organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­chloro-N-(2-chloro­phen­yl)benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 2 June 2010; accepted 3 June 2010; online 16 June 2010)

In the title compound, C12H8Cl3NO2S, the conformation of the N—H bond in the C—SO2—NH—C segment is syn to the ortho-Cl in the aniline ring. The dihedral angle between the two benzene rings is 74.3 (1)°. An intra­molecular N—H⋯Cl hydrogen bond occurs. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules into dimers.

Related literature

For the preparation of the title compound, see: Savitha & Gowda (2006[Savitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 60, 600-606.]). For our studies of the effect of substituents on the structures of N-(ar­yl)aryl­sulfonamides, see: Gowda et al. (2010a[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010a). Acta Cryst. E66, o1552.],b[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010b). Private communication (refcode CCDC 740692). CCDC, Union Road, Cambridge, England.]); Nirmala et al. (2010[Nirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o918.]). For related structures, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Perlovich et al. (2006[Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.]).

[Scheme 1]

Experimental

Crystal data
  • C12H8Cl3NO2S

  • Mr = 336.60

  • Orthorhombic, P b c n

  • a = 10.5639 (8) Å

  • b = 16.279 (1) Å

  • c = 16.693 (1) Å

  • V = 2870.7 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.78 mm−1

  • T = 299 K

  • 0.30 × 0.24 × 0.22 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.800, Tmax = 0.847

  • 8054 measured reflections

  • 2938 independent reflections

  • 2054 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.107

  • S = 1.01

  • 2938 reflections

  • 175 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 (1) 2.23 (2) 3.007 (3) 152 (2)
N1—H1N⋯Cl3 0.86 (1) 2.57 (3) 2.975 (2) 110 (2)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of studying the substituent effects on the structures of N-(aryl)arylsulfonamides (Gowda et al. , 2010a,b; Nirmala et al., 2010), the structure of 2,4-dichloro-N-(2-chlorophenyl)-benzenesulfonamide (I) has been determined (Fig. 1). The conformation of the N—H bond in the C—SO2—NH—C segment is syn to the ortho-Cl in the aniline ring (Fig. 1), contrary to the anti conformation observed between the N—H bond and meta-Cl in the aniline ring of 2,4-dichloro-N-(3-chlorophenyl)-benzenesulfonamide (II) (Gowda et al., 2010a).

The molecule is twisted at the S atom with the C1—SO2—NH—C7 torsion angle of 54.5 (3)°, compared to the values of 62.3 (2)° in (II), 67.8 (2)° in 2,4-dichloro-N-(4-chlorophenyl)benzenesulfonamide (III)(Nirmala et al., 2010), 55.1 (3)° (molecule 1) and -48.3 (3)° (molecule 2) in 2,4-dichloro-N-(phenyl)-benzenesulfonamide (IV) (Gowda et al., 2010b). The sulfonyl benzene and the aniline benzene rings in (I) are tilted relative to each other by 74.3 (1)°, compared to the values of 69.3 (1)° in (II), 65.0 (1)° in (III), 80.5 (2)° in the molecule 1 and 64.9 (1)° in molecule 2 of (IV).

The other bond parameters in (I) are similar to those observed in (II), (III), (IV) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007).

In the crystal structure, the pairs of intermolecular N–H···O hydrogen bonds (Table 1) link the molecules via dimers into infinite sequences running parallel to the c-axis. Part of the crystal structure is shown in Fig. 2.

Related literature top

For the preparation of the title compound, see: Savitha & Gowda (2006). For our studies of the effect of substituents on the structures of N-(aryl)arylsulfonamides, see: Gowda et al. (2010a,b); Nirmala et al. (2010). For related structures, see: Gelbrich et al. (2007); Perlovich et al. (2006).

Experimental top

The solution of 1,3-dichlorobenzene (10 cc) in chloroform (40 cc) was treated dropwise with chlorosulfonic acid (25 cc) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2,4-dichlorobenzenesulfonylchloride was treated with 2-chloroaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 cc). The resultant solid 2,4-dichloro-N-(2-chlorophenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Savitha & Gowda, 2006). Prism like colorless single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and later restrained to N—H = 0.86 (1)Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
2,4-Dichloro-N-(2-chlorophenyl)benzenesulfonamide top
Crystal data top
C12H8Cl3NO2SF(000) = 1360
Mr = 336.60Dx = 1.558 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 2957 reflections
a = 10.5639 (8) Åθ = 2.5–27.8°
b = 16.279 (1) ŵ = 0.78 mm1
c = 16.693 (1) ÅT = 299 K
V = 2870.7 (3) Å3Prism, colourless
Z = 80.30 × 0.24 × 0.22 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2938 independent reflections
Radiation source: fine-focus sealed tube2054 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Rotation method data acquisition using ω and phi scansθmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 913
Tmin = 0.800, Tmax = 0.847k = 1420
8054 measured reflectionsl = 1120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0458P)2 + 1.5152P]
where P = (Fo2 + 2Fc2)/3
2938 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.36 e Å3
1 restraintΔρmin = 0.35 e Å3
Crystal data top
C12H8Cl3NO2SV = 2870.7 (3) Å3
Mr = 336.60Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 10.5639 (8) ŵ = 0.78 mm1
b = 16.279 (1) ÅT = 299 K
c = 16.693 (1) Å0.30 × 0.24 × 0.22 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2938 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2054 reflections with I > 2σ(I)
Tmin = 0.800, Tmax = 0.847Rint = 0.019
8054 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0421 restraint
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.36 e Å3
2938 reflectionsΔρmin = 0.35 e Å3
175 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3134 (2)0.61639 (15)0.32900 (15)0.0497 (6)
C20.2866 (3)0.53340 (17)0.31598 (16)0.0579 (7)
C30.3728 (3)0.47403 (19)0.3366 (2)0.0753 (9)
H30.35450.41880.32820.090*
C40.4862 (3)0.4967 (2)0.3697 (2)0.0850 (10)
C50.5150 (3)0.5775 (2)0.3827 (2)0.0919 (11)
H50.59230.59200.40520.110*
C60.4285 (3)0.6371 (2)0.36218 (19)0.0713 (8)
H60.44800.69210.37080.086*
C70.0989 (2)0.68618 (15)0.45102 (14)0.0477 (6)
C80.0161 (2)0.63852 (15)0.49537 (15)0.0509 (6)
C90.0238 (3)0.63637 (17)0.57821 (16)0.0664 (8)
H90.03340.60500.60760.080*
C100.1164 (3)0.68083 (19)0.61698 (17)0.0730 (9)
H100.12320.67860.67250.088*
C110.1978 (3)0.7281 (2)0.57371 (17)0.0703 (8)
H110.26000.75810.60000.084*
C120.1892 (3)0.73195 (18)0.49182 (16)0.0629 (7)
H120.24440.76550.46330.075*
N10.08883 (19)0.68827 (15)0.36630 (12)0.0542 (6)
H1N0.0212 (16)0.6693 (15)0.3452 (15)0.065*
O10.15449 (18)0.68354 (12)0.22707 (9)0.0648 (5)
O20.27286 (18)0.77149 (11)0.32041 (12)0.0675 (5)
Cl10.14598 (8)0.50245 (5)0.27304 (6)0.0914 (3)
Cl20.59587 (12)0.42218 (8)0.39456 (10)0.1453 (5)
Cl30.09873 (7)0.58020 (5)0.44734 (5)0.0691 (2)
S10.20683 (6)0.69660 (4)0.30490 (4)0.05119 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0463 (14)0.0562 (15)0.0466 (14)0.0060 (12)0.0030 (11)0.0018 (12)
C20.0561 (16)0.0593 (16)0.0584 (16)0.0085 (14)0.0062 (13)0.0016 (13)
C30.082 (2)0.0563 (17)0.087 (2)0.0018 (17)0.0103 (18)0.0005 (17)
C40.075 (2)0.083 (2)0.097 (3)0.024 (2)0.0010 (19)0.006 (2)
C50.0572 (19)0.099 (3)0.119 (3)0.0074 (19)0.0242 (18)0.003 (2)
C60.0537 (17)0.0678 (19)0.092 (2)0.0065 (15)0.0125 (16)0.0029 (17)
C70.0517 (14)0.0510 (14)0.0403 (13)0.0108 (12)0.0058 (11)0.0019 (11)
C80.0630 (16)0.0433 (13)0.0463 (14)0.0131 (12)0.0027 (12)0.0000 (12)
C90.093 (2)0.0583 (17)0.0482 (16)0.0183 (17)0.0063 (15)0.0079 (14)
C100.110 (3)0.069 (2)0.0401 (15)0.0277 (19)0.0159 (16)0.0087 (15)
C110.086 (2)0.0712 (19)0.0535 (17)0.0103 (17)0.0189 (15)0.0123 (15)
C120.0659 (17)0.0709 (19)0.0518 (16)0.0033 (15)0.0088 (13)0.0053 (14)
N10.0456 (12)0.0765 (16)0.0404 (11)0.0022 (11)0.0071 (9)0.0013 (11)
O10.0674 (11)0.0888 (14)0.0382 (9)0.0078 (11)0.0027 (8)0.0105 (9)
O20.0745 (13)0.0518 (10)0.0763 (13)0.0140 (10)0.0064 (10)0.0104 (10)
Cl10.0830 (6)0.0772 (5)0.1140 (7)0.0306 (5)0.0171 (5)0.0062 (5)
Cl20.1218 (9)0.1269 (10)0.1873 (13)0.0642 (8)0.0140 (9)0.0199 (9)
Cl30.0743 (5)0.0665 (5)0.0665 (5)0.0100 (4)0.0044 (4)0.0089 (4)
S10.0528 (4)0.0574 (4)0.0434 (3)0.0060 (3)0.0025 (3)0.0086 (3)
Geometric parameters (Å, º) top
C1—C61.379 (3)C7—N11.419 (3)
C1—C21.397 (3)C8—C91.386 (4)
C1—S11.770 (3)C8—Cl31.737 (3)
C2—C31.372 (4)C9—C101.378 (4)
C2—Cl11.725 (3)C9—H90.9300
C3—C41.369 (5)C10—C111.361 (4)
C3—H30.9300C10—H100.9300
C4—C51.367 (5)C11—C121.372 (4)
C4—Cl21.728 (3)C11—H110.9300
C5—C61.377 (4)C12—H120.9300
C5—H50.9300N1—S11.620 (2)
C6—H60.9300N1—H1N0.855 (10)
C7—C81.383 (4)O1—S11.4279 (17)
C7—C121.389 (3)O2—S11.4282 (18)
C6—C1—C2118.5 (3)C9—C8—Cl3119.2 (2)
C6—C1—S1118.1 (2)C10—C9—C8119.8 (3)
C2—C1—S1123.3 (2)C10—C9—H9120.1
C3—C2—C1120.5 (3)C8—C9—H9120.1
C3—C2—Cl1118.1 (2)C11—C10—C9119.7 (3)
C1—C2—Cl1121.4 (2)C11—C10—H10120.1
C4—C3—C2119.5 (3)C9—C10—H10120.1
C4—C3—H3120.3C10—C11—C12120.9 (3)
C2—C3—H3120.3C10—C11—H11119.6
C5—C4—C3121.2 (3)C12—C11—H11119.6
C5—C4—Cl2119.2 (3)C11—C12—C7120.6 (3)
C3—C4—Cl2119.6 (3)C11—C12—H12119.7
C4—C5—C6119.5 (3)C7—C12—H12119.7
C4—C5—H5120.3C7—N1—S1125.13 (17)
C6—C5—H5120.3C7—N1—H1N117.7 (19)
C5—C6—C1120.8 (3)S1—N1—H1N114.3 (19)
C5—C6—H6119.6O1—S1—O2118.76 (12)
C1—C6—H6119.6O1—S1—N1105.39 (11)
C8—C7—C12118.2 (2)O2—S1—N1109.43 (12)
C8—C7—N1120.0 (2)O1—S1—C1110.08 (12)
C12—C7—N1121.8 (2)O2—S1—C1106.14 (12)
C7—C8—C9120.7 (3)N1—S1—C1106.48 (12)
C7—C8—Cl3120.06 (19)
C6—C1—C2—C30.7 (4)Cl3—C8—C9—C10178.5 (2)
S1—C1—C2—C3179.4 (2)C8—C9—C10—C111.5 (4)
C6—C1—C2—Cl1178.8 (2)C9—C10—C11—C120.2 (5)
S1—C1—C2—Cl11.1 (3)C10—C11—C12—C71.5 (4)
C1—C2—C3—C40.4 (5)C8—C7—C12—C111.7 (4)
Cl1—C2—C3—C4179.0 (3)N1—C7—C12—C11179.2 (3)
C2—C3—C4—C50.1 (5)C8—C7—N1—S1145.6 (2)
C2—C3—C4—Cl2179.1 (2)C12—C7—N1—S135.3 (4)
C3—C4—C5—C60.0 (6)C7—N1—S1—O1171.4 (2)
Cl2—C4—C5—C6179.3 (3)C7—N1—S1—O259.8 (2)
C4—C5—C6—C10.2 (5)C7—N1—S1—C154.5 (2)
C2—C1—C6—C50.5 (4)C6—C1—S1—O1134.6 (2)
S1—C1—C6—C5179.6 (3)C2—C1—S1—O145.3 (2)
C12—C7—C8—C90.3 (4)C6—C1—S1—O24.9 (2)
N1—C7—C8—C9179.4 (2)C2—C1—S1—O2175.0 (2)
C12—C7—C8—Cl3179.94 (19)C6—C1—S1—N1111.6 (2)
N1—C7—C8—Cl30.8 (3)C2—C1—S1—N168.5 (2)
C7—C8—C9—C101.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.86 (1)2.23 (2)3.007 (3)152 (2)
N1—H1N···Cl30.86 (1)2.57 (3)2.975 (2)110 (2)
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H8Cl3NO2S
Mr336.60
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)299
a, b, c (Å)10.5639 (8), 16.279 (1), 16.693 (1)
V3)2870.7 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.78
Crystal size (mm)0.30 × 0.24 × 0.22
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.800, 0.847
No. of measured, independent and
observed [I > 2σ(I)] reflections
8054, 2938, 2054
Rint0.019
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.107, 1.01
No. of reflections2938
No. of parameters175
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.35

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.855 (10)2.225 (16)3.007 (3)152 (2)
N1—H1N···Cl30.855 (10)2.57 (3)2.975 (2)110 (2)
Symmetry code: (i) x, y, z+1/2.
 

References

First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010a). Acta Cryst. E66, o1552.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010b). Private communication (refcode CCDC 740692). CCDC, Union Road, Cambridge, England.  Google Scholar
First citationNirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o918.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSavitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 60, 600–606.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds