminoketone is a derivative of 4-(phenylamino)pent-3-en-2-one [PhonyH; Shaheen et al. (2006)]. Fig. 1 shows a view of the molecule. The C2–C3 distance of 1.383 (3) Å, versus the C3–C4 distance of 1.420 (2)Å indicates an unsaturated bond in the pentenone backbone, which is otherwise planar, probably helped by an intramolecular N1—H1···O1 bond (N1—H1: 0.91Å; H1···O1: 1.90Å; N1···O1:2.635 (2)Å, N1—H1···O: 136.4°). In general terms, the geometry in the free ligand differs significantly from that in other reported compounds where it is coordinated to rhodium [Table1; Venter et al. (2009a; 2009b); Damoense et al. (1994)]; fon instance, the N1···O1 distance is greatly ncreased (~0.2 Å) upon coordination to the metal, as it is the dihedral angle between the phenyl ring and the pentenone backbone. All the methyl goups appear rotationally disordered in two sites of similar occupation.

Related literature top

For synthetic background, see: Shaheen et al. (2006). For applications of enaminoketones in liquid crystals, see: Pyżuk et al. (1993), in fluorescence, see: Xia et al. (2008), in complexes of medical interest, see: Tan et al. (2008); Chen & Rhodes (1996), in catalysis, see: Nair et al. (2002); Van Aswegen et al. (1991); Steyn et al. (1992, 1997); Otto et al. (1998); Roodt & Steyn (2000); Brink et al. (2010). For the structures of related ligand systems, see: Damoense et al. (1994); Venter et al. (2009a,b).

Experimental top

A solution of acetylacetone (11.07 g, 0.1106 mol), 2-Me-aniline (10.73 g, 0.1008 mol) and 2 drops of H2SO4(conc.) in 150 ml benzene was refluxed for 6 hours in a DeanStark trap, filtered and left to crystallize. Crystals suitable for X-Ray diffraction were obtained in 17.86 g (94.32 %) yield. This compound is stable in air and light over a period of several months.

Refinement top

The methyl and aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 and 0.98Å and Uiso(H) = 1.5Ueq(C) and 1.2Ueq(C), respectively. The methyl groups were generated to fit the difference electron density and the groups were then refined as rigid rotors. The highest residual electron-density peak is 0.47Å from H1F.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability displacement level.
4-(2-Methylanilino)pent-3-en-2-one top
Crystal data top
C12H15NOF(000) = 408
Mr = 189.25Dx = 1.194 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2889 reflections
a = 7.5674 (7) Åθ = 2.7–28.2°
b = 11.5075 (9) ŵ = 0.08 mm1
c = 12.0996 (11) ÅT = 100 K
β = 92.154 (5)°Plate, colourless
V = 1052.91 (16) Å30.55 × 0.23 × 0.12 mm
Z = 4
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
2308 independent reflections
Radiation source: fine-focus sealed tube1854 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω and ϕ scansθmax = 27°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 99
Tmin = 0.960, Tmax = 0.991k = 1412
10022 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0654P)2 + 0.9506P]
where P = (Fo2 + 2Fc2)/3
2308 reflections(Δ/σ)max < 0.001
129 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C12H15NOV = 1052.91 (16) Å3
Mr = 189.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5674 (7) ŵ = 0.08 mm1
b = 11.5075 (9) ÅT = 100 K
c = 12.0996 (11) Å0.55 × 0.23 × 0.12 mm
β = 92.154 (5)°
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
2308 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1854 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.991Rint = 0.034
10022 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.07Δρmax = 0.45 e Å3
2308 reflectionsΔρmin = 0.35 e Å3
129 parameters
Special details top

Experimental. The intensity data was collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of 60 seconds/frame. A total of 688 frames were collected with a frame width of 0.5° covering up to θ = 28.24° with 99.1% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4288 (3)0.30725 (17)0.73241 (16)0.0212 (4)
H1A0.40680.39070.7230.032*0.5
H1B0.38860.26590.66530.032*0.5
H1C0.55570.29390.74580.032*0.5
H1D0.49390.2430.69980.032*0.5
H1E0.51210.36780.75750.032*0.5
H1F0.3450.33970.67690.032*0.5
C20.3300 (2)0.26340 (16)0.82877 (15)0.0172 (4)
C30.3410 (2)0.14730 (15)0.85770 (15)0.0174 (4)
H30.41420.09820.81590.021*
C40.2494 (2)0.09702 (15)0.94616 (14)0.0162 (4)
C50.2647 (3)0.03183 (16)0.96633 (16)0.0217 (4)
H5A0.19450.05321.02960.033*0.5
H5B0.38890.05210.9820.033*0.5
H5C0.22080.07390.90050.033*0.5
H5D0.34170.06630.91180.033*0.5
H5E0.14720.06740.95940.033*0.5
H5F0.31530.04561.04090.033*0.5
C120.2730 (3)0.49042 (17)1.07167 (15)0.0218 (4)
H12A0.29610.40671.06850.033*0.5
H12B0.17970.50551.12380.033*0.5
H12C0.38120.53111.09640.033*0.5
H12D0.27520.55551.12390.033*0.5
H12E0.39170.45671.06870.033*0.5
H12F0.19010.43111.09610.033*0.5
O120.15430 (17)0.15514 (11)1.00878 (10)0.0195 (3)
C1110.1994 (2)0.45704 (15)0.86788 (15)0.0160 (4)
C1120.2147 (2)0.53330 (16)0.95849 (15)0.0172 (4)
C1130.1737 (2)0.64979 (16)0.94050 (16)0.0203 (4)
H1130.18210.70261.00080.024*
C1140.1207 (2)0.69078 (16)0.83647 (16)0.0208 (4)
H1140.09320.77070.82620.025*
C1150.1081 (2)0.61469 (16)0.74784 (15)0.0192 (4)
H1150.07380.64260.67630.023*
C1160.1456 (2)0.49751 (16)0.76367 (15)0.0180 (4)
H1160.13440.4450.70320.022*
N110.2320 (2)0.33691 (13)0.88747 (13)0.0176 (3)
H110.18010.30600.94710.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0225 (9)0.0206 (9)0.0210 (9)0.0019 (7)0.0057 (7)0.0032 (7)
C20.0167 (8)0.0190 (9)0.0159 (9)0.0001 (7)0.0001 (7)0.0007 (7)
C30.0192 (9)0.0163 (9)0.0168 (9)0.0028 (7)0.0029 (7)0.0015 (7)
C40.0176 (8)0.0157 (9)0.0152 (8)0.0008 (7)0.0013 (7)0.0010 (7)
C50.0254 (10)0.0152 (9)0.0250 (10)0.0014 (7)0.0062 (8)0.0005 (7)
C120.0221 (9)0.0244 (10)0.0188 (9)0.0010 (8)0.0000 (7)0.0015 (7)
O120.0254 (7)0.0157 (6)0.0176 (7)0.0015 (5)0.0051 (5)0.0001 (5)
C1110.0158 (8)0.0122 (8)0.0202 (9)0.0008 (6)0.0032 (7)0.0003 (7)
C1120.0164 (8)0.0177 (9)0.0177 (9)0.0018 (7)0.0023 (7)0.0002 (7)
C1130.0222 (9)0.0170 (9)0.0220 (9)0.0018 (7)0.0033 (7)0.0059 (7)
C1140.0214 (9)0.0129 (8)0.0284 (10)0.0004 (7)0.0047 (8)0.0012 (7)
C1150.0189 (9)0.0190 (9)0.0198 (9)0.0001 (7)0.0024 (7)0.0031 (7)
C1160.0200 (9)0.0163 (9)0.0178 (9)0.0020 (7)0.0020 (7)0.0018 (7)
N110.0232 (8)0.0132 (7)0.0168 (8)0.0009 (6)0.0053 (6)0.0012 (6)
Geometric parameters (Å, º) top
C1—C21.496 (2)C12—C1121.506 (3)
C1—H1A0.98C12—H12A0.98
C1—H1B0.98C12—H12B0.98
C1—H1C0.98C12—H12C0.98
C1—H1D0.98C12—H12D0.98
C1—H1E0.98C12—H12E0.98
C1—H1F0.98C12—H12F0.98
C2—N111.345 (2)C111—C1161.391 (3)
C2—C31.383 (3)C111—C1121.406 (3)
C3—C41.420 (2)C111—N111.422 (2)
C3—H30.95C112—C1131.391 (3)
C4—O121.257 (2)C113—C1141.389 (3)
C4—C51.506 (2)C113—H1130.95
C5—H5A0.98C114—C1151.385 (3)
C5—H5B0.98C114—H1140.95
C5—H5C0.98C115—C1161.390 (3)
C5—H5D0.98C115—H1150.95
C5—H5E0.98C116—H1160.95
C5—H5F0.98N11—H110.9071
C2—C1—H1A109.5H5B—C5—H5F56.3
C2—C1—H1B109.5H5C—C5—H5F141.1
H1A—C1—H1B109.5H5D—C5—H5F109.5
C2—C1—H1C109.5H5E—C5—H5F109.5
H1A—C1—H1C109.5C112—C12—H12A109.5
H1B—C1—H1C109.5C112—C12—H12B109.5
C2—C1—H1D109.5H12A—C12—H12B109.5
H1A—C1—H1D141.1C112—C12—H12C109.5
H1B—C1—H1D56.3H12A—C12—H12C109.5
H1C—C1—H1D56.3H12B—C12—H12C109.5
C2—C1—H1E109.5C112—C12—H12D109.5
H1A—C1—H1E56.3H12A—C12—H12D141.1
H1B—C1—H1E141.1H12B—C12—H12D56.3
H1C—C1—H1E56.3H12C—C12—H12D56.3
H1D—C1—H1E109.5C112—C12—H12E109.5
C2—C1—H1F109.5H12A—C12—H12E56.3
H1A—C1—H1F56.3H12B—C12—H12E141.1
H1B—C1—H1F56.3H12C—C12—H12E56.3
H1C—C1—H1F141.1H12D—C12—H12E109.5
H1D—C1—H1F109.5C112—C12—H12F109.5
H1E—C1—H1F109.5H12A—C12—H12F56.3
N11—C2—C3120.21 (16)H12B—C12—H12F56.3
N11—C2—C1120.06 (16)H12C—C12—H12F141.1
C3—C2—C1119.73 (16)H12D—C12—H12F109.5
C2—C3—C4123.91 (16)H12E—C12—H12F109.5
C2—C3—H3118C116—C111—C112120.72 (16)
C4—C3—H3118C116—C111—N11121.30 (16)
O12—C4—C3122.97 (16)C112—C111—N11117.91 (16)
O12—C4—C5117.93 (16)C113—C112—C111117.91 (17)
C3—C4—C5119.10 (15)C113—C112—C12120.93 (16)
C4—C5—H5A109.5C111—C112—C12121.16 (16)
C4—C5—H5B109.5C114—C113—C112121.61 (17)
H5A—C5—H5B109.5C114—C113—H113119.2
C4—C5—H5C109.5C112—C113—H113119.2
H5A—C5—H5C109.5C115—C114—C113119.74 (17)
H5B—C5—H5C109.5C115—C114—H114120.1
C4—C5—H5D109.5C113—C114—H114120.1
H5A—C5—H5D141.1C114—C115—C116119.93 (17)
H5B—C5—H5D56.3C114—C115—H115120
H5C—C5—H5D56.3C116—C115—H115120
C4—C5—H5E109.5C115—C116—C111120.08 (17)
H5A—C5—H5E56.3C115—C116—H116120
H5B—C5—H5E141.1C111—C116—H116120
H5C—C5—H5E56.3C2—N11—C111128.22 (16)
H5D—C5—H5E109.5C2—N11—H11115.9
C4—C5—H5F109.5C111—N11—H11115.9
H5A—C5—H5F56.3
N11—C2—C3—C41.9 (3)C112—C113—C114—C1150.1 (3)
C1—C2—C3—C4178.62 (17)C113—C114—C115—C1161.1 (3)
C2—C3—C4—O122.6 (3)C114—C115—C116—C1111.4 (3)
C2—C3—C4—C5177.01 (17)C112—C111—C116—C1150.7 (3)
C116—C111—C112—C1130.3 (3)N11—C111—C116—C115177.51 (16)
N11—C111—C112—C113176.63 (16)C3—C2—N11—C111177.32 (17)
C116—C111—C112—C12179.96 (16)C1—C2—N11—C1113.2 (3)
N11—C111—C112—C123.1 (3)C116—C111—N11—C248.9 (3)
C111—C112—C113—C1140.6 (3)C112—C111—N11—C2134.19 (19)
C12—C112—C113—C114179.64 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O120.911.902.6345 (19)136

Experimental details

Crystal data
Chemical formulaC12H15NO
Mr189.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.5674 (7), 11.5075 (9), 12.0996 (11)
β (°) 92.154 (5)
V3)1052.91 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.55 × 0.23 × 0.12
Data collection
DiffractometerBruker X8 APEXII 4K Kappa CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.960, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
10022, 2308, 1854
Rint0.034
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.150, 1.07
No. of reflections2308
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.35

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O120.911.902.6345 (19)136.4
Comparative geometrical parameters (Å, °) for free and coordinated N,O-bidendate (N,O-bid) compounds top
Parameters(I)(II)(III)(IV)
N11—C1111.422 (2)1.521 (4)/1.463 (3)1.440 (4)-
N11—C21.345 (2)1.320 (4)1.319 (4)1.303 (6)
O12—C41.257 (2)1.290 (3)1.291 (4)1.281 (6)
C2—C31.383 (3)1.410 (4)1.423 (4)1.396 (7)
C3—C41.420 (2)1.365 (3)1.382 (3)1.388 (9)
N11···O122.635 (2)2.885 (3)2.886 (3)2.826 (6)
N11—C2—C4—O12-0.5 (1)4.1 (2)-2.6 (2)1.2 (4)
Dihedral angle49.53 (5)87.47 (4)/89.36 (8)85.58 (8)-
Notes: (I) This work; (II) N,O-bid = 4-(2,3-dimethyl phenylamino)pent-3-en-2-onato (Venter et al., 2009a); (III) N,O-bid = 4-(2,6-dimethyl phenylamino)pent-3-en-2-onato (Venter et al., 2009b). (IV) N,O-bid = 4-amino-pent-3-en-2-onato (Damoense, et al., 1994).
 

Acknowledgements

Financial assistance from the University of the Free State is gratefully acknowledged. We also express our gratitude towards SASOL, the UFS Materials and Nanosciences Academic Cluster and the South African National Research Foundation (SA-NRF/THRIP) for financial support of this project. Part of this material is based on work supported by the SA-NRF/THRIP under grant No. GUN 2068915. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the SA-NRF.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrink, A., Visser, H. G., Steyl, G. & Roodt, A. (2010). Dalton Trans. 39, 5572–5578.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, H. & Rhodes, J. (1996). J. Mol. Med. 74, 497–504.  CrossRef CAS PubMed Google Scholar
First citationDamoense, L. J., Purcell, W., Roodt, A. & Leipoldt, J. G. (1994). Rhodium Express, 5, 10–13.  CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationNair, V. A., Suni, M. M. & Sreekumar, K. (2002). Proc. Indian Acad. Sci. (Chem. Sci.), 114, 481–486.  CrossRef CAS Google Scholar
First citationOtto, S., Roodt, A., Swarts, J. C. & Erasmus, J. C. (1998). Polyhedron, 17, 2447–2453.  Web of Science CSD CrossRef CAS Google Scholar
First citationPyżuk, W., Krówczynsk, A. & Górecka, E. (1993). Mol. Cryst. Liq. Cryst. 237, 75–84.  Google Scholar
First citationRoodt, A. & Steyn, G. J. J. (2000). Recent Research Developments in Inorganic Chemistry, Vol. 2, pp. 1–23. Trivandrum: Transworld Research Network.  Google Scholar
First citationShaheen, F., Marchio, L., Badshah, A. & Khosa, M. K. (2006). Acta Cryst. E62, o873–o874.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteyn, G. J. J., Roodt, A. & Leipoldt, J. G. (1992). Inorg. Chem. 31, 3477–3481.  CSD CrossRef CAS Web of Science Google Scholar
First citationSteyn, G. J. J., Roodt, A., Poletaeva, I. A. & Varshavsky, Y. S. (1997). J. Organomet. Chem. 536/7, 197–205.  CSD CrossRef Web of Science Google Scholar
First citationTan, H. Y., Loke, W. K., Tan, Y. T. & Nguyen, N.-T. (2008). Lab. Chip, 8, 885–891.  CrossRef PubMed CAS Google Scholar
First citationVan Aswegen, K. G., Leipoldt, J. G., Potgieter, I. M., Roodt, A. & Van Zyl, G. J. (1991). Transition Met. Chem. 16, 369–371.  CSD CrossRef CAS Google Scholar
First citationVenter, G. J. S., Steyl, G. & Roodt, A. (2009a). Acta Cryst. E65, m1321–m1322.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVenter, G. J. S., Steyl, G. & Roodt, A. (2009b). Acta Cryst. E65, m1606–m1607.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXia, M., Wu, B. & Xiang, G. (2008). J. Fluorine Chem. 129, 402–408.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1593-o1594
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds